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EXIT PROBABILITIES FOR STOCHASTIC
POPULATION MODELS: INITIAL TENDENCIES
FOR EXTINCTION, EXPLOSION, OR PERMANENCE

THOMAS C. GARD

ABSTRACT. Let X(t) = X(t,w) be a stochastic process
which represents the (w-th sample) population density at time
t, t > 0 (w € Q, a sample space), and let P be the un-
derlying probability measure (defined on Q). Let L < U be
positive constants, and fix an initial population distribution
X (0) satisfying P(L < X(0) < U) = 1; the population den-
sity levels L and U may correspond to effective extinction and
explosion respectively, for the population, for example. De-
note by 7 = 7(w) the first exit time of X from the interval
(L,U) : 7 =inf{t : X(¢) & (L,U)}. The probabilities P(T =
+00), P(t < 400,X(7) > U), and P(t < +o0,X(7) < L)
represent the permanence probability, and the initial tenden-
cies of the population toward explosion and extinction respec-
tively relative to the interval [L,U]. These probabilities are
calculated for some diffusion process models. A result is given
which shows that initial tendencies not to explode or go ex-
tinct for diffusion process models follow from dissipativeness
or persistence for associated deterministic models respectively.

1. Introduction. The exponential population growth model cor-
responding to the assumption of constant per capita net growth rate
is generally rejected since it predicts that population densities become
unbounded. Indeed, boundedness of solutions, as a crudest form of
stability, is usually expected of dynamical system models of popula-
tion evolution, since this type of behavior is observed in real popula-
tions. Thus, checking that solutions are bounded constitutes an im-
portant step in validating a specific model. Once the boundedness
question is answered, qualitative considerations such as persistence can
be addressed: Does the model predict that the population(s) will sur-
vive indefinitely? When environmental or demographic variability are
accounted for via stochastic models, a number of interpretations of
boundedness and persistence are possible. Exactly how such variability
as expressed by stochastic models effects qualitative behavior is as yet
unsettled (Chesson [1, 2, and 3], Murdoch [14], for example). Tractable
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mathematical descriptions of qualitative behavior of stochastic models
provide necessary tools to address such problems. Qualitative prop-
erties of stochastic models are indicated by trends in (time-varying)
statistics and the existence of invariant distributions, generally. But
transient information about stochastic models, given by certain first
exit probabilities, can be important also, for example when they cor-
respond to the degree of certainty of the model’s attaining threshold
levels. Specifically let X (¢t) = X (¢,w) represent the w-th sample pop-
ulation density at time ¢, ¢ > 0, and w € €2, a sample space equipped
with a probability measure P. For an interval [L,U] C R4 = (0,00),
and assuming X (0) in (L, U) with probability one, define the first exit
time of X from (L,U) by

7 =71(w) =inf{t: X(t,w) & (L,U)}.

The complementary probabilities P(r < +o00,X(7) > U), P(r <
+00, X (7) < L), and P(1T = +00) indicate the transient behavior of X
relative to [L,U] and can represent, for appropriate choices of L and
U, relative certainties of significant ecological events, such as effective
explosion, extinction, or permanence; these first exit probabilities can
be regarded as describing initial tendencies of the population toward
boundedness or persistence.

In this paper the above probabilities are calculated for continuous
Markov diffusion process models of population dynamics. Diffusion
processes form a class of stochastic models which arise when random
environmental effects are modelled by additive white noise (Ludwig
[12, 13], Hoppensteadt [10], Ricciardi [16], Turelli [18, 19], Gard
[6]). Multispecies diffusion process models are considered: the main
result estimates first exit probabilities for such models via Lyapunov
functions. As a consequence it is shown that criteria for dissipativeness
and persistence for deterministic models correspond to conditions for
first exit bias toward boundedness and persistence for related stochastic
models. Also an example is given which illustrates that inward first
exit (boundedness) bias is possible even when the deterministic models
corresponding to the drift terms are not dissipative. To begin, the
calculation of first exit probabilities for scalar diffusion processes is
reviewed and applied to a stochastic version of the logistic equation
recently derived by Tuckwell and Koziol [17].
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2. Stochastic population models. This paper is concerned
with continuous Markov diffusion process models, an important class
of stochastic models arising in population ecology. The probability
law for such a process is characterized by drift f and diffusion g2
coefficient functions determining the infinitesimal mean and variance
of the process:

limit %E (X(t+h) - X(&) | X() = 2) = f(2)

h—0+
(2.1) 1
limit T ((X(¢+ ) — X | X(8) = 2) = ¢*(2),
h—0t h
where E(-|X(t) = ) denotes the conditional expectation given

X(t) = x. An alternate characterization views the diffusion process
X as a solution of the (Ito-interpreted) stochastic differential equation

(2.2) dX = f(X)dt + g(X) dW.

(Diffusion process analogues of the logistic (Verhulst) equation origi-
nally suggested by Robert May, for example, are obtained by taking
f(z) = rz(1 — z/K) and various choices for g(z); see Feldman and
Roughgarden [4], Turelli [18], Polansky [15], and Tuckwell and Koziol
[17].) In these models g(z) represents the effective fluctuation inten-
sity of the random environment. Generally there is no reason why g
should vanish at an arbitrary population level . A mathematical con-
sequence (see Friedman [5; Chapter 6], for example) of g # 0 on [L, U]
is that permanence relative to [L, U] is impossible. Since sample paths
are continuous, X(7) = L or X(7) = U, and the probabilities of these
events indicate the initial tendency of the population to go extinct or
explode relative to [L,U]. For this type of model the probability

p(zo) = P(X(7) =U | X(0) = o)

can be calculated directly:

(23) e = [ otan ] [ owan

T e[ )
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and z; is an arbitrary positive number (see Gihman and Skorohod [8;
pp. 108, 109], for example); o = (L + U)/2 is of particular interest
here. As a specific example, consider the equation

(2.4) dX =rX(1— X/K)dt+/rX(1— X/K) dW.

Equation (2.6) is the death rate = 0 case of the stochastic logistic model
derived by Tuckwell and Koziol [17] as a diffusion approximation of a
more intractable stochastic population model. In (2.4), f = g?, which
implies that ¢(u) = (const.) e 2*, and so, from (2.3),

(2.5) P=p <L_;_U> _ [eLfU n 1]71 S

1

2

for any interval [L, U] C (0, K). The population density always exhibits
a bias to exit [L,U] through the boundary point U. In this case, an
initial tendency toward the carrying capacity K (rather than explosion)
is the interpretation. Actually, for any o € [L,U] in this case, (2.3)
becomes

(2.6) p(zo) = (1 — ez(L*EO))/(l _ 62(L7U))‘
Letting L — 0 and U — K in (2.6) obtains the quantity
(.1 o) = (1— e 20) /(1 — e K),

which can be interpreted as the survival probability of a population at
level z( at some time t = 0. The complementary probability

(2.8) 1 o) = (e 20 — e 2K)/(1— e 2K)

corresponds to the extinction probability of the population. Tuckwell
and Koziol point out that the boundaries X = 0 and X = K for the
diffusion process on (0, K') defined by (2.4) are of exit type in the Feller
boundary classification scheme. For this transient process, the first
exit probabilities for small L and large (near K) U give, therefore, not
only the initial tendencies but also the entire qualitative picture. The
variability introduced by (2.4) allows for the possibility of extinction,
in contrast to the deterministic and other stochastic logistic models.
Also, one can see immediately, from (2.7) and (2.8), the impact of
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any environmental deterioration (decreased K), for example, on the
survival/extinction question.

Generally

1
2.9 -
(2.9) p<3

for L sufficiently large, would represent an initial tendency toward
boundedness. If, after a transformation such as ¥ = —InX, (2.9)
holds for L sufficiently large, a first tendency toward persistence would
be indicated. The main result of this paper given in the next sec-
tion establishes (2.9) for multispecies models under certain conditions
involving Lyapunov type functions.

3. Multispecies population models. Explicit formulas like
(2.3) are not available generally in the multidimensional case (because
the boundary value problem characterizing the exit point distribution
does not admit a closed form solution generally). To deal with this
situation Lyapunov type functions are introduced in this section so that
estimates, at least, for the appropriate probabilities can be obtained.
The multispecies population density configuration is represented by a
multidimensional continuous Markov diffusion process X (¢t) = {X;(¢)}
characterized by a (vector-valued) drift function f and a (matrix-
valued) diffusion function GGT (superscript 7' denoting transpose)
which, as in the scalar case (2.3), determine the infinitesimal statistics
of the process:

limit %E (X(t+h) - X() | X() = 2) = f(=)

h—0t

G it 2B (DX(e+ ) - XOIX ¢+ ) = XOF | X(0) =)

= G(z)G" ().

More specifically, suppose X represents an n-species population density
configuration. Let R",R"*™, and R’ denote the usual Euclidean
n-space, the space of n X m real matrices, and the positive cone
{z = {@;} € R" : x; > 0, all i} in R"”, respectively. If the
functions f : R}? — R"™ and G : R} — R™™ are sufficiently
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smooth (continuously differentiable suffices) and if 2y € R}, the unique
solution X (t) of the vector Ito stochastic differential equation

(3.2) dX = f(X)dt+ G(X)dW,

with initial value X (0) = =g, is a diffusion process satisfying (3.1);
in (3.2), W = {W;} represents a standard m-dimensional Wiener
process—the components W; are independent standard scalar Wiener
processes—the prototype continuous Markov diffusion process. In
component form (3.2) is written as

(3.3) dX; = f{(X)dt + > gi;(X)dW;, i=1,...,n,
j=1

where f = {f;} and G = {g;;}. Further, it is assumed that there exist
continuous functions {f;} and {g;;} on ﬁi ={zreR":2; >0, i=
1,...,n} such that

(3.4) fi(z) = a:,ﬁ(a:) and  g;;(z) = x;G:5(x),

which makes the specific form of (3.3) under consideration here
(3.5) dX; = X; | fi(X)dt+ ) §ii(X) dW; | ;
j=1

the expression in the square brackets in (3.5) represents the stochastic
per capita net growth differential for the i-th component species. (For
example, taking

(3.6) filx) = ai + ) bija;
j=1

with a; and b;; constants in (3.5) produces a stochastic analogue of the
classical Lotka-Volterra model for multispecies population dynamics.)
Basic properties of (3.5) are analogous to those of the corresponding
deterministic (Kolmogorov) model

dl’i ~

(3.7) T z; fi(2);
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in particular, for each zp € R, the solution X(t) of (3.5) with
X(0) = z¢ does not hit the boundary of R} in finite time.

The main result given below involves Lyapunov type functions V(z),
and is similar to various well-known theorems for deterministic and
stochastic dynamical systems. The general idea behind the use of
Lyapunov functions, of course, is to affect a transformation of the
system to one or more inequalities with known qualitative properties;
the structure of the Lyapunov function indicates what these properties
say about the original system. Crucial in application of such results is
the construction of appropriate Lyapunov functions for specific models.
The assumptions required on the Lyapunov functions V (z) here are as
follows:

V(z) > 0, and has continuous
(3.8) second partial derivatives 9°V/0z;0z;
for x € RY;

V(z) is radially unbounded, i.e.,
(3.9) limit V(z) = oo;

l|z||—o0

and there are positive numbers C' and L such that
(3.10)

Zf lfj S g ) | (@) < —C
Zax 2 ] 9ikgik O0x;0x; -

for all z € {x € R" : V(x) > L}.

THEOREM. Let U and L be positive numbers with U > L, and
suppose there exists a function V(x) satisfying (3.8)—(3.10), with (3.4)
holding. Suppose X(t) is a solution of (3.5) with X(0) = zo and
V(zo) = (L +U)/2. Let T be the first exit time of X(t) from the
set @Q={r € R} : L <V(x) <U}. Then

(3.11) P(V(X[r)) =U) < = — CE7/(U - L).

DN | =
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0 K
V(x) = L+U

2

FIGURE. Typical region Q.

Conditions (3.8)—(3.10) suffice to give the existence of a (possibly
degenerate) stationary distribution for (3.5) in ﬁj_ (Has'minskii [9;
Theorem 5.1, pp. 90, 91], applied to the invariant set R’). The
conclusion (3.11) of this theorem gives more specific information which
may be useful for particular x models of interest.

The proof of this theorem is given in the next section. The first part
of the proof verifies that the exit time from @) is finite with probability
one. Since the boundary of R’} is unattainable from the interior in finite
time, exit from @ must be through the lower {z € R" : V(z) = L}
or upper {x € R’ : V(z) = U} boundaries. (See figure above.)
Continuity of the sample paths of X and of the function V' imply that
the exit time is positive with probability one. The conclusion of the
theorem indicates a tendency to exit through the lower boundary which
is enhanced by the mean elapsed time to exit. At least numerical
approximations of the mean exit time E7 can be obtained from its
representation (as a function of xg) as the solution of the Dirichlet
problem

Lu=—-1 in Q
u=0 on 0@ (boundary of Q)
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(See Friedman [5; Chapter 6], for example). Also, Ludwig [13] has
pointed out that E 7 can be characterized as the reciprocal of the small-
est eigenvalue of a similar Dirichlet problem involving the adjoint op-
erator L* of £ and suggested some computational methods especially
for the small noise perturbation case.

The example below indicates that (3.11) is “generic” in the sense that
this property holds whenever the corresponding deterministic system
(3.7) exhibits ultimate uniform boundedness of solutions verifiable by
a linear Lyapunov function.

ExAMPLE (Kolmogorov model). Consider (3.5) and suppose there
exist positive constants aq,...,a,, C, and L such that

(3.12) zn: iz fi(z) < —C
i=1

for all z € {z € R : Y az; > L}. The function V(z) = Y1 | a;;
satisfies the assumptions of the theorem for any U > L, and so (3.11)
obtains in this case. Note that the required condition (3.12), which is
independent of the (per capita) random noise intensities {g;;}, suffices
to give (3.10) since the second partial derivatives of V' occurring in
(3.10) multiplying the noise intensities all vanish, i.e.,

LV(z) = Zfl(w)ZTV = Zaimifi(m).
i=1 ti=1

Condition (3.12) guarantees that the corresponding deterministic model
(3.7) is dissipative: all solutions tend to the set {V(z) < L} asymp-
totically. This condition is satisfied generally by simple food chain and
competition models including the classical Lotka-Volterra type models
(see Gard [7] and included references, for example).

Initial trends toward persistence may also be ascertained via appli-
cation of the theorem—upon an appropriate change of variables in
the model equations. For example, consider the transformation of the

above Kolmogorov model by ¥; = —In X; (and write X = e~Y): in-
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voking Ito’s formula, (3.5) becomes

. 1
dy; = |- i(e_Y)+§Z§Z~2](e_Y) dt
(3.5') =t
= Giile V) dw;
j=1

Note that Y; failing to explode beyond a positive level U; implies
persistence of X;; we apply the theorem with V = >"" | B;y;. The
conclusion (3.11) interprets in this case as an initial tendency toward
persistence. Similar to the boundedness case above, the required

condition is that there exist positive constants (31,...,8,, C, and L
such that

n 1 m
(3.13) D8 |~fit 5> 5| <-C

i=1 j=1

for all y € {y € R : > 3;Y; > L}; the hypothesis of the theorem is
fulfilled for any U > L. Here, unlike the boundedness case, the required
condition is dependent on the per capita effective noise intensities §;;.
However, if the §;; are sufficiently small, (3.13) will hold whenever

(3.14) d Bifizp

for some positive constant p. It is known (Gard [1987]) that (3.14)
implies persistence for the deterministic (Kolmogorov) model (3.7).

The above example illustrates that sufficient conditions for dissipa-
tiveness (and persistence) for deterministic models defined by the drift
coefficients imply analogous initial tendencies for diffusion models. To
conclude the paper, an example is given below which shows that such
conditions are not necessary; however, a first exit bias toward bound-
edness may occur even when the deterministic model given by the drift
coefficients is not dissipative.
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EXAMPLE (Mutualist pair model). Consider the stochastic system

I 2
dXy = X1 |(a—bXy + cXo)dt + > §i;(X) dW;
j=1
(3.15) -
2
dXy = Xy |(d+eXy — fXo)dt+ > G (X) dW; |,
L J=1

where a,b,c,d,e, and f are positive constants, the functions g;; are
continuous, and Wy and W5 are independent scalar Wiener processes.
Kesten and Ogura [11] have discussed (3.15) (as well as the correspond-
ing prey-predator and competition models) in case the §;; are constant
with

det{gi;} # 0.

In particular they established that the solution X = (X;,X5) was
positive recurrent (and consequently a stable invariant distribution
exists) if

(3.16) bf > ec,

and X is transient otherwise. It is well known that condition (3.16) is
necessary and sufficient for boundedness of solutions of the correspond-
ing deterministic model

% =2z1(a — bxy + cx2)
(3.17) t

dmg

e z2(d + exy — faa).

The next proposition indicates that inward first exit bias as character-
ized by (3.11) may hold for solutions of (3.15) even when (3.16) fails,
if the noise intensity is of sufficient strength.

PROPOSITION. Suppose there are constants K1 > 2¢, Ko > 2e, and
K > 0 such that, for |z| = |(z1,z2)| > K,

2 2
(318) Zf]%j(ml,xz) 2 KlIg and Zggj(xl,mg) Z Kgxl.

j=1 j=1
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Then (3.11) holds for solutions of (3.15) if L is sufficiently large.

ProoF. Let a =1— (2¢)/Ky, 8 =1—(2¢)/Ks and 0 < A < 1. For
the choice

V(xy,z2) = Vi(zy) + Va(z2)

3.19
(3.19) =Az§ + (1— )z,

one obtains

(3.20)
LV(x1,25) =acAz$ + dB(1 — Azl — (barz$™ + fB(1— A5 ™)

2
« 1 ~
+ aXzf |cxy + 5((1 -1 E 1g%j
J:

1 2
+ AL~ N)af [ews+5(8- 1) _Zlﬁ§j
P

Now the assumption (3.18), together with the choices of a and 3, imply
that the last two terms in (3.20) are nonpositive for |(z1,z2)| > K.
Also, if v = min{a~!, 371}, by convexity,

A4 (1= N)2g ! > Ma) ™t + (1 - ) (5)
> [Az$ + (1= Azt .

Setting A = max{a«a,dB} and B = min{ba, {3}, one has, then, from
(3.20),

(3.21) LV <AV - BV for |(z1,22)| > K.
So

EV(ml,wg) S -C
3.22 1/
( ) if V(xl,w2)>L:max{(%> ,C},

verifying (3.10), and so the Proposition follows from the Theorem. O
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Note from (3.22) that the decay rate C for the probability of exit
through the upper boundary increases as L — oo; the bias toward exit
through the lower boundary strengthens as | X| increases, for solutions
with the same exit time. As a final remark, it may be observed that
the deterministic part of the Stratonovich version of (3.15) is

% — xl(a — bz + (C - K1/2)m2)
(3.23) o
2 = 25(d+ (e — Ka/2)1 - fa2)

for the (simplest) special case

g11 = VK12, goz =/ Kaxy, gGi12 =g21 =0.

The interesting point here is that the conditions on the K; in the
Proposition precisely make (3.23) a competition (rather than mutualist)
model. As such, (3.23) is dissipative, even if (3.16) fails. This
suggests sharper results may be obtainable by considering Stratonovich-
interpreted stochastic models.

4. Proof of the Theorem. First consider the exit time 7 itself. As
mentioned earlier, continuity of the function V' and the sample paths
of X imply that
(4.1) P(r>0)=1.

It is useful to establish
(4.2) P(r<oo0)=1

as well. Toward obtaining (4.2), one can apply a special case of
Dynkin’s formula (see Has’minskii [9; p. 82], for example) to get

(1)
(4.3) EV(X [T(t)])—Ev(X(O)):E/O LV(X(s))ds,

where 7(t) = min{r,t}. Until time 7 > 7(¢), X remains in @, so

(4.4) EV(X[r(#)]) = L,
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and, from (3.10),
(4.5) Lv(X(s)) < -C.

Therefore, applying (4.4) and (4.5) to (4.3) and recalling that V(X (0)) =
(L +U)/2, gives the estimate

_L+U

(4.6) L < —CET(t).

Letting ¢t — oo in (4.6) obtains a contradiction unless (4.2) holds. More
precisely, (4.6) yields

(4.7) Er < (U - L)/2C.

Now the proof of this theorem verifies an estimate for the probability

Since exit from ) occurs in finite time w.p.l and since the boundary of
R’ is unattainable by X () in finite time, exit must be effected through
the lower or upper boundaries of ). Thus

(4.8) EV(X[r]) = L(1 - p) + Up.

Letting ¢ — oo in (4.3), noting that V(X (0)) = (L + U)/2 and using
(4.5), obtains

49) EV(X[T]):(L+U)/2+E/O LV(X(s))ds

<(L+U)/2-CET.

From (4.8) and (4.9) it follows that

(4.10) L1-p)+Up<(L+U)/2-CET
(4.11) p< % _CET/(U-1)

which completes the proof. O



EXIT PROBABILITIES 931

As a final remark, it is noted that (4.11) indicates that p < 1/2 since
E7 > 0, and, whenever E 7 achieves its maximum value (4.7), p = 0.
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