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ON THE STABILITY OF ONE-PREDATOR
TWO-PREY SYSTEMS

M. FARKAS

1. Introduction. The MacArthur-Rosenzweig “graphical criterion”
of stability says, loosely speaking, that if, in a predator-prey system,
the interior equilibrium point lies on the decreasing branch of the prey’s
zero-isocline, then it is asymptotically stable; it if lies on the increasing
branch (in the prey-predator phase plane) then it may be unstable (see
[7, 3]; in case the predator’s zero-isocline is a vertical straight line
i.e., there is no intraspecific competition in the predator species, it s
unstable). Freedman and the author have generalized this criterion
to the three-dimensional case when there are two predator species
competing for a single prey species [1, 2]. We have shown that if
there is no direct interspecific competition between the predator species
and the derivative with respect to the prey quantity of the specific
growth rate function of the prey is negative at the interior equilibrium,
then this equilibrium is asymptotically stable. In [2] we have shown
by some drawings the intuitive geometric meaning of the MacArthur-
Rosenzweig criterion, namely, that if the condition is fulfilled, and the
system is driven out of the equilibrium in an easily controllable way,
then the dynamics drives it closer to the equilibrium.

In the present paper we are going to show that the MacArthur-
Rosenzweig criterion does not generalize to three-dimensional systems
with two competing prey species in the general case. We are giving
sufficient conditions for the asymptotic stability of an interior equilib-
rium. The conditions might be considered more or less known, at least
in case the specific growth rates are linear functions, i.e., in case we have
a Lotka-Volterra system (see Hutson and Vickers [5] and the references
therein and Svirezhev, Logofet [8]). The relation of these conditions
to some concerning permanent coexistence will also be pointed out (cf:
[5] and see also [4, 6]). We shall show the special case in which the
MacArthur-Rosenzweig criterion can be generalized.
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2. A sufficient criterion of stability. Let R, = [0,00), and
let z1(t),z2(t),y(t) denote the quantities of prey 1, prey 2 and the
predator at time t, respectively; the specific growth rate functions of
prey i, i = 1,2, and of the predator will be denoted by Fj; : Ri — R,
G : Ri — R, respectively, and these functions will be assumed to
belong to the C! class. The general Kolmogorov-system governing the
dynamics of this three-species system is

dx
d_tl =21 F1 (21, 22,y, K1)
dx
(2.1) d—t2 = 2oy (21, 72,y, K>)
d
d_i = yG(mlax%y)a
where
(2.2) Fi(O, 0, O,Ki) >0, K;>0,
(2 3) (xl — Kl)Fl(ml,0,0,Kl) < 0, (IQ — KQ)FQ(O,IQ,O,KQ) < 0,

vy # Ky, @2 # K,
(24) FiIk (mlax%yaKi) <0, Fiy(xlax%yaKi) <0, 1 7é k

G(U,O,y) < 07 Gz,-(xlax%y) > 07 Gy(mlax%y) S 07

2.5
(2:5) i=1,2 k=12

These are natural conditions expressing that if the quantities are small
then: the prey species may grow (2.2); the i-th prey has carrying
capacity K; > 0, and it grows in the absence of competitor and predator
up to this value (2.3); there may be interspecific competition between
the two prey species, and there is predation (2.4); the predator dies
out in absence of prey, both preys are beneficial to the predator; and
there may be intraspecific competition in the predator species (2.5). We
assume also that the system has an equilibrium point E = (29, z3,4°)
in the interior of the positive octant of xy, 2,y space, i.e.,

3z¥ >0, 29 >0, y° > 0 such that
(26) Fl(wgaxgayOaKl) = FQ(m(l)awgayoaK2) = G(w?,azg,yo) =0.
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THEOREM 2.1. Assume that, at E,

(27) Flzl S 07 Fng S 07 F12w1 + F22$2 > 0,
(28) FlleQ.Iz - F1I2F21‘1 2 07
(29) FlyF2z2 - FlngZy > Oa FlmlFZy - FlyF2zl > 07

and at least one of the inequalities (2.9) is strict; then E is asymptoti-
cally stable.

PROOF. The proof is a routine application of the Routh-Hurwitz
criterion. We present it for the sake of reference in the next section.
The characteristic polynomial of the linearized system at E is (the
values of all the functions are to be taken at E = (z9,z2,y°)):

(2.10)
D(X) =X = N2 (2) F1yy + 25 Fo,, +y°Gy)
+ )\[CU?_Q?%(F]_Z.IF2E2 - F112F2zl)
+ x(l]yO(FliEle - Flsz1) + mgyO(F%w Gy - FZﬂGwz)]
+ xtl)xgyo[Gzl (FlyF2z2 - FlIzFZ?J) + GIz (F111F2y - F19F2$1)
- Gy(F1w1F2zz - FlwzF2z1)]'

This polynomial is stable if and only if all the coefficients are positive
and the Routh-Hurwitz criterion holds, i.e.,

(2.11)
m(I)I(Z)yO(FlﬂlczF2yG9101 + FlyF2z1Gzz - 2F1£1F2E2 Gy)

2 2
- (m(lJ IgFlzl + x?mg F2132)(F1I1F212 - F1932F2$1)

0%, 0 0%, 0
—Iry F1931 (F1E1Gy - Flsz1) — 22 Y FZZz(icsz - FZ?JGzz) > 0.

(2.7) and (2.5) imply that the coefficient of A? is positive, (2.8),
(2.4) and (2.5) imply that the coefficient of A is positive, (2.4), (2.5),
(2.7), (2.8) and (2.9) imply that the constant term is positive. These
conditions imply also that (2.11) holds: at least one of the last two
terms is strictly positive, while the rest of the terms are nonnegative.
This proves the theorem. 0O

3. The intuitive meaning of the stability conditions. Eco-
logically, condition (2.7) means that we may expect stability if at the
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equilibrium point the growth rate F; of the i-th prey is decreasing with
the increase of z;, i = 1,2. This is the condition corresponding to the
MacArthur-Rosenzweig criterion but, clearly, it is not sufficient now for
stability.

(2.8) is a well known condition for two-dimensional competitive
systems ensuring the stability of the interior equilibrium representing
coexistence. If we write it in the form

(3.1) Fre,/Fazy > Fiz,/Fa,,

assuming that the denominators are nonzero, then we see that it
requires a stronger intraspecific competition rather than an interspecific
one. It holds true, for instance, if |Fiz,| > |Fiz,|, ¢ # k, ¢ = 1,2,
k = 1,2. No wonder that we need this condition also in the three-
dimensional case.

Inequalities (2.9) can be written in the form
(32) Flzz/FszSFIy/FQySFlzI/F2z17

provided that the denominators are nonzero. As we see, this requires
that the ratio Fi,/Fs, should be between the two values occurring in
(3.1). This, clearly, means that the predator should not have a strong
preference of any of the preys over the other.

Besides the ecological meaning, the conditions of Theorem 2.1 have
a nice geometrical interpretation, too. This enables one to determine
the stability by inspection if the graphs of the zero isoclines of the two
preys and the predator have been drawn, say, by a computer.

Consider the cross product of the gradients of F; and F, at the
equilibrium (all functions are to be taken at E = (29, 23,4°)):

v =grad F x grad Fy = [F14,Fy — FiyFos,, FiyFop, — Fig, Fay,
F1z1F2z2 - Flngle]-

The conditions (2.8)—(2.9) mean that the first two coordinates of this
vector should be nonpositive (one of them at least, negative) and the
third one nonnegative. Now, the vector v is the tangent vector of the
curve of intersection of the surfaces F} = 0, F» = 0, and the relative
position of these surfaces determine the direction of v (the gradient
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FIGURE 1

points roughly towards the origin since F; is a decreasing function of
T1,T2,y at E) We are showing two generic situations on Figures 1 and
2. On Figure 1 the equilibrium F; is stable by inspection. We have
shown by the little arrows that if we move out the system from this
equilibrium by keeping two of the coordinates fixed and varying only the
third one a little, the dynamics tries to drive the system back, closer to
E;. The equilibrium Fj5 is, probably, unstable (the conditions imposed
upon the signs of the coordinates of the vector v are only sufficient
for stability). On Figure 2 the equilibrium E might be unstable (the
conditions don’t hold). In all these cases the direction of the tangent
vectors v',v? and v can be determined by a careful application of the
“right hand rule.” In both cases we assumed that the graph of G =0
is (typically) something like in Figure 3.

Note that the constant term in the characteristic polynomial (2.10)
is a negative multiple of the scalar product of grad G with the vector v.
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FIGURE 2

Our conditions imply its positivity. If it is negative, i.e., if grad G and
v form an acute angle, then the equilibrium is unstable. Note that, in
the case shown on Figure 1, the two-dimensional competitive system
derived from (2.1) by substituting y = 0, has a single asymptotically
stable equilibrium in the interior of the positive quadrant of the z1,
plane. In the case shown in Figure 2, the two-dimensional system is
“bistable”: it has an unstable equilibrium in the interior, and the equi-
libria (21, z2) = (K1,0), (z1,22) = (0, K2) are asymptotically stable.
We know that if Fy, F5» and G are linear, i.e., we have a Lotka-Volterra
system, then a bistable situation of two competing preys cannot be
“stabilized” by a predator (see Hutson, Vickers [5]; “stabilized” here
means making the system permanently coexistent). We note also that
in this Lotka-Volterra case the conditions in Theorem 2.1 imply the con-
ditions of Theorem 3.4 of [5], i.e., they imply permanent coexistence
provided that both F;;, < 0.
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FIGURE 3

4. The neutral case. In [1, 2] we have shown that, in a two-
predators one-prey system, if there is no direct interspecific competition
between the predator species besides consuming the same resource, then
the MacArthur-Rosenzweig criterion can be generalized in a natural
way. An easy inspection of the conditions (2.7)—(2.9) show that the
same is true for one-predator two-prey systems.

Consider a special case of (2.1):

dx dx
d—l =z Fi (21,9, K1), d—2 = zoF5(22,y, K2)
(4.1) t t
d_y = yG(fvl,w%y)
dt

with conditions (2.2)—(2.6) except, of course, that now Fi,, (2;,y, K;) =
0, i # k. There holds the following
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THEOREM 4.1. If (2.7) holds for system (4.1) at E, then this
equilibrium is asymptotically stable.

PROOF. This is an immediate corollary of Theorem 2.1. O
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