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Dedicated to W.J. Thron on the occasion of his 70th birthday

ABSTRACT. Applications of Szegö polynomials, moment
theory and two-point Padé approximants to problems in dig-
ital signal processing are described. The frequency analysis
problem consists of determining unknown frequencies in a sig-
nal which is the sum of a finite number of cosine waves su-
perimposed to white noise. The problem of filter design is
to construct a causal filter T with finite energy, which has a
prescribed amplitude response function Φ(θ). Examples are
given to illustrate each of the two applications.

1. Introduction. Connections between Szegö polynomials (or-
thogonal on the unit circle), the trigonometric moment problem and
two-point Padé approximants are well known and have been given, for
example, in [2, 12, 13, 18, 19 and 21]. The purpose of this expos-
itory article is to describe important applications of these topics to
two problems involved with digital filters and the processing of digital
signals.

In the frequency analysis problem, we consider a signal u = {u(k)},
superimposed on white noise, where u(k) has the form

(1.1)
u(k) = λ0 +

I∑
j=1

λj cos(ωjk + ϕj), k = 0,±1,±2, . . . ,

1 ≤ I <∞, λ0 ≥ 0, λj > 0, ωj , ϕj ∈ R for 1 ≤ j ≤ I.

We wish to determine the unknown frequencies ω1, ω2, . . . , ωI . The lin-
ear prediction method of Wiener [28] and Levinson [24] used for this
problem is described in Section 3. Also included there for illustration
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are results from three numerical experiments. In order to make this
presentation reasonably self-contained we have summarized in Section
2 a number of definitions, notations and known results that are subse-
quently used. Among the topics included are digital filters, Levinson’s
algorithm, and positive PC-fractions and their relation to the two-point
Padé table, Szegö polynomials and the trigonometric moment problem.

The problem of designing digital filters is dealt with in Section 6.
In particular, we consider a given real-valued function Φ(θ) on [−π, π]
such that

(1.2a) Φ(θ) ≥ 0 and Φ(−θ) = Φ(θ) for − π ≤ θ ≤ π

and

(1.2b)
∫ π

−π
[Φ(θ)]2 dθ <∞.

A method is described for constructing a function K0(z), defined and
analytic for |z| > 1, such that K0(z) is the transfer function of a causal
filter T with finite energy, satisfying

(1.3) lim
ρ→1+

|K0(ρeiθ)| = Φ(θ) a.e. on [−π, π].

It is shown (Theorem 6.1) that a function K0(z) of the above type
exists provided

(1.4)
∫ π

−π
lnψ′(θ) dθ > −∞ (Szegö’s condition)

where

(1.5) ψ(θ) :=
∫ θ

−π
[Φ(t)]2 dt+ σ(θ),

where σ(θ) is an arbitrary singular distribution function.

The function K0(z) is seen to be (cf. (6.14)) the limit of the sequence
{An(z)}, where

An(z) :=
1√

2π (ϕ∗
n(1/z̄))

,
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where ϕ∗
n(z) := znϕn(1/z̄), ϕn(z) being the normalized n-th Szegö

polynomial with respect to the distribution function ψ(θ). For illus-
tration, some examples are described at the end of Section 6, where
Gn(θ) := |An(eiθ)| is used to approximate Φ(θ).

In order to make this part of the paper self-contained, we have in-
cluded in Section 4 some basic results on the theory of Szegö polynomi-
als. Closely related to this is the discussion of deterministic, weakly sta-
tionary stochastic processes given in Section 5. We have included proofs
of certain results which were felt to be necessary for self-containment.
References are given for these and for other proofs that are omitted.

2. Background. This section is used to summarize material em-
ployed in subsequent parts of the paper. First we describe connections
between positive PC-fractions, the trigonometric moment problem, and
Szegö polynomials (Theorems 2.1, 2.2, 2.3). The Levinson algorithm
is described and references are given for other fast algorithms to solve
real positive definite Toeplitz systems. The section concludes with a
brief summary of basic concepts about digital filters.

Positive PC-fractions. A double sequence of complex numbers
{μk}∞k=−∞ is called hermitian positive definite if

(2.1a) μ−k = μ̄k, k = 0, 1, 2, . . .

and

(2.1b) Δn :=

∣∣∣∣∣∣∣∣
μ0 μ−1 · · · μ−n
μ1 μ0 · · · μ−n+1

...
...

...
μn μn−1 · · · μ0

∣∣∣∣∣∣∣∣
> 0, n = 0, 1, 2, . . . .

A continued fraction

(2.2a) δ0 − 2δ0
1 +

1
δ̄1z +

(1 − |δ1|2)z
δ1 +

1
δ̄2z +

(1 − |δ2|2)z
δ2 +

. . .

is called a positive PC-fraction (positive Perron-Carathéodory continued
fraction) if

(2.2b) δ0 > 0 and |δn| < 1, n = 1, 2, 3, . . . .
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The n-th numerator Pn and denominator Qn of (2.2) are defined by
the difference equations

P0 := δ0, P1 := −δ0, Q0 := Q1 := 1,(2.3a)

(
P2n(z)
Q2n(z)

)
:= δ̄nz

(
P2n−1(z)
Q2n−1(z)

)
+
(
P2n−2(z)
Q2n−2(z)

)
, n = 1, 2, 3, . . . ,

(2.3b)

(
P2n+1(z)
Q2n+1(z)

)
:= δn

(
P2n(z)
Q2n(z)

)
+ (1 − |δn|2)z

(
P2n−1(z)
Q2n−1(z)

)
,

(2.3c)

n = 1, 2, 3, . . . .

From these it follows that, for n ≥ 1, P2n(z), Q2n(z), P2n+1(z) and
Q2n+1(z) are polynomials in z of degrees at most n, with Q2n(0) = 1
and Q2n+1(z) = zn+ · · ·+ δn. Connections between hermitian positive
definite sequences {μk} and positive PC-fractions are summarized by
the following theorem, a proof of which can be found in [19, Theorems
2.1, 2.2., 3.1 and 3.2] where PC-fractions were introduced. Here the
symbol O(zr) is used to denote a formal power series (fps) in increasing
powers of z, starting with a power not less than r. If R is a rational
function, then the symbols Λ0(R) and Λ∞(R) denote the Taylor and
Laurent series expansions of R about 0 and ∞, respectively.

Theorem 2.1. (A) Let (2.2) be a given positive PC-fraction. Then
there exists a unique pair (L0, L∞) of fps

(2.4) L0 := μ0 + 2
∞∑
k=1

μkz
k, L∞ := −μ0 − 2

∞∑
k=1

μ−kz−k

such that, for n = 0, 1, 2, . . . ,

L0 − Λ0

(
P2n

Q2n

)
= O(zn+1)(2.5a)

L∞ − Λ∞

(
P2n+1

Q2n+1

)
= O

((
1
z

)n+1
)

(2.5b)
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and

Q2nL0 − P2n = O(zn+1), Q2nL∞ − P2n = O(1),(2.6a)

Q2n+1L0 − P2n+1 = O(zn), Q2n+1L∞ − P2n+1 = O

(
1
z

)
.

(2.6b)

Also, for n = 1, 2, 3, . . . ,

μ0 > 0, μ−n = μ̄n, Δn > 0,(2.7a)

1 − |δn|2 =
ΔnΔn−2

Δ2
n−1

,(2.7b)

δ0 = μ0 > 0, δn =
(−1)n

Δn−1

∣∣∣∣∣∣∣∣
μ−1 μ0 · · · μn−2

μ−2 μ−1 · · · μn−2

...
...

...
μ−n μ−n+1 · · · μ−1

∣∣∣∣∣∣∣∣
,(2.7c)

and

(2.7d)

Q2n(z) =
1

Δn−1

∣∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μn
μ−1 μ0 · · · μn−1

...
...

...
μ−n+1 μ−n+2 · · · μ1

zn zn−1 · · · 1

∣∣∣∣∣∣∣∣∣∣
,

Q2n+1(z) =
1

Δn−1

∣∣∣∣∣∣∣∣∣∣

μ0 μ−1 · · · μ−n
μ1 μ0 · · · μ−n+1

...
...

...
μn−1 μn−2 · · · μ−1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣
.

Moreover, for |z| < 1 (|z| > 1), P2n/Q2n(z) (P2n+1(z)/Q2n+1(z))
converges to a holomorphic function f(z) (g(z)) such that

(2.8a) Re f(z) ≥ 0 for |z| < 1 and Re g(z) ≤ 0 for |z| > 1

and

(2.8b) f(z) = −g(1/z̄) for |z| < 1.
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The convergence is uniform on compact subsets of |z| < 1 (|z| > 1) and
L0 (L∞) is the Taylor series expansion of f(z) (g(z)) about 0 (∞).

(B) Conversely, let (L0, L∞) be a given pair of fps (2.4) such that
(2.7a) holds. Let {δn}∞0 be defined by (2.7c). Then (2.2b) and (2.7b)
hold so that (2.2a) is a positive PC-fraction. Moreover, the positive PC-
fraction (2.2a) corresponds to (L0, L∞) in the sense that (2.5), (2.6) and
(2.7d) hold.

The correspondence properties (2.6) insure that P2n/Q2n and P2n+1/
Q2n+1 are the weak (n, n) two-point Padé approximants for (L0, L∞)
of orders (n+ 1, n) and (n, n+ 1), respectively (see, for example, [19]).

Trigonometric moment problem. A bounded, nondecreasing function
ψ will be called a distribution function. The trigonometric moment
problem (TMP) can be stated as follows: For a given double sequence
{μk}∞−∞ of complex numbers, find necessary and sufficient conditions
for the existence of a distribution function ψ(θ) with infinitely many
points of increase on −π ≤ θ ≤ π, such that

(2.9) μn =
∫ π

−π
e−inθ dψ(θ), n = 0,±1,±2, . . . .

Such a function ψ will be called a solution of the TMP. It is well known
that, if a solution of the TMP exists, then it is unique except at points
of discontinuity [2, pp. 180 181].

The class C of normalized carathéodory functions is defined by

(2.10)
C := [f : f(0) > 0 and f(z) is holomorphic and

Re f(z) > 0 for |z| < 1].

We consider the decomposition C = C a ∪ C b ∪ C c, where C a consists
of all constant functions equal to a positive constant; C b :=

⋃∞
n=1 C n

where C n denotes the class of all rational functions of the form
(2.11)

n∑
m=1

λm
eiθm + z

eiθm − z
, λm > 0, −π ≤ θ1 < θ2 < · · · < θn ≤ π;

and C c consists of all elements of C not in C a ∪ C b.
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Connections between the TMP, the class C c, hermitian positive
definite sequences, and positive PC-fractions are summarized by the
following theorem; proofs can be found in, for example, [18, 19, 21].

Theorem 2.2. Let {μk}∞−∞ be a given double sequence of complex
numbers such that

(2.12) μ0 > 0 and μ−k = μ̄k for k = 1, 2, 3, . . . .

Let L0 be the fps defined by

(2.13) L0 := μ0 + 2
∞∑
k=1

μkz
k.

Then the following four statements are equivalent:

(i) {μk}∞−∞ is hermitian positive definite.

(ii) There exists a solution ψ to the trigonometric moment problem
for {μk}, and L0 is the Taylor series expansion at z = 0 of the
holomorphic moment generating function

(2.14) f(z) :=
∫ π

−π

eiθ + z

eiθ − z
dψ(θ), |z| < 1.

(iii) There exists a positive PC-fraction (2.2) corresponding to the
pair (L0, L∞) of fps (2.4) in the sense of Theorem 1.

(iv) The fps L0 converges for |z| < 1 to a normalized Carathéodory
function f(z) in the class C c.

Szegö polynomials. We denote by Φ∞[−π, π] the family of all dis-
tribution functions ψ(θ) with infinitely many points of increase on
−π ≤ θ ≤ π. It can then be seen that each ψ ∈ Φ∞[−π, π] defines
an inner product on Λ × Λ by

(2.15) (f, g) :=
∫ π

−π
f(eiθ)g(eiθ) dψ(θ) for f, g ∈ Λ.

Here Λ denotes the linear space of all Laurent polynomials (L-
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polynomials)

q∑
n=p

cnz
n, cn ∈ C , −∞ < p ≤ n ≤ q <∞.

The following theorem describes connections between positive PC-
fractions and Szegö polynomials orthogonal on the unit circle with
respect to the inner product (2.15).

Theorem 2.3. Let (2.2) be a given positive PC-fraction and denote
its n-th denominator by Qn(z) and the distribution function of Theorem
2.2(ii) by ψ(θ). Let {ρn} and {ρ∗n(z)} be defined by

(2.16) ρn(z) = Q2n+1(z) and ρ∗n(z) = Q2n(z), n = 0, 1, 2, . . . .

Then, for n = 0, 1, 2, . . . ,

(ρn, zm) :=
∫ π

−π
ρn(eiθ)e−imθ dψ(θ)

(2.17a)

=
{ 0, if m = 0, 1, . . . , n− 1,

Δn/Δn−1, if n = m,

(ρ∗n, z
m) =

{Δn/Δn−1, if m = 0

0, if m = 1, 2, . . . , n,
(2.17b)

(ρn, ρn) = (ρn, zn) = Δn/Δn−1,(2.17c)

ρ∗n(z) = znρn(1/z̄),(2.18)

and, for n = 1, 2, 3, . . . ,

ρn(z) = zρn−1(z) + δnρ
∗
n−1(z)(2.19a)

ρ∗n(z) = δ̄nzρn−1(z) + ρ∗n−1(z)(2.19b)

and

(2.20a) δn = − (zρn−1, 1)
(ρ∗n−1, 1)

= −
∑n−1
j=0 q

(n−1)
j μ−j−1∑n−1

j=0 q
(n−1)
j μj+1−n

,



SZEGÖ POLYNOMIALS 395

where

(2.20b) ρn(z) =:
n∑
j=0

q
(n)
j zj , q(n)

n := 1.

Remarks on the proof of Theorem 2.3. The orthogonality and
normality conditions (2.17) can be derived easily from (2.7), (2.15) and
(2.16). The reciprocity conditions (2.18) and recurrence relations (2.19)
follow directly from the difference equations (2.3). Finally (2.20) is a
simple consequence of (2.17) and (2.19).

The polynomials ρn defined by (2.16) are called the monic Szegö
polynomials with respect to the distribution function ψ. It is clear from
(2.17) why one says that the Szegö polynomials are orthogonal on the
unit circle Γ := [z ∈ C : |z| = 1]. Szegö considered the polynomials

(2.21) ϕn(z) := αnρn(z), αn :=
√

Δn−1/Δn

normalized so that (ϕn, ϕn)ψ = 1, n ≥ 0. If we are given the moments
{μk} for a distribution function ψ ∈ Φ∞[−π, π] (see (2.9)), then the
Szegö polynomials ρn (or ϕn) can be computed by various means. The
importance of this computation for this paper is shown in Sections 3
and 6. We therefore discuss some procedures by which the computation
can be carried out.

Levinson’s algorithm. One method is to compute the coefficients δn
in (2.19) by Levinson’s algorithm [24] described as follows (see also
(3.29)). Suppose that, for some integer n, one has computed δn−1 and
the coefficients q(n−2)

j , j = 0, 1, . . . , n−2, defined by (2.20b). One then
has from (2.19)

(2.22) q
(n−1)
0 = δn−1 and q

(n−1)
j = q

(n−2)
j−1 + δn−1q

(n−2)
n−2−j ,

j = 1, 2, . . . , n− 2,

from which δn can be computed by (2.20a). The process can be
repeated to compute δn+1, δn+2, . . . . It can be seen that the number of
operations needed to compute δ1, δ2, . . . , δn is O(n2). Some evidence
for the numerical stability of Levinson’s algorithm is given by [7]
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and [8]. The latter reference also describes two other methods to
compute the δn coefficients: Schur’s algorithm and a quotient-difference
algorithm (see also [20] and [27]). The quotient-difference algorithms
in this context can be derived from properties of the PC-fractions.

The Szegö polynomials ρn can also be constructed by solving systems
of linear equations for the coefficients q

(n)
j in (2.20b). We restrict

ourselves here to the case in which the moments μk are all real. Such
systems of equations can be obtained by using the well-known property
that, for each n = 0, 1, 2, . . . , the set

[(Rn, Rn) : Rn(z) is a monic polynomial of degree n]

attains its minimum value for the unique polynomial Rn = ρn [13,
Section 2.2]. We write

(2.23) Rn(z) =
n∑
j=0

r
(n)
j zj , r

(n)
j ∈ R , r(n)

n = 1.

It follows that the system of equations

∂(Rn, Rn)

∂r
(n)
m

= 0, m = 0, 1, . . . , n− 1,

has the unique solution r(n)
j = q

(n)
j , j = 0, 1, . . . , n− 1. Hence, the q(n)

j

satisfy the positive definite Toeplitz system of equations

(2.24)
n−1∑
j=0

r
(n)
j μm−j = −μm−n, m = 0, 1, . . . , n− 1.

In deriving the normal equations (2.24) we make use of

(2.25) (Rn, Rn) =
∫ π

−π
|Rn(eiθ)|2 dψ(θ) =

n∑
j,k=0

r
(n)
j r

(n)
k μk−j ,

which is a consequence of (2.9), (2.15) and (2.23). The system (2.24)
can be solved by Gaussian elimination, which requires O(n3) arithmetic
operations. Much faster algorithms for solving real, positive definite
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Toeplitz systems (2.24) have been found recently, using divide-and-
conquer techniques, by [3, 4, 5 and 6]. These methods require only
O(n log2

2 n) operations.

Digital filters. Since our interest here is in discrete filters, we consider
the linear space  of all real double sequences

 := [u = {u(k)}∞k=−∞ : u(k) ∈ R , k = 0,±1,±2, . . . ].

An element u ∈  is called a (discrete) signal. We are concerned with
linear transformations T : D → R that map subsets D of  into
subsets R. One such transformation is the shift operator S defined by

(Su)(k) := u(k − 1) for all u ∈ , k = 0,±1,±2, . . . .

A transformation T is called shift-invariant if

(2.26) ST = TS.

We note that (2.26) implies SmT = TSm for m = 0,±1,±2, . . . . A
linear shift-invariant (LSI) transformation T : D → R is called a
digital filter.

The signal δ defined by

δ(k) :=
{

0, k 	= 0
1, k = 0

is called the unit pulse and its image h = Tδ is called the unit pulse
response for a digital filter T . The following theorem indicates the
manner in which the unit pulse response can be used to represent a
digital filter. We employ the standard terminology for normed linear
spaces

1 :=
[
u ∈  : ‖u‖1 :=

∞∑
k=−∞

|u(k)| <∞
]

and

∞ :=
[
u ∈  : ‖u‖∞ := sup

k∈Z
|u(k)| <∞

]
.
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We also make use of the notation for the convolution u∗h of two signals
u, h ∈  defined by

(2.27) u ∗ h :=

{ ∞∑
m=−∞

u(m)h(k −m)

}∞

k=−∞
,

provided the sums in (2.27) exist.

Theorem 2.4. Let h ∈ 1 be given. Then the sums in (2.27) are all
convergent if u ∈ ∞; moreover,

(2.28) Tu := u ∗ h = h ∗ u, u ∈ ∞

defines a digital filter T : ∞ → ∞, T is a continuous transformation,
and h is the unit pulse response h = Tδ.

A filter T is called BIBO (bounded input bounded output) stable if the
sequence Tu is bounded whenever the input sequence u is bounded.
Clearly, the filter (2.28) of Theorem 2.4 is BIBO stable.

A signal u ∈  is said to be causal if

u(k) = 0 for k < 0.

A digital filter T is said to be causal if it maps causal signals into causal
signals. It can be shown that T is a causal filter iff

u(k) = v(k) for k < m =⇒ (Tu)(k) = (Tv)(k) for k < m.

It is easily seen that if T : ∞ → ∞ is a filter defined by Tu = h ∗ u
where h ∈ 1 and h is causal, then T is causal.

The Z-transform is a useful concept in the theory of digital filters.
For each u ∈ , the Z-transform U(z) of u is defined by the formal
series

U(z) :=
∞∑

m=−∞
u(m)z−m.

In our notation we use a cap letter for the Z-transform of a signal
denoted by the corresponding lower case letter, and we write

U(z) ◦−z−◦u = {u(m)}∞−∞
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to indicate the correspondence. It is readily seen that

H(z)U(z) ◦−z−◦h ∗ u,

provided the sums in h ∗ u converge. Thus, we have

Theorem 2.5. If h ∈ 1 and

(2.29) y := Tu := h ∗ u for u ∈ ∞

then

(2.30) Y (z) = H(z)U(z).

Since h ∈ 1, the series H(z) :=
∑∞

−∞ h(m)z−m is convergent at
least for |z| = 1 to a function H. If h ∈ 1 and h is causal, then the
seriesH(z) converges at least for |z| ≥ 1 to a functionH holomorphic in
|z| > 1. The functionH in Theorem 2.5 is called the transfer function of
the filter T ;H(eiθ), |H(eiθ)| and argH(eiθ) are called, respectively, the
frequency response, magnitude response and phase response functions
of T . The importance of these functions is made clear by the following
theorem, which is an immediate consequence of the preceding results.

Theorem 2.6. Let u = {u(k)} be a given signal of the form, for
k = 0,±1,±2, . . . ,

(2.31) u(k) =
I∑

j=−I
αje

iωjk = λ0 +
I∑
j=1

λj cos(ωjk + ϕj),

where 1 ≤ I < ∞, α0 = λ0 ≥ 0, ω0 = 0, and, for 1 ≤ j ≤ I, λj > 0,
ω−j = −ωj ∈ R , ϕ−j = −ϕj ∈ R , and α−j = ᾱj = (1/2)λje−iϕj . Let
T : ∞ → ∞ be defined by Tu := h ∗ u, h ∈ 1. Then
(2.32)

(Tu)(k) =
I∑

j=−I
αjH(eiωj )eiωjk

= λ0H(1) +
I∑
j=1

λj |H(eiωj )| cos(ωjk + ϕj + argH(eiωj )).
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It follows from Theorem 2.6 that each term of the input signal u with
frequency ωj appears in the output signal Tu with the multiplicative
factor H(eiωj ). Thus, the frequency response function H(eiθ) controls
the filtering of the individual terms in the input. In particular, we see
that
(2.33)
H(eiωj ) = 0 for 0 ≤ j ≤ I =⇒ (Tu)(k) = 0 for k = 0,±1,±2, . . . .

Therefore, the entire signal is filtered out if the frequency response
function vanishes at the points eiωj on the unit circle. This property
is of special interest in the problem of frequency analysis (Section
3). Theorem 2.6 also helps us understand the role of |H(eiθ)| in the
problem of constructing filters treated in Section 6. We are ready now
to consider the frequency analysis problem in the following section.

3. Frequency analysis. The problem of frequency analysis
considered here is the following. For a given signal u = {u(k)}∞k=−∞ of
the form

(3.1) u(k) =
I∑

j=−I
αje

iωjk, k = 0,±1,±2, . . . ,

where α0 ≥ 0, ω0 = 0, ω−j = −ωj ∈ R , α−j = ᾱj for j = 1, 2, . . . , I,
we wish to find (or approximate) the frequencies ω1, ω2, . . . , ωI . By
Theorem 2.5 we see that if we could find a digital filter T of the form
Tv = h ∗ v with h ∈ 1 and v ∈ ∞, such that Tu = {0}, the zero
signal, then we would expect that the zeros of the transfer function
H(z) •−z−◦ are eiωj , j = 1, 2, 3, . . . . We describe here a method that
yields a sequence of filters {Tn} with transfer functions {Hn(z)} of the
form

(3.2) Hn(z) =
n∑
j=0

h
(n)
j z−j , h

(n)
j ∈ R , h

(n)
0 = 1,

such that Tnu = {ε(n)
k }, and we determine the h(n)

j so as to minimize

the sum of squares
∑∞
k=−∞[ε(n)

k ]2. It will be seen that the zeros z(n)
m ,

m = 1, 2, . . . , n, of Hn all lie in the unit disk |z| < 1. We choose the
ones nearest to the unit circle to approximate the values eiωj , from
which eiωj can be determined, |j| ≤ I.
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Since our computations can involve only a finite number of terms in
the signal (sequence) u, we shall work with truncated signals uN =
{uN (k)}∞−∞ defined as follows:

(3.3) uN (k) =
{
u(k), for k = 0, 1, . . . , N − 1,
0, otherwise.

In practice, the sample size N will be much larger than the degree n in
(3.2). The following autocorrelation theorem is basic for this purpose.

Theorem 3.1. Let x = {x(k)}∞−∞ be a given real signal such that

(3.4a) x(k) = 0 for k < 0 and for k ≥ N,

and

(3.4b) x(k∗) 	= 0 for some k∗ such that 0 ≤ k∗ ≤ N − 1.

Let

(3.5) μk :=
∞∑

m=−∞
x(m)x(m+ k), k = 0,±1,±2, . . . .

Then {μk}∞−∞ is a hermitian positive definite sequence; that is, it
satisfies, for k = 1, 2, . . . ,

(3.6) μ0 > 0, μ−k = μk and Δn := det(μj−k)nj,k=0 > 0

(see (2.1)).

Proof. For each k = 0,±1,±2, . . . , we see that, by (3.5),

μ−k :=
∞∑

m=−∞
x(m)x(m− k) =

∞∑
j=−∞

x(j + k)x(j) = μj .

By (3.4),

μ0 =
N−1∑
m=0

[x(m)]2 ≥ [x(k∗)]2 > 0.
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Since

(x(0), x(1), . . . , x(N − 1))T 	= (0, 0, . . . , 0)T ∈ RN ,

there exists t0 such that 0 ≤ t0 ≤ N − 1 and

(3.7) x(t0) 	= 0 and x(t) = 0 for t < t0.

Let n ≥ 0 be given. We then let (u0, u1, . . . , un)T denote an arbitrary
nonzero vector in R n+1. Hence, there exists j0 such that 0 ≤ j0 ≤ n
and

(3.8) uj0 	= 0 and uj = 0 for j0 < j ≤ n if j0 < n.

Setting m0 := t0 − j0, we obtain from (3.8), (3.6) and the definitions
of m0 and j0

(3.9)

n∑
j=0

ujx(m0 + j) =
j0∑
j=0

ujx(m0 + j)

=
j0∑
j=0

ujx(t0 − j0 + j)

= uj0x(t0) 	= 0.

It follows from (3.9) that

(3.10)

n∑
j,k=0

ujukμk−j =
n∑

j,k=0

ujuk

[ ∞∑
m=−∞

x(m+ j)x(m+ k)
]

=
∞∑

m=−∞

n∑
j,k=0

ujx(m+ j)ukx(m+ k)

=
∞∑

m=−∞

[ n∑
j=0

ujx(m+ j)
]2

≥
[ n∑
j=0

ujx(m0 + j)
]2

= [uj0x(t0)]
2 > 0.

We can deduce Δn > 0 for n ≥ 0 from (3.10) and the theory of positive
definite Toeplitz forms [17, Section 9.3, Theorem 6].
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We now describe the Wiener-Levinson linear prediction method and
apply it to a signal uN = {uN (k)}∞−∞ of the form given by (3.1) and
(3.3) for some given positive integer N . For each n = 1, 2, 3, . . . we
seek a predictor ûN (k) of uN (k) of the form

(3.11) ûN (k) :=

⎧⎨
⎩

−
n∑
j=1

h
(n)
j uN (k − j), k ≥ 1, h

(n)
j ∈ R ,

0, k ≤ 0.

Its residual is then

(3.12) ε
(n)
k := uN (k) − ûN (k) =

n∑
j=0

h
(n)
j uN (k − j), h

(n)
0 := 1,

and, hence,

(3.13)
ε(n) := {ε(n)

k }∞k=−∞ =

⎧⎨
⎩

n∑
j=0

h
(n)
j uN (k − j)

⎫⎬
⎭

∞

k=−∞

= {h(n)
j } ∗ {uN (j)} = h(n) ∗ uN .

It follows that ε(n) is the output from a filter Tn with unit pulse response
h(n) = {h(n)

j }∞j=−∞, where h(n)
j = 0 for j < 0 and j > n; hence,

(3.14) Tnun = ε(n) = h(n) ∗ uN
and thus the transfer function Hn of Tn is given by (3.2). Clearly,
h(n) ∈ 1 and un ∈ ∞. Following the ideas stated at the beginning of
this section, we wish to choose the coefficients h(n)

j so as to make the

residuals ε(n)
k small in magnitude. In fact, we shall determine the h(n)

j

in such a manner as to minimize the sum of squares of the residuals
‖ε(n)‖2

2 :=
∑∞
k=−∞[ε(n)

k ]2. To achieve that end we write

(3.15)

‖ε(n)‖2
2 =

∞∑
k=−∞

[ n∑
j=0

h
(n)
j uN (k − j)

]2

by (3.12)

=
n∑
j=0

n∑
m=0

h
(n)
j h(n)

m

∞∑
k=−∞

uN (k − j)uN (k −m)

=
n∑
j=0

n∑
m=0

h
(n)
j h(n)

m μj−m,
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where we define

(3.16) μk :=
∞∑

m=−∞
uN (m)uN (m+ k), k = 0,±1,±2, . . . .

It follows from Theorem 3.1 that {μk}∞−∞ is hermitian positive definite.
Therefore, by Theorem 2.2, there exists a solution ψ to the trigonomet-
ric moment problem for {μk}, and hence

(3.17) μk =
∫ π

−π
e−ikθ dψ(θ), k = 0,±1,±2, . . . .

Combining this with (3.15) yields

(3.18)

‖ε(n)‖2
2 =

n∑
j=0

n∑
m=0

h
(n)
j h(n)

m

∫ π

−π
ei(m−j)θ dψ(θ)

=
∫ π

−π

∣∣∣∣
n∑
j=0

h
(n)
j e−ijθ

∣∣∣∣
2

dψ(θ)

= (Hn, Hn) = ‖Hn‖2

in the notation of (2.15). If we define σn(z) := znHn(z), then it is
readily verified from (3.18) that

(3.19) ‖ε(n)‖2
2 = (Hn, Hn) = (z−nσn, z−nσn) = (σn, σn).

Since σn is a monic polynomial in z of degree n, it follows from a
well-known theorem on Szegö polynomials [13, Section 2.2] that

(3.20) En := min
h
(n)
j

∈R

‖ε(n)‖2
2 = (ρn, ρn),

where {ρn} is the sequence of monic Szegö polynomials with respect to
the distribution ψ. The preceding results are summarized in

Theorem 3.2. Let uN = {uN (k)} be a given signal of the form (3.3)
and (3.1). Let h(n) = {h(n)

j } be such that

(3.21a) h
(n)
0 = 1 and h

(n)
j ∈ R , j = ±1,±2, . . .
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and

(3.21b) h
(n)
j = 0 for j < 0 and for j > n.

Let Tn : ∞ → ∞ denote the digital filter

(3.22) TnuN = ε(n) := h(n) ∗ uN =
{ n∑
j=0

h
(n)
j uN (k − j)

}∞

k=−∞
.

For k = 0,±1,±2, . . . , let μk :=
∑∞
m=−∞ uN (m)uN (m + k), so that

{μk} is positive-definite hermitian (Toeplitz). Let ψ be the solution to
the trigonometric moment problem for {μk} and let {ρn} denote the
sequence of monic Szegö polynomials with respect to the distribution ψ.
Then

(A)

(3.23) min
h
(n)
j

∈R

‖ε(n)‖2
2 = min

h
(n)
j

∈R

∞∑
k=−∞

[
ε
(n)
k

]2

= (ρn, ρn)

is attained by

(3.24) Hn(z) =
n∑
j=0

h
(n)
j z−j = z−nρn(z).

(B) The normal equations ∂‖ε(n)‖2
2/∂h

(n)
m = 0 are equivalent to the

positive-definite Toeplitz system

(3.25)
n∑
j=1

h
(n)
j μm−j = −μm, m = 1, 2, . . . , n.

Numerical illustrations. We describe here some numerical results that
illustrate both the computational procedures and the types of results
obtainable with the Wiener-Levinson method of frequency analysis.
Our observed signals uN consist of superpositions of sine waves and
white noise

(3.26) uN (k) :=

⎧⎨
⎩

4∑
j=1

aj sin(ωjk) +Rσ(k), k = 0, 1, . . . , N − 1

0, k < 0 or k ≥ N ,
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with aj ≥ 0. It is readily seen that
4∑
j=1

aj sin(ωjk) =
4∑

j=−4

αje
iωjk

where α0 = 0, ω−j = −ωj , α−j = ᾱj , ϕj := argαj = −π/2, and
aj = 2|αj|, for j = 1, 2, 3, 4. Hence, (3.21) has the form given by (3.1)
and (3.3) with I = 4. The component Rσ(k) consists of white noise
and was formed by

(3.27a) Rσ(k) :=
(
Rk − μ

s

)
σ, k = 0, 1, . . . , N − 1,

where the Rk are random whole numbers taken from [1, pp. 991 995],
and

(3.27b) μ :=
1
N

N−1∑
k=0

Rk, s :=

√√√√ 1
N

N−1∑
k=0

(Rk − μ)2.

It follows that Rσ(k) has sample mean equal to zero and variance σ2.

We then compute the autocorrelation coefficients (3.16) by

(3.28) μk :=
N−k−1∑
m=0

uN (m)uN (m+ k), k = 0, 1, 2, . . . ,K,

and set μ−k := μk, k = 1, 2, . . . ,K. We can now apply the

Levinson algorithm. Given μ0, μ1, . . . , μK , we compute δ0, E0, δ1,
E1, . . . , δK , EK successively. Set initially

(3.29a) δ0 = 1, E0 = μ0, δ1 = −μ1/μ0, q
(1)
0 = δ1, q

(1)
1 = 1.

Then, for k = 2, 3, . . . ,K, compute

(3.29b)

Ek−1 =
k−1∑
j=0

q
(k−1)
j μk−1−j ,

δk = −
∑k−1
j=0 q

(k−1)
j μj+1

Ek−1
,

q
(k)
j = δkq

(k−1)
k−1−j + q

(k−1)
j−1 , j = 1, 2, . . . , k − 1,

q
(k)
k = 1, q

(k)
0 = δk.
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Finally,

(3.29c) EK =
n∑
j=0

q
(k)
j μK−j .

We consider three examples of signals of the form (3.26), where the
sample size N = 200 and the variance of white noise σ2 = 0.02. The
amplitudes aj and frequencies ωj are chosen as follows:

Example 1. N = 200, σ2 = 0.02.
j 1 2 3 4
aj 1 0 0 0
ωj

π
4

.= .785398

Example 2. N = 200, σ2 = 0.02.
j 1 2 3 4
aj 1 1 0 0
ωj

π
4

.= .785398 π
3

.= 1.047198

Example 3. N = 200, σ2 = 0.02.
j 1 2 3 4
aj 1 1 1 10
ωj

π
2

.= 1.570796 π
3

.= 1.047198 π
6

.= .523599 3π
4

.= 2.356194

For each of the three examples, the reflection coefficients δk and sums of
squares of residuals Ek have been computed using Levinson’s algorithm
(3.29) (see Table 1). In each example it can be seen that Ek decreases
as k increases. The rate of decrease of Ek is high for small k. A large
value of δk generally coincides with a large jump from Ek−1 to Ek.
Zeros z(k)

j of the Szegö polynomials ρk(z) are given in Tables 3, 4 and
5, respectively, for Examples 1, 2 and 3. We have included only the
zeros that are very near to the unit circle |z| = 1; that is, the zeros
that provide approximations of the frequencies ωj ≈ Arg z(k)

j . It can
be seen that the approximations have about three significant digits in
all cases provided k is sufficiently large. For Examples 1, 2 and 3, it
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suffices to choose k = 12, 24 and 24, respectively. From Table 1 we see
that, for higher values of k, Ek decreases very slowly. This concludes
our discussion of the frequency analysis problem.

TABLE 1. Reflection coefficients δk and sums of squares of residuals Ek.

Example 1 Example 2 Example 3
k δk Ek δk Ek δk Ek

0 1.00000 206.44 1.00000 399.04 1.00000 20651.19
1 -.68110 110.67 -.59189 259.24 .67266 11306.98
2 .85320 30.10 .90686 46.08 .83772 3371.93
3 .66065 16.96 .16329 44.81 -.59796 2166.27
4 .33795 15.02 -.07624 44.55 .63988 1279.28
5 .05890 14.97 .32520 39.83 -.26756 1187.69
6 -.23779 14.12 .43363 32.34 .27821 1095.76
7 -.17296 13.70 .33325 28.75 .31942 983.96
8 -.16160 13.34 -.14114 28.28 .00186 983.96
9 -.06837 13.28 -.34191 24.88 .33702 872.19

10 .07683 13.20 -.27696 22.97 .60999 547.66
11 .12469 13.00 -.09115 22.78 .27864 505.13
12 -.05560 12.96 .06167 22.70 -.40173 423.61
13 .09100 12.85 .34276 20.03 -.50309 316.39
14 .20358 12.85 .13461 19.67 -.12329 311.58
15 .00699 12.84 -.05064 19.62 .19343 299.92
16 .00684 12.84 -.11123 19.37 .10820 296.41
17 .00505 12.84 -.07340 19.27 .01145 296.37
18 .01479 12.84 -.00159 19.27 .10034 293.39
19 -.03620 12.82 .01854 19.26 .09033 290.99
20 .11318 12.66 .15901 18.77 -.05774 290.02
30 .06109 12.27 .05124 18.38 .07574 271.70
40 -.00374 12.06 .00510 17.98 -.01212 267.27
49 .04136 11.96 .01360 17.86 .05280 264.61
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TABLE 2. Zero z
(k)
1 of ρk(z) for Example 1 giving the approximation

Arg z
(k)
1 ≈ ω1 := π/4

.
= .785398.

k Re z(k)
1 Im z

(k)
1 |z(k)

1 | Arg z(k)
1

4 .700 946 .699 025 .98993 .784 026
8 .704 172 .704 374 .99599 .785 541

12 .704 617 .705 289 .99695 .785 874
16 .705 058 .704 785 .99691 .785 204
20 .705 524 .704 923 .99735 .784 959

TABLE 3. Zeros z
(k)
1 and z

(k)
2 of ρk(z) for Example 2 giving the approximations

Arg z
(k)
1 ≈ ω1 :=

π

4

.
= .785398

and

Arg z
(k)
2 ≈ ω2 :=

π

3

.
= 1.047198.

k Re z(k)
j Im z

(k)
j |z(k)

j | Arg z(k)
j

j = 1 8 .682 672 .669 799 .95638 .775 880
12 .702 575 .696 048 .98898 .780 731
16 .705 565 .703 016 .99601 .783 588
20 .705 901 .704 518 .99731 .784 417
24 .706 041 .704 820 .99763 .784 532
28 .705 748 .705 112 .99762 .784 947

j = 2 8 .475 995 .835 592 .96165 1.052 991
12 .491 088 859 168 .98961 1.051 531
16 .496 624 .863 971 .99653 1.049 100
20 .498 059 .864 287 .99752 1.048 011
24 .498 362 .864 099 .99749 1.047 685
28 .498 654 .864 058 .99762 1.047 379
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TABLE 4. Zeros z
(k)
j of ρk(z) for Example 3 giving the approximations

Arg z
(k)
1 ≈ ω1 :=

π

2

.
= 1.570796, Arg z

(k)
2 ≈ ω2 :=

π

3

.
= 1.047198,

Arg z
(k)
3 ≈ ω3 :=

π

6

.
= .523599, Arg z

(k)
4 ≈ ω4 :=

3π

4

.
= 2.356194.

k Re z(k)
j Im z

(k)
j |z(k)

j | Arg z(k)
j

j = 1 12 -.009 829 .982 445 .98249 1.580 801
16 .005 964 .993 505 .99352 1.564 792
20 .004 095 .994 613 .99462 1.566 678
24 .002 071 .996 296 .99629 1.568 717
28 .002 152 .997 496 .99749 1.568 638

j = 2 12 .487 094 .850 849 .98041 1.050 857
16 .498 136 .862 708 .99619 1.047 153
20 .498 729 .861 227 .99521 1.045 892
24 .499 070 .862 992 .99690 1.046 484
28 .498 713 .863 708 .99734 1.047 153

j = 3 12 .858 126 .485 824 .98610 .515 154
16 .861 865 .496 758 .99477 .522 867
20 .862 835 .497 871 .99617 .523 349
24 .863 656 .497 546 .99672 .522 655
28 .863 437 .497 930 .99672 .523 098

j = 4 12 -.703 958 .707 034 .99772 2.354 014
16 -.705 469 .705 293 .99755 2.356 318
20 -.704 985 .705 663 .99747 2.355 713
24 -.705 793 .704 758 .99741 2.356 928
28 -.705 158 .705 448 .99744 2.355 988

4. Szegö’s condition and H2-functions. In this section we give
a brief exposition of some aspects of the behavior of Szegö polynomials
and their reciprocals under special conditions. For the general content
of this section, we refer to [11 13]. For the theory of boundary
behavior of analytic functions and harmonic functions and the theory
of Hp-spaces, we refer to [10, 16, 25 and 26]. These results are
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applied in later sections to problems concerning stochastic processes
and construction of digital filters.

For later use we introduce the notation

D := [z ∈ C : |z| < 1], D̄ := [z ∈ C : |z| ≤ 1],
∂D := [z ∈ C : |z| = 1],

E := [z ∈ Ĉ : z /∈ D̄], Ē := [z ∈ Ĉ : z /∈ D].

For convenience, we recall some basic facts about Szegö polynomials
(cf., Section 2).

Let a distribution function ψ(θ) on [−π, π] be given. The distribution
function gives rise to moments μn (see (2.9)), monic Szegö polynomials
ρn(z) and their reciprocal polynomials ρ∗n(z) := znρn(1/z̄) with norms
(see (2.15))

(4.1) β0 :=
√
μ0 =

√
δ0, βn := ‖ρn‖ψ = ‖ρ∗n‖ψ, n = 0, 1, 2, . . . ,

reflection coefficients

(4.2) δn := ρn(0),

and normalized Szegö polynomials ϕn(z) (see (2.21)) and their recipro-
cal polynomials ϕ∗

n(z) := znϕn(1/z̄). Here and in the following 〈·, ·〉ψ
denotes the inner product, and ‖ · ‖ψ denotes the norm in the Hilbert
space Lψ2 [−π, π], i.e., for all F,G ∈ Lψ2 [−π, π], we have

〈F,G〉ψ :=
∫ π

−π
F (θ)G(θ)dψ(θ) and ‖F‖ψ :=

√
〈F, F 〉ψ.

We also note the close relationship between this inner product and
the one defined by (2.15); it is given by

(f(z), g(z)) :=
∫ π

−π
f(eiθ)g(eiθ) dψ(θ) =: 〈f(eiθ), g(eiθ)〉ψ.

We may then write

ϕn(z) = β−1
n zn + · · · + bn,(4.3)

ϕ∗
n(z) = b̄nz

n + · · · + β−1
n(4.4)
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where bn denotes the constant term of ϕn(z). Note that βn = α−1
n

where αn is introduced in (2.21). By using the recurrence relation

(4.5) ρn(z) = δnρ
∗
n(z) + (1 − |δn|2)zρn−1(z),

which follows from (2.3) and (2.16), we see that
(4.6)
β2
n = ‖ρn‖2

ψ = (ρn, zn) = 〈ρn(eiθ), einθ〉ψ
= (1 − |δn|2)(ρn−1, z

n−1) = (1 − |δn|2)β2
n−1,

from which we obtain the formula

(4.7) β2
n = β2

0

n∏
k=1

(1 − |δk|2), n ≥ 1, β0 =
√
μ0,

(cf. (2.7b) and (2.21)). Since |δn| < 1 for n ≥ 1, it follows immediately
from (4.7) that the sequence {βn} of positive numbers is nonincreasing.

The polynomial ωn(z) associated with ϕn(z) is defined by

(4.8) ωn(z) :=
∫ π

−π

eiθ + z

eiθ − z
[ϕn(eiθ) − ϕn(z)] dψ(θ).

We recall that, from (2.16) and (2.21),

(4.9) βnϕn(z) = Q2n+1(z), βnϕ
∗
n(z) = Q2n(z),

where Qn(z) is the n-th denominator of the positive PC-fraction asso-
ciated with the moment sequence {μn} and distribution function ψ(θ)
(Theorem 2.2). By using the recurrence relations (2.19), one can easily
verify that

(4.10) βnωn(z) = P2n+1(z), βnω
∗
n(z) = −P2n(z),

where Pn(z) is the n-th numerator of the positive PC-fraction. Here
ω∗
n(z) := znωn(1/z̄). For more details about ωn(z) and ω∗

n(z), the
reader can refer to [21]. By taking into account (4.7), (4.9) and (4.10),
the determinant formula for continued fractions [22, (2.1.9)] yields

(4.11) ωn(z)ϕ∗
n(z) + ϕn(z)ω∗

n(z) = −2zn.
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From the recurrence relations (2.19) we can deduce the following
Christoffel-Darboux type formulas
(4.12)

ϕ∗
n(x)ϕ∗

n(y) − xȳϕn(x)ϕn(y) = (1 − xȳ)
n∑
k=0

ϕk(x)ϕk(y), x, y ∈ C

(see [23, Section 2]). For completeness, we state and prove the following
basic result about the zeros of ϕn(z).

Lemma 4.1. All of the zeros of ϕn(z) lie in the unit disk D, and all
of the zeros of ϕ∗

n(z) lie outside D̄.

Proof. The two statements are easily seen to be equivalent. Thus,
it suffices to prove the second one. By setting x = y = z in (4.12) we
obtain

(4.13) |ϕ∗
n(z)|2 − |z|2|ϕn(z)|2 = (1 − |z|2)

n∑
k=0

|ϕk(z)|2.

Hence, for fixed z ∈ D, we have

(4.14) |ϕ∗
n(z)|2 ≥ (1 − |z|2)

β2
0

> 0,

since ϕ0(z) = β−1
0 . It follows that there are no zeros of ϕ∗

n(z)
in D. Now assume that ϕ∗

n(z0) = 0 for some z0 ∈ ∂D. Then
ϕn(z0) = zn0ϕ

∗
n(1/z̄0) = zn0ϕ

∗
n(z0) = 0. Since this contradicts (4.11), it

follows that no zero of ϕ∗
n(z) lies on ∂D.

The distribution function ψ(θ) has a nonnegative derivative ψ′(θ) a.e.
(with respect to Lebesgue measure) and

(4.15)
∫ π

−π
ψ′(θ) dθ ≤

∫ π

−π
dψ(θ) <∞.

Then, also,

(4.16)
∫ π

−π
lnψ′(θ) dθ ≤

∫ π

−π
ψ′(θ) dθ <∞.
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However, both of the cases∫ π

−π
lnψ′(θ) dθ = −∞ and

∫ π

−π
lnψ′(θ) dθ > −∞

can occur. The distinction between these two cases is of fundamental
importance and is sometimes called Szegö’s alternative. The condition∫ π
−π lnψ′(θ) dθ > −∞ is called Szegö’s condition.

Theorem 4.2. Let ψ(θ) be a distribution function on [−π, π] and
let ϕn(z), ϕ∗

n(z), δn and βn be derived from ψ(θ) as above. Then the
following four statements are equivalent:

∫ π

−π
lnψ′(θ) dθ > −∞ (Szegö’s condition).(4.17)

{ϕn(eiθ)}∞n=0 (equivalently {einθ}∞n=0)(4.18)

is not complete in Lψ2 [−π, π].
lim
n→∞ βn =: β > 0(4.19)

∞∑
k=1

|δk|2 <∞.(4.20)

Proof. It follows immediately from (4.7) that (4.19) and (4.20) are
equivalent.

We shall now prove the implication (4.17) ⇒ (4.19). Both here
and later we make use of the following inequality between weighted
geometric and arithmetic means:

(4.21) e
1
P

∫ π

−π
p(θ) ln f(θ) dθ ≤ 1

P

∫ π

−π
p(θ)f(θ) dθ,

where p(θ) is nonnegative and Lebesgue integrable, f(θ) is nonnegative,
and

∫ π
−πp(θ) dθ =: P (see, e.g., [11, p. 17] and [25, p. 7]). By using this

inequality with p(θ) := 1/(2π) and f(θ) := |ϕ∗
n(eiθ)|2ψ′(θ), we obtain

(4.22)
∫ π

−π
|ϕ∗
n(e

iθ)|2ψ′(θ) dθ ≥ 2πe
1
2π

∫ π

−π
ln[|ϕ∗

n(eiθ)|2ψ′(θ)] dθ
.
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Since ϕ∗
n(z) has no zeros for z ∈ D̄ (cf. Lemma 4.1), the function

ln(|ϕ∗
n(z)|2) is harmonic for z ∈ D̄, and hence

(4.23)
1
2π

∫ π

−π
ln(|ϕ∗

n(e
iθ)|2) dθ = ln(|ϕ∗

n(0)|2) = ln
(

1
β2
n

)

(see, e.g., [25, p. 15] and [26, p. 228]). Combining (4.1), (4.22), (4.23)
and the fact that∫ π

−π
f(θ) dψ(θ) ≥

∫ π

−π
f(θ)ψ′(θ) dθ for f(θ) ≥ 0 a.e.,

we obtain

(4.24)
1 ≥ 2πe

1
2π

∫ π

−π
ln |ϕ∗

n(eiθ)|2 dθ · e
1
2π

∫ π

−π
lnψ′(θ) dθ

=
2π
β2
n

e
1
2π

∫ π

−π
lnψ′(θ) dθ

.

It follows from this and Szegö’s condition (4.17) that

(4.25) β := lim
n→∞ βn ≥

√
2πe

1
4π

∫ π

−π
lnψ′(θ) dθ

> 0.

Next we prove the implication (4.19) ⇒ (4.18). By considering the
function ψ0(θ) := e−iθ, we can write

(4.26)

∥∥∥∥∥ψ0(θ) −
n∑
k=0

ake
ikθ

∥∥∥∥∥
ψ

=

∥∥∥∥∥1 −
n+1∑
ν=1

aν−1e
iνθ

∥∥∥∥∥
ψ

,

and by the minimum property of ρn+1(z) (see, e.g., [13, Section 2.2])
we then conclude that

(4.27)

∥∥∥∥∥ψ0(θ) −
n∑
k=0

ake
ikθ

∥∥∥∥∥
ψ

≥ ‖ρn+1‖ψ = βn+1 ≥ β > 0

for an arbitrary linear combination
∑n
k=0 ake

ikθ with arbitrary n.
It follows that the system {einθ}∞n=0 is not complete in Lψ2 [−π, π];
consequently, the system {ϕn(einθ)}∞n=0 is not complete in Lψ2 [−π, π].
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Finally we prove the implication (4.18) ⇒ (4.17). Since {einθ}∞n=0

is not complete in Lψ2 [−π, π], there exists a nonzero element ϕ(θ) ∈
Lψ2 [−π, π] which is orthogonal to every einθ, n = 0, 1, 2, . . . ; that is,

(4.28)
∫ π

−π
ϕ(θ)einθ dψ(θ) = 0, n = 0, 1, 2, . . . .

Note that, since ϕ(θ) ∈ Lψ2 [−π, π], we also have

(4.29)
∫ π

−π
|ϕ(θ)| dψ(θ) <∞.

Multiplication of (4.28) by z−(n+1) and summation over n gives

(4.30)
∞∑
n=0

∫ π

−π
ϕ(θ)

einθ

zn+1
dψ(θ) = 0.

The series
∑∞
n=0 e

inθ/zn+1 converges uniformly in θ, for fixed z ∈
E. Consequently,

∑∞
n=0 ϕ(θ)(einθ/zn+1) converges a.e. (for z ∈ E).

Furthermore,

(4.31)

∣∣∣∣∣
∫ π

−π

[ ∞∑
n=0

einθ

zn+1
ϕ(θ) −

N∑
n=0

einθ

zn+1
ϕ(θ)

]
dψ(θ)

∣∣∣∣∣
≤ max

−π≤θ≤π

∣∣∣∣∣
∞∑

n=N+1

einθ

zn+1

∣∣∣∣∣ ·
∫ π

−π
|ϕ(θ)| dψ(θ).

From (4.29), (4.30) and the uniform convergence of
∑∞

n=0 e
inθ/zn+1 we

conclude that
(4.32)∫ π

−π

[ ∞∑
n=0

einθ

zn+1
ϕ(θ)

]
dψ(θ) =

∞∑
n=0

∫ π

−π

einθ

zn+1
ϕ(θ) dψ(θ) = 0, z ∈ E.

By summing the geometric series
∑∞

n=0 e
inθ/zn+1 we may then con-

clude that

(4.33) λ(z) ≡ 0 for z ∈ E
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where

(4.34) λ(z) :=
1
2π

∫ π

−π

ϕ(θ)
eiθ − z

dψ(θ).

We note that the function λ(z) is analytic for z ∈ D and for z ∈ E.
We define the complex distribution function τ (θ) by

(4.35) dτ (θ) := e−iθϕ(θ) dψ(θ)

and may then write

(4.36) λ(z) =
1
2π

∫ π

−π

eiθ dτ (θ)
eiθ − z

.

The distribution function τ (θ) has bounded variation, since

(4.37)
∫ π

−π
|dτ (θ)| =

∫ π

−π
|e−iθ| · |ϕ(θ)| dψ(θ) =

∫ π

−π
|ϕ(θ)| dψ(θ) <∞.

The expression (4.36) is thus an integral of Cauchy-Stieltjes type. Since
λ(z) ≡ 0 for z ∈ E, the integral is a Cauchy-Stieltjes integral and
hence belongs to the Hardy space H1 (see, e.g., [25, pp. 65 68]).
Consequently,

(4.38)
∫ π

−π
ln |τ ′(θ)| dψ > −∞

(see, e.g., [25, pp. 54 57]). Now |τ ′(θ)|2 = |ϕ(θ)|2 · |ψ′(θ)|2, and
therefore
(4.39)∫ π

−π
lnψ′(θ) dθ +

∫ π

−π
ln[|ϕ(θ)|2ψ′(θ)] dθ = 2

∫ π

−π
ln |τ ′(θ)| dθ > −∞.

Since

(4.40)
∫ π

−π
ln[|ϕ(θ)|2ψ′(θ)] dθ ≤

∫ π

−π
|ϕ(θ)|2 dψ(θ) <∞,

we conclude from (4.39) that the Szegö condition (4.17) is satisfied.
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We recall the definition and basic properties of the Hardy space H2

(see, e.g., [10, 16, 25, 26]). A function H(z), which is analytic for
z ∈ D, belongs to H2 iff

(4.41) sup
0≤r<1

∫ π

−π
|H(reiθ)|2 dθ <∞

or, equivalently, iff

(4.42)
∞∑
n=0

|hn|2 <∞

where {hn} is the sequence of the Taylor coefficients for H(z) at z = 0.
If H(z) ∈ H2, then the limit

(4.43) H(eiθ) := lim
r→1−

H(reiθ)

exists a.e. and

(4.44)
∫ π

−π
|H(eiθ)|2 dθ <∞.

Furthermore,

(4.45)
∫ π

−π
ln |H(eiθ)| dθ > −∞ if H(z) 	≡ 0.

Theorem 4.3. Let ψ(θ) be a distribution function on [−π, π] and
let ϕn(z), ϕ∗

n(z), δn and βn be derived as above. Assume that the
(equivalent) conditions (4.17) (4.20) are satisfied. Then the following
hold:

(A) The sequence {1/(√2πϕ∗
n(z))} converges for z ∈ D to an analytic

function H0(z).

(B) The function H0(z) belongs to H2.

(C) The function H0(z) satisfies

(4.46) |H0(eiθ)|2 = ψ′(θ), a.e.
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(D) The function H0(z) can be expressed by the formula

(4.47) H0(z) = e
1
4π

∫ π

−π

eiθ+z

eiθ−z
lnψ′(θ) dθ

.

Proof. (A). Let 0 < r < 1. For |z| ≤ r we obtain from (4.13) the
inequality

(4.48) |ϕ∗
n(z)|2 ≥ (1 − r2)

n∑
k=0

|ϕk(z)|2 ≥ (1 − r2)
β2

0

.

From the theory of normal families of analytic functions (see, e.g., [14],
[26, pp. 271 273], [25, p. 18]), by considering the analytic functions
1/ϕ∗

n(z), we conclude that there exists a subsequence {ϕ∗
n(ν)(z)} which

converges for z ∈ D, uniformly on compact subsets, to a function Π(z)
which is either analytic or identically equal to ∞. Since

(4.49) ϕ∗
n(ν)(0) =

1
βn(ν)

≤ 1
β
,

it follows from (4.19) that Π(z) is an analytic function. By setting
x = z and y = 0 in (4.12), we obtain

(4.50)
1
βn
ϕ∗
n(z) =

n∑
k=0

ϕk(0)ϕk(z).

The Cauchy-Schwarz inequality (with n > m) then gives

(4.51)
∣∣∣∣ 1
βn
ϕ∗
n(z) −

1
βn
ϕ∗
m(z)

∣∣∣∣
2

≤
n∑

k=m+1

|ϕk(z)|2 ·
n∑

k=m+1

|ϕk(0)|2.

From (4.48) and the fact that {ϕ∗
n(ν)(z)} converges, it follows that the

sequence {∑n(ν)
k=0 |ϕk(z)|2}∞ν=1 converges for z ∈ D. Then, also, the

series
∑∞
k=0 |ϕk(z)|2 converges for z ∈ D. From this, (4.19) and (4.51),

we conclude that {ϕ∗
n(z)} is a Cauchy sequence for z ∈ D. Since

{ϕ∗
n(ν)(z)} already converges to Π(z), we may conclude that

(4.52) lim
n→∞ϕ∗

n(z) = Π(z) for z ∈ D.
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Since ϕ∗
n(z) 	= 0 for z ∈ D by Lemma 4.1 and Π(0) = limn→∞ 1/βn =

1/β 	= 0, it follows from Hurwitz’s theorem (see, e.g., [15, p. 283]) that
Π(z) 	= 0 for all z ∈ D. We define

(4.53) H0(z) :=
1√

2πΠ(z)
,

This function is then analytic for z ∈ D.

(B). For z ∈ ∂D the determinant formula (4.11) can be written

(4.54) ω∗
n(eiθ)ϕ∗

n(eiθ) + ϕ∗
n(e

iθ)ω∗
n(eiθ) = −2.

Consequently,

(4.55)
Re

[
−ω

∗
n(eiθ)
ϕ∗
n(eiθ)

]
=

−1
2

[
ω∗
n(eiθ)ϕ∗

n(eiθ) + ω∗
n(eiθ)ϕ∗

n(eiθ)
]

|ϕ∗
n(eiθ)|2

=
1

|ϕ∗
n(eiθ)|2

.

Since ϕ∗
n(z) has no zeros in D̄, there exists a neighborhood of D̄ where

the Taylor series expansion

(4.56) −ω
∗
n(z)
ϕ∗
n(z)

= μ0 + 2
∞∑
k=1

μkz
k

is valid (see Theorems 2.1 and 2.2 and note that −ω∗
n(z)/ϕ∗

n(z) =
P2n(z)/Q2n(z) converges to L0 = μ0+2

∑∞
k=1 μkz

k for z ∈ D). Because
of uniform convergence of (4.56) on ∂D, we can then integrate term-
by-term and obtain

(4.57)
∫ π

−π

dθ

|ϕ∗
n(eiθ)|2

= −Re
∫ π

−π

ω∗
n(eiθ)
ϕ∗
n(eiθ)

dθ = 2πμ0.

We define

(4.58) I(n)
r :=

∫ π

−π

dθ

|ϕ∗
n(reiθ)|2

, 0 < r ≤ 1, n = 1, 2, 3, . . . .

Since 1/ϕ∗
n(z) is analytic for z ∈ D̄, the function 1/|ϕ∗

n(z)|2 is subhar-
monic and thus the integral I(n)

r is a nondecreasing function of r for
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0 < r ≤ 1 (see, e.g., [25, p. 23 26], [26, 328 330]). Hence, it follows
from (4.57) that

(4.59) I(n)
r ≤ 2πμ0, 0 < r ≤ 1, n = 1, 2, 3, . . . .

Then, also, by Fatou’s lemma

(4.60)
∫ π

−π

dθ

|Π(reiθ)|2 ≤ 2πμ0, 0 < r < 1.

This means that H0(z) = 1/(
√

2πΠ(z)) belongs to H2.

(C). Let Pr(t) denote the Poisson kernel; that is,

(4.61) Pr(t) :=
1 − r2

1 − 2r cos t+ r2
= Re

(
1 + reit

1 − reit

)
.

The function Re
[
ω∗
n(reiθ)/ϕ∗

n(re
iθ)

]
is harmonic for z ∈ D̄. Hence, it

follows by (4.55) that

(4.62) Re
[−ω∗

n(reiθ)
ϕ∗
n(reiθ)

]
=

1
2π

∫ π

−π

Pr(θ − t)
|ϕ∗
n(eit)|2

dt.

Also, ln
(
1/|ϕ∗

n(reiθ)|2
)

is harmonic for z ∈ D̄ and, therefore,

(4.63) ln
(

1
|ϕ∗
n(reiθ)|2

)
=

1
2π

∫ π

−π
Pr(θ − t) ln

(
1

|ϕ∗
n(eit)|2

)
dt.

Setting p(t) := Pr(θ − t) and f(t) := 1/|ϕ∗
ne
it)|2 in (4.21) and using

(4.62) and (4.63), we obtain

(4.64)
1

|ϕ∗
n(reiθ)|2

≤ Re
[−ω∗

n(reiθ)
ϕ∗
n(reiθ)

]
, 0 < r < 1.

We recall from Section 2 (Theorems 2.1 and 2.2) that

(4.65) lim
n→∞

P2n(z)
Q2n(z)

= lim
n→∞

−ω∗
n(z)

ϕ∗
n(z)

=
∫ π

−π

eit + z

eit − z
dψ(t), z ∈ D.

This together with (4.52) and (4.64) gives

(4.66)
1

|Π(reiθ)|2 ≤ Re
∫ π

−π

eit + reiθ

eit − reiθ
dψ(t) =

∫ π

−π
Pr(θ − t) dψ(t).
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Since

(4.67) lim
r→1−

∫ π

−π
Pr(θ − t) dψ(t) = 2πψ′(θ) a.e.

(see, e.g., [25, p. 34], [26, p. 226], [16, p. 34]), it follows from (4.66)
that

(4.68) lim
r→1−

1
|Π(reiθ)|2 ≤ 2πψ′(θ).

We define

(4.69) Π(eiθ) := lim
r→1−

Π(reiθ) a.e.

Assume that 1/|Π(eiθ)|2 < 2πψ′(θ) on a set of positive measure. Then

∫ π

−π
ln[2πψ′(θ)] dθ >

∫ π

−π
ln

1
|Π(eiθ)|2 dθ = 2π ln

1
|Π(0)|2 = 2π ln(β2).

Hence,

β2 < 2πe
1
2π

∫ π

−π
lnψ′(θ) dθ

,

which contradicts (4.25). Hence, we may conclude that the above
assumption is false and

(4.70)
1

|Π(eiθ)|2 = lim
r→1−

1
|Π(reiθ)|2 = 2πψ′(θ) a.e.,

which is the same as (4.46).

(D). The inequality

(4.71) β2 ≤ 2πe
1
2π

∫ π

−π
lnψ′(θ) dθ

(not with strict inequality sign) follows from the argument under (C)
above without the assumption 1/|Π(eiθ)|2 < 2πψ′(θ) on a set of positive
measure. This together with (4.25) gives

(4.72) β =
√

2πe
1
4π

∫ π

−π
lnψ′(θ) dθ

.



SZEGÖ POLYNOMIALS 423

Since H0(z) ∈ H2 and H0(z) has no zeros, it follows by (4.46) that we
may write

(4.73) H0(z) = S(z) · e
1
4π

∫ π

−π

eiθ+z

eiθ−z
lnψ′(θ) dθ

for z ∈ D,

where S(z) is a singular inner function (i.e., an inner function without
zeros (see, e.g., [25, p. 78], [16, pp. 67 70], [26, p. 338]). Using
H0(0) = β/

√
2π, we obtain, from (4.73),

(4.74)
β√
2π

= S(0)e
1
4π

∫ π

−π
lnψ′(θ) dθ

.

From (4.72) we then conclude that S(0) = 1. This is possible only if
S(z) ≡ 1. Formula (4.47) follows then from (4.73).

Theorem 4.4. Let ψ(θ) be a distribution function on [−π, π] and
let ϕn(z), ϕ∗

n(z), δn and βn be derived as above. We assume that the
equivalent conditions (4.17) (4.20) are not satisfied. That is, we assume
that: ∫ π

−π
lnψ′(θ) dθ = −∞,(4.75)

{ϕn(eiθ)}∞n=0 (or equivalently , {einθ}∞n=0)(4.76)

is complete in Lψ2 [−π, π],
lim
n→∞ βn = 0,(4.77)
∞∑
k=1

|δk|2 = ∞.(4.78)

Then the following hold:

(E) There exists no function H(z) ∈ H2 for which |H(eiθ)|2 = ψ′(θ)
a.e., except in the case where ψ(θ) is singular (i.e., ψ′(θ) = 0 a.e.).

(F) The sequence {1/ϕ∗
n(z)} converges to 0 for all z ∈ D.

Proof. (E). If H(z) ∈ H2, H(z) 	≡ 0, then∫ π

−π
ln |H(eiθ)|2 dθ > −∞
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by (4.45). This shows that |H(eiθ)|2 cannot be equal to ψ′(θ) a.e. by
(4.75).

(F). We assume that {1/ϕ∗
n(z)} does not converge to 0 for some

z = z0 ∈ D. Then there exists an ε > 0 and a sequence {n(ν)}∞ν=1 such
that

(4.79)

∣∣∣∣∣ 1
ϕ∗
n(ν)(z0)

∣∣∣∣∣ ≥ ε for all ν = 1, 2, 3, . . . .

The functions 1/ϕ∗
n(ν)(z) are analytic and different from zero for z ∈ D̄.

By (4.48) (which does not depend on (4.17) (4.20)), it follows that
{1/ϕ∗

n(ν)(z)} is uniformly bounded on compact subsets of D. Then, by
the theory of normal families of analytic functions (see, e.g., [14], [26,
pp. 271 273], [25, p. 18]), there exists a subsequence {n(ν(λ))} such
that {1/ϕ∗

n(ν(λ))} converges uniformly on compact subsets of D to a
function f(z) which is analytic for z ∈ D. From (4.77) it follows that

(4.80) f(0) = lim
λ→∞

1
ϕ∗
n(ν(λ))(z)

= lim
λ→∞

βn(ν(λ)) = 0.

We may then conclude from Hurwitz’s theorem (see, e.g., [14, p. 283])
that f(z) is identically zero for z ∈ D. On the other hand, (4.79) implies
that f(z0) 	= 0. This contradiction shows that limn→∞ 1/ϕ∗

n(z) = 0 for
all z ∈ D, which was to be proved.

5. Weakly stationary stochastic processes. A measure space
(Ω, P ) is a set Ω equipped with a probability measure P . A stochastic
variable x(ω) is a measurable function on (Ω, P ). A sequence {xn(ω) :
n ∈ Z } is called a stochastic process if all xn(ω) are stochastic variables.
For a discussion of basic properties of stochastic processes, the reader
can refer to [13].

Let {xn(ω)} denote a given stochastic process such that∫
Ω

|xn(ω)|2 dP (ω) <∞ for all n = 0,±1,±2, . . . .

Let L2 denote the closure of the linear hull {∑m
n=−m cnxn : cn ∈ C }

in LP2 (Ω). Then L2 is a Hilbert space with inner product

(5.1) 〈u, v〉P :=
∫

Ω

u(ω)v(ω) dP (ω), u, v ∈ L2.



SZEGÖ POLYNOMIALS 425

The covariance function rs,t is defined by

(5.2) rs,t :=
∫

Ω

xs(ω)xt(ω) dP (ω) =: 〈xs, xt〉P , s, t ∈ Z .

The stochastic process {xn(ω)} is called weakly stationary if

(5.3)
∫

Ω

xn(ω) dP (ω) = 0 for all n ∈ Z

and

(5.4) rs,t = rs+m,t+m for all s, t,m ∈ Z .

In this case we define

(5.5) μm = r0,m for m ∈ Z .

Clearly, we also have

(5.6) μm = rs,s+m for all m, s ∈ Z .

It is readily seen that μ−m = μ̄m for m ∈ Z and that the Toeplitz
forms

n∑
j,k=0

cj c̄kμj−k

are all positive semi-definite. Therefore, by the Trigonometric moment
theorem (Theorem 2.2), there exists a distribution function ψ(θ) such
that

(5.7) μn =
∫ π

−π
e−inθ dψ(θ), n ∈ Z .

This distribution function is called the spectral function for the weakly
stationary stochastic process.

The mapping xn(ω) ↔ e−inθ establishes an algebraic isomorphism
between L2 and Lψ2 [−π, π]. Since 〈·, ·〉P and ‖·‖P denote inner product
and norm, respectively, in L2 and since 〈·, ·〉ψ and ‖ · ‖ψ denote inner
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product and norm, respectively, in Lψ2 [−π, π], it follows by linearity
from (5.7) that
(5.8)〈 N∑

k=M

ckxk(ω),
N∑

j=M

djxj(ω)
〉
P

=
〈 N∑
k=M

cke
−ikθ,

N∑
j=M

dje
−ijθ

〉
ψ

and, in particular,

(5.9)

∥∥∥∥∥
N∑

k=M

ckxk(ω)

∥∥∥∥∥
P

=

∥∥∥∥∥
N∑

k=M

cke
−ikθ

∥∥∥∥∥
ψ

.

Thus, the spaces L2 and Lψ2 [−π, π] are isomorphic as Hilbert spaces.

The stochastic process {xn(ω)} is said to be deterministic if x0(ω)
can be approximated arbitrarily well in the ‖ · ‖P norm by finite linear
combinations from the set {xt(ω) : t < 0}; that is, if x0(ω) can be
predicted with arbitrarily small error from knowledge of the past. The
process is called nondeterministic if such approximation is not possible.
It can be verified that, since the process is weakly stationary, the
concept of deterministic is independent of the choice of x0(ω) as the
variable to be approximated by the foregoing variables. The choice of
any other fixed xk(ω) would lead to the same results.

We define

(5.10) E(n) := min
g
(n)
k

∈R

∥∥∥∥∥x0(ω) −
n∑
k=1

−g(n)
k x−k(ω)

∥∥∥∥∥
P

.

Then the process is deterministic iff E(n) can be made arbitrarily small
for sufficiently large n; that is, iff limn→∞E(n) = 0.

Let {ρn} denote the sequence of monic Szegö polynomials with
respect to the spectral function ψ(θ) for the stochastic process, and
let ϕn(z), βn and δn have the same meanings relative to ψ(θ) as in
Section 4. By the well-known minimum property of Szegö polynomials
(see Section 2, (2.20)) we have
(5.11)

βn=‖ρn‖ψ = min
g
(n)
k

∈R

∥∥∥∥∥einθ+
n−1∑
k=0

g
(n)
k eikθ

∥∥∥∥∥
ψ

= min
g
(n)
k

∈R

∥∥∥∥∥1+
n∑
k=1

g
(n)
k eikθ

∥∥∥∥∥
ψ

.
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From the isomorphism between Lψ2 [−π, π] and L2 given by (5.9), it
follows that

(5.12)

∥∥∥∥∥x0(ω) +
n∑
k=1

g
(n)
k x−k(ω)

∥∥∥∥∥
P

=

∥∥∥∥∥1 +
n∑
k=1

gke
ikθ

∥∥∥∥∥
ψ

.

From (5.11) and (5.12), we conclude that

(5.13) E(n) = βn,

and it is clear from (3.20), (5.11) and (5.13) that E(n) = En. The
following result then follows directly from Theorem 4.2.

Theorem 5.1. Let {xt(ω)} be a weakly stationary stochastic process
with spectral function ψ(θ), and let ϕn(z), ϕ∗

n(z), δn and βn be derived
from ψ(θ) as in Section 4. Then the following statements are equivalent:

(A) The process {xt(ω)} is nondeterministic.

(B) The equivalent conditions (4.17) (4.20) are satisfied.

6. Design of digital filters. For general information concerning
the problem treated in this section, we refer to [7] and [9]. A signal
{u(n)}∞m=−∞ is said to have finite energy if

∑∞
n=−∞ |u(m)|2 <∞. We

shall say that a digital filter T with transfer function K(z) has finite
energy if the unit pulse response {k(m)}∞m=−∞ has finite energy. A
digital filter T is said to be causal if u(m) = 0, for m < m0, implies
(Tu)(m) = 0, for m < m0. An equivalent condition is easily seen to be
that k(m) = 0 for m < 0 (cf., Section 2). We recall that the transfer
function K(z) is given by

(6.1) K(z) =
∞∑

m=−∞
k(m)z−m.

The causality condition requires that k(m) = 0 for m < 0; if, in
addition, T has finite energy, then

∑∞
m=0 |k(m)|2 <∞.

A function K(z) which is analytic in E := [z ∈ Ĉ : |z| > 1] is said to
belong to K2 if

(6.2)
∞∑
m=0

|k(m)|2 <∞,
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where {k(m)} is the sequence of coefficients in the Laurent expansion
at z = ∞. Thus, the transfer function of any causal filter with finite
energy belongs to K2.

To every function H(z) ∈ H2 we define a function H#(z) by

(6.3) H#(z) := H(1/z̄), z ∈ E,

and to every function K(z) ∈ K2 we define a function K#(z) by

(6.4) K#(z) := K(1/z̄), z ∈ D := [z ∈ C : |z| < 1].

It follows immediately that H#(z) ∈ K2, K#(z) ∈ H2 and

(6.5) H##(z) = H(z) and K##(z) = K(z).

Furthermore,

(6.6) lim
ρ→1+

K(ρeiθ) = lim
r→1−

H(reiθ).

We see from this and the properties of H2 that, if K(z) ∈ K2, then the
limit

(6.7) K(eiθ) = lim
ρ→1+

K(ρeiθ)

exists a.e. and

(6.8)
∫ π

−π
|K(eiθ)|2 dθ <∞.

In this section our interest is primarily in the following problem, which
arises naturally in many situations. Let Φ(θ) be a given nonnegative
function on [−π, π]. We wish to construct a causal filter T with finite
energy whose magnitude response function |K(eiθ)| equals Φ(θ) a.e.
We shall consider only the situation in which Φ(θ) is an even function.
It can be seen that this is the case iff the unit pulse response {k(m)}
is a sequence of real numbers. In the special case that Φ(θ) ≡ 1, a
solution to the problem is called an all-pass filter.
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We see from the discussion following (6.1) that a causal filter with
finite energy has a transfer function which belongs to K2. Hence, by
(6.8) it is necessary to have

(6.9)
∫ π

−π
[Φ(θ)]2 dθ <∞

if the magnitude response of the filter equals Φ(θ). Property (6.9) is,
therefore, a necessary condition for the filter construction problem to
have a solution.

By the aid of Theorems 4.3 and 4.4 we can now obtain

Theorem 6.1. Let Φ(θ) be a given real-valued function on [−π, π],
satisfying the following conditions:

Φ(θ) ≥ 0 for − π ≤ θ ≤ π,(6.10)
Φ(−θ) = Φ(θ) for − π ≤ θ ≤ π,(6.11) ∫ π

−π
[Φ(θ)]2 dθ <∞.(6.12)

Let the distribution function ψ(θ) be defined by

(6.13) ψ(θ) :=
∫ θ

−π
[Φ(t)]2 dt+ σ(θ),

where σ(θ) is an arbitrary singular distribution function (in particular,
σ(θ) may be identically zero). Let ϕn(z), ϕ∗

n(z), δn and βn be derived
from ψ(θ) as in Section 4. Then the following hold:

(A) If the (equivalent) conditions (4.17) (4.20) are satisfied, then the
function
(6.14)

K0(z) := H#
0 (z) := lim

n→∞
1√

2π ϕ∗
n(1/z̄)

= e
− 1

2π

∫ π

−π

eiθ+z

eiθ−z
ln Φ(θ) dθ

,

is defined for z ∈ E and is the transfer function of a causal filter T
with finite energy, satisfying

lim
ρ→1+

|K0(ρeiθ)| = Φ(θ) a.e.
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(B) If the (equivalent) conditions (4.17) (4.20) are satisfied and
if K(z) is the transfer function of a causal filter with finite energy
satisfying

(6.15) lim
ρ→1+

|K(ρeiθ)| = Φ(θ) a.e.,

then there exists a function J(z) which is the transfer function of an
all-pass filter (i.e., J#(z) is an inner function) such that

(6.16) K(z) = J(z)K0(z).

(C) If the equivalent conditions (4.17) (4.20) are not satisfied, then
there exists no causal filter with finite energy such that the transfer
function K(z) satisfies limρ→1+ |K(ρeiθ)| = Φ(θ) a.e., except in the
case where Φ(θ) = 0 a.e.

Proof. Note that ψ(θ) is a distribution function because of (6.12).
We also note that ψ′(θ) = [Φ(θ)]2 a.e.

(A). From Theorem 4.3, it follows that the function

(6.17) H0(z) := lim
n→∞

1√
2πϕ∗

n(z)
= e

− 1
2π

∫ π

−π

eiθ+z

eiθ−z
lnΦ(θ) dθ

belongs to H2 and satisfies

(6.18) lim
r→1−

|H0(reiθ)|2 = [Φ(θ)]2 a.e.

Then K0(z) belongs to K2 and, by (6.6), K0(z) satisfies (6.15). From
considerations preceding the statement of the theorem, it follows that
K0(z) is the transfer function of a causal filter with finite energy.

(B). LetK(z) be an arbitrary function with the desired properties and
set H(z) := K#(z). Then H(z) ∈ H2 and limr→1− |H(reiθ)| = Φ(θ)
a.e. by (6.6).

Consequently, we may write

(6.19) H(z) = I(z)H0(z)
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where I(z) is an inner function (see, e.g., [16, p. 67], [ 26, pp. 336 338],
[25, p. 78]). Then K(z) := H#(z) may be written in the form (6.16)
with J(z) := I#(z). Clearly, every function of the form (6.16) is a
solution of the problem.

(C). If the conditions (4.17) (4.20) are not satisfied and if Φ(θ) is
not zero a.e., then by Theorem 4.4 there exists no function H(z) in
H2 such that limr→1− |H(reiθ)| = Φ(θ) a.e.; hence, no function K(z)
exists in K2 such that limρ→1+ |K(ρeiθ)| = Φ(θ) a.e. This means that
there exists no causal filter with finite energy whose transfer function
satisfies

lim
ρ→1+

|K(ρeiθ)| = Φ(θ) a.e.

We conclude this paper with a brief summary of the procedure
and examples for constructing approximations An(z) of the transfer
function K0(z) of a causal filter T with finite energy satisfying a given
amplitude response condition (6.15). For illustration, we present some
numerical and graphical results for particular examples.

Suppose that a function Φ(θ) satisfying the conditions of Theorem
6.1 is given. Our first step is to compute moments

(6.20) μn :=
∫ π

−π
e−inθ dψ(θ) =

∫ π

−π
e−inθ[Φ(θ)]2 dθ,

where ψ(θ) is defined by (6.13). Next we apply Levinson’s algorithm
(3.29) to compute the reflection coefficients δn and the coefficients q(n)

j

for the Szegö reciprocal polynomials ρ∗n(z) =
∑n
j=0 q

(n)
n−jz

j , q(n)
n := 1.

We then set

(6.21) An(z) :=
1√

2π (ϕ∗
n(1/z̄))

=
βn√

2π (ρ∗n(1/z̄))
,

where the βn can be computed by (4.7). The filter Tn with transfer
function An(z) then has magnitude response function

(6.22) Gn(θ) := |An(eiθ)| =
1√

2π|ϕ∗
n(eiθ)|

=
βn√

2π|ρ∗n(eiθ)|
,

which approximates the given Φ(θ).
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For illustration we consider functions Φε(θ) of the form

(6.23) Φε(θ) =
{

1, if 0 ≤ |θ| < π
2

ε, if π
2 < |θ| < π.

The moments

(6.24) μn :=
∫ π

−π
e−inθ[Φε(θ)]2 dθ, n = 0, 1, 2, . . .

are then given by μ0 = π(1 + ε2), μ2m = 0 for m ≥ 1, and

μ2m+1 =
2(−1)m(1 − ε2)

2m+ 1
, m = 0, 1, 2, . . . .

Example 1. In (6.23) and (6.24) we choose ε = 0.5. Figure 1 shows
graphs of G4(θ) and G20(θ) superimposed to Φ0.5(θ). Clearly, Gn(θ)
appears to converge to Φ0.5(θ) as predicted by theory. However, there
exists a “Gibbs phenomenon” near the discontinuities at θ = ±π/2,
also expected.

Example 2. Consider the case with ε = 0.1 (see Figure 2 for
graphs of G4(θ) and G20(θ) superimposed to Φ0.1(θ)). The large
oscillations of Gn(θ) near the discontinuities of Φ0.1(θ) are even more
pronounced. It is believed that these oscillations could be significantly
reduced by altering the definition of Φε(θ) to eliminate the discontinuity
and perhaps choose a Φ(θ) (for example, using spline functions) to be
smooth. Considerations of this type will be dealt with in future studies.

Acknowledgment. The authors gratefully acknowledge the able
assistance of Kevin D. Jones for the computations and computer
graphics used for illustrations.
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