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LIMITING BEHAVIOR OF SOLUTIONS OF
uy = Au™ as m — ©

PAUL E. SACKS

Consider the Cauchy problem for the porous medium equation

(0.1) uy = A(Ju|™ tu) zeRY, t>0
(0.2) u(z,0) = f(z) recRN.

We are interested in the behavior of the solution u as m — oo, for a
fixed initial function f. Some study of this question was first carried
out by Elliott, Herrero, King and Ockendon [4].

Under various conditions on f we will see that for fixed ¢ > 0
(0.3) Um(+t) =& U asm — 0

where u,, denotes the solution of (0.1)—(0.2), and u = u (z) satisfies
the “differential inclusion”

(0.4) Uoo — Ao (Uso) D f.

Here ¢, is the maximal monotone graph

0, |s] <1
(0.5) Vool(8) = £[0,00), s==1
z, |s|] > 1

and the meaning of (0.4) is that there exists a function w = w(z) such
that

(0.6) w(x) € Poo(Uoo(x)) ae. and us —Aw = f in D'(RN).
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The existence of a solution us of (0.4), for any f € L'(RY), is
demonstrated in [1].
Formally, a solution of (0.4) should satisfy
co — 0o 1
(0.7) oo = f - [tieol <
Uss = 1 otherwise.

Because of this characteristic shape, the term “mesa problem” was used
in [4]. If f > fo > —1, the problem (0.4) is actually equivalent to an
obstacle problem on R", namely, if

AYy=f—1 zeRV,
then v = w + ¢ satisfies
(0.8) v >, —Av >0, (v—9Y)Av =0

which is the complementary form of the obstacle problem [8, p. 79].
The set {z € RN : us(x) = 1} (the collection of mesas) is the same
as the noncoincidence set {z € RY : v(z) > (z)} for the obstacle
problem. Thus, there is a large literature which may be consulted
concerning the regularity of u.,, w and the free boundary d{u., = 1}.

1. In this section we describe some formal calculations leading to
the convergence result (0.3). Precise theorems will be given in the next
section.

For f € LY(R") and m > 0 a solution of (0.1)—(0.2) may be obtained
via nonlinear semigroup theory [5]. We define a nonlinear operator

(1.1) Am i D(Ay) c LYRY) — LYRY)
by the formula
(1.2) Amu = —A(Ju|™ ) u € D(Ap).

The exact definition of A,, is given in [2] based on the results in [1]. The
operator A,, is m-accretive in L'(R"Y), that is, (I + A,,) ! is defined
and nonexpansive on L'(R”). By the Crandall-Liggett theorem, the
limit

(1.3) S (£)f = lim <I+%Am>_nf

n— oo
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exists for f € LY(RY), um(z,t) = (Sm(t)f)(z) belongs to C([0,T];
LY(RY)) for any T' < oo and u,, is the weak solution of (0.1)-(0.2).

Now as m — oo the nonlinearities |u|/™ 1u converge in the sense of
graphs to the maximal monotone graph ¢, defined in (0.5). According
to the general continuous dependence result [2], it follows that A,, —
A in the sense of m-accretive operators, where Asou = “—Apoo(u)”
is a multivalued m-accretive operator on L'(R"), defined in [2]. The
precise meaning of this statement is that for A > 0 and f € L*(RY),

(1.4) (I + XA f = (T + M) f in LYRY)
and v = (I + M) 1 f means that there exists w = w(z) such that
(1.5)  w(z) € poo(v(z)) ae. and v—MNAw=f inD'(R"Y)

(i.e. (0.4) holds with u, replaced by v and ., replaced by Aps,).

With all this in mind, we can make the following heuristic argument
for the convergence result (0.3). By an exchange of limits, we may
expect that u,, converges to u* where

t —n
W= i i (14 5An) s

(1.6) .
t
= lim <I + —Aoo> f
n—oo n
provided this makes sense. Of course, it is not yet clear why u* should
be defined, or why the exchange of limits should be legitimate.

Let us check here that u* is well defined and, in fact, u*(-,t) = ueo
defined in (0.4). First observe that Apo, = @oo for any A > 0 and so
(I+L£As) ™ "f = (I + Ax) "f for any ¢, n > 0. Next, if [f| < 1,
then (I + A.)~"'f = f, and, furthermore, for any f € L'(RY),
if v = (I + Ax)™'f, then v € D(Ay), so |v(z)] < 1. Hence,
(I+LA)™"f =+ Ax)~'f for any n,t, which means that u*(-,t)
is defined and u*(+,t) = uy for any ¢t > 0.

2. The argument of the previous section leads us to conjecture that
(0.3) holds for any f € L'(R"™). We know of no counterexamples
to this, and we now describe conditions on f for which (0.3) has
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been proven. In each case the convergence takes place at least in
C([to, T]; L*(RN)) for any 0 < ty < T < oo. In general, u,,(z,0) =
f(z) # uoo(z) so we cannot let tg = 0. If f € LP(RY), then u,, — uoo
in LP((0,7) x RY) for any T < oo and p < oo. Since ue will
be discontinuous in general (see examples below) we cannot expect
convergence in L*°, no matter how smooth f is.

Under any of the following conditions on f, the convergence result
(0.3) is valid.

(i) (Special case of results in [2]) f € L*(RY), ||f]|p=@my) < 1.

In this case us, = f € D(Aw) so this is a regular perturbation
problem. The convergence will take place in C([0,T]; L*(RY)). If
| f]|zeer~y < 1, then (0.3) is especially simple to prove, see, e.g., [3],
Section 3.

(ii) (See [4]) f(z) = M§(x —x0), a Dirac delta function. In this case
it is not hard to show that the solution of (0.4) exists and is given by

1/N
1, |z—=zo| < (ﬁ)

wWN

(2.1) Uso = ) \x—xo|>(ﬂ)w

wN

(wy = volume of unit ball in RY). On the other hand, the solution
of (0.1)—(0.2) is the well-known Barenblatt-Pattle solution,

1
1 Clz —zo]2\ ™ *
(22) um(ac,t) = t_k <a2 — t24k .
with ¥ = (m — 1+ 2/N)~1, C = k(m — 1)/2m, and a is cho-
sen so that [pyum(z,t)de = M for t > 0 (which is possible
because [gn Um(z,t)dz is independent of time). Thus, by direct
calculation one can verify that w,(z,t) — uco(z). The sphere
{ac te — x| = (M/wN)l/N} represents the limiting position of the free
boundary for the solution (2.2) as m — co.
(iii) [3] f € L*RN)NL>®RY), f(z) >0, f € Ct(supp f), fr < 0in
RN\{0}Nsupp f, frey <0in RN\B(0,1)Nsupp f for all zy € B(0, ),
some €y > 0, where r,, = |z — x| and B(0,7) = {x : |z| < r}.

(iv) [10] f € LY(RY), f(z) 2 0, f(z) = f(|]).
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(v) [10] N =1, f € L'(R), f(x) > 0.
Before [10], it was also proved in [3] that (0.3) holds in the case
N =1, f € LYR), f(z) > 0, f'(z) piecewise continuous on R, f(z)
changes monotonicity & times and the set {f > 1} consists of k disjoint
intervals.

We conclude this section by mentioning a class of examples for which
the limit can be computed explicitly. Suppose f € L'(RY), f(z) > 0,
f(z) = f(lz|), f(0) > 1 and f. < 0. Then there exists a unique
R € (0,00) such that

1
N
WwNRY iz 1<r

(2.3) f(z)dz =1.

It is not hard to check that [us dz = [ fdz; hence, using the fact
that us, must be radially symmetric and decreasing we find that

1 |z| < R
24) oo(@) = {f(w) 2| > R.

With these conditions on f, we may conclude from case (iv) above that
Um (3 T) = Uso a8 M — 00.

3. In this section we describe some elements of the proof in case
(v) above; see [10] for complete details. Some of the arguments in the
proof are adapted from those in [3].

To begin with, we have the standard L' estimate for the Cauchy
problem (0.1)—(0.2) ([2,5])

(3.1) [l (5 8) = @ (Ol 2y < N = Fllerwy

where 4, denotes the solution with initial value f . Similarly for the
solutions of (0.4) we have [1]

(3-2) l[uos = ool 1wy < [1F = fllzar)-

In particular, it follows that we need only prove the convergence on a
dense subset of L' (R); assume, therefore, that f € C§°(R).
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Now fix T' > 0. From (3.1) we get

(3.3) /R|um(m,t)\dm§/R|f(w)|dw
and
B4 [ funla+ht) —un(e0lds < [ (@)~ @) do

from which it follows that {wm(-,7)} is precompact in L{ (R). We
can also show that supp u, (-, T') is bounded independently of m, hence
{tm (-, T)} is precompact in L'(R).

The next claim is that for any § > 0 there exists mg such that for
m > my

(3.5) 0 <tup(z,T)<1+9 z €R.

This may be proved in several ways, the easiest perhaps being a
comparison argument using the explicit solution (2.2) with ¢ replaced
by t+tg, to suitably chosen. Thus, we can find a subsequence m; — oo
and a limit function u% such that 0 < u}(z) < 1 and wp,, (-, T) — uwh
in L'(R).

By the continuous dependence result [2] for ¢ > T

(3:6)  thny (1) = Sy (¢ — Tt () = St — T = uf

where So is the semigroup generated by A.,. Now by a diagonalization
argument, there is a further subsequence, again denoted my, and a
function u*, |u*(z)| < 1 such that

(3.7) U, (1) = u* in  C([to, T]; L' (R))

for any 0 < tg < T" < oo. The proof will be completed once we show
that u* = ue, i.e., that u* satisfies (0.4).

Integration of (0.1) with respect to ¢t from 0 to 1 gives

(3.8) Uy, (5 1) — w;'nk =f in D'(R)
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where wp,, = fol upm*(x, s) ds. For a further such subsequence my — oo
we may obtain a limit function w* = w*(z) that w,,, — w*, and so
from (2.8),

(3.9) u* —(w*)"=f in D(R).

The conclusion u* = u* follows provided we show that w* € ¢ (u*)
a.e., that is to say, w*(z) = 0 a.e. on the set where u*(z) < 1.

To prove this last property we show that for a.e. such z,(i)u;* (z, s) —
0 for all s € (0,1] and (ii) there is a uniform bound for u;;*(z, s). The
conclusion that w*(z) = 0 then follows from the definition of w,,, and
the dominated convergence theorem. We remark that it is only in this
last step that the one dimensionality is used in an essential way.

4. To conclude we describe some generalizations of the results which
have been described here.

(i) The space L'(R) can be replaced by MT(R), the space of
nonnegative finite Radon measures. See [9] for an existence theory for
(0.1)—(0.2) in this case (for m > 1) and [11] for study of (0.4) when
f e MT(R).

(ii) [7] the nonlinearities |u|™ 'u can be replaced by a more general
sequence of functions converging to ¢, in the sense of graphs. In
particular, the convergence results discussed in Section 2 all remain
valid with the same proofs, if |u|™ lu is replaced by (Ju|™ u)/m,
which is the case actually considered in [4].

(iii) [6] Limits of the type lim,; oo Um(+, tm) can be studied where
t,, — 0 ort,, = oo as m — oo.

(iv) Analogous problems in bounded domains can be considered, say
with Dirichlet boundary conditions. This is done in [10] for the case
when the domain is an interval in R.

(v) Study of the analogous hyperbolic problem in which Au™ is
replaced by (u™), has been carried out [12].

Note added in proof. Since this article was written, the conver-
gence result (0.3) has been proved for all nonnegative f € L'(R").
See On the limit of solutions of uy = Au™ as m — oo by P. Bénilan,
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L. Boccardo and M. Herrero, in Some topics in nonlinear P.D.E.’s,
Proceedings Int. Conf. Torino 1989 (M. Bertsch, ed.).
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