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LOCALLY INVARIANT MANIFOLDS FOR
QUASILINEAR PARABOLIC EQUATIONS

ALEXANDER MIELKET

1. Introduction. The theory of invariant manifolds for differential
equations is becoming more and more important since its origin [11]
two decades ago. After it has been realized that the ideas are also valid
for infinite-dimensional systems [13], the realm of partial differential
equations was redeveloped under this new geometrical point of view
[10]. In a series of papers the machinery was extended to fit for
parabolic equations [10], damped hyperbolic problems [4], and finally
elliptic equations in cylindrical domains [12, 8].

Yet, up to now almost all work was restricted to semilinear problems.
That means, for a differential equation of the form

(1.1) & — Lx = f(x),

we have to assume that f is a smooth function from D(L7) into
X = D(L°) for some v < 1. The quasilinear case, v = 1, is only
treated in very special cases [6, 7, 15, 16]. Here we give a general
approach which includes arbitrary parabolic problems.

The main difficulty we have to deal with is the regularity loss through
the nonlinearity f. This has to be compensated by the regularizing
properties of the linear equation

(1.2) & —Lx=g(t), =(0)=2¢.

In this paper we use the interpolation spaces Dy, (), 6 € (0, 1), defined
in [9]. If L generates a holomorphic semigroup, then we have the
following mazimal regularity result: for g € C([0,77],Dr(f)) and
L¢ € Dp(0) the solution of (1.2) satisfies Lz € C([0,T],Dr(6)).
Using an appropriate modification of this result it is straightforward
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to generalize existing invariant manifold theorems to the quasilinear
case.

In Section 2 we prove an abstract theorem for the existence of
a center-unstable manifold for (1.1). As a corollary we obtain the
existence of center and unstable manifolds. In Section 3 some relevant
properties of the interpolation space Dy (6) are given. If L is an L,(2)-
realization of an elliptic operator, then Dr,(6) is in the class of Nikolski
spaces. In the last section it is finally shown how the abstract theory
applies to quasilinear parabolic equations.

2. Invariant manifolds. We consider the nonlinear evolution
equation

(2.1) z— Lz = f(t, A\, z),

where A € A is a set of real parameters and L : D(L) — X is the
generator of a holomorphic semigroup (eX*);>¢. For the time being we
restrict our attention to the construction of a center-unstable manifold,
which will contain all solutions of (2.1) sufficiently small for t — —oo.

Therefore, we assume that the Banach space X splits into closed
L-invariant subspaces X7 and X3 such that (2.1) takes the form

&1 — Az = fi(t, A\, z1,2),

2.2
(2:2) &y — Bxy = fa(t, A\, 21, x2).

Here, dim X; < oo and all eigenvalues of A = L|x, have nonnegative
real part. The operator B = L|x, : D(B) = D(L)N X2 — X3 is closed,
densely defined, and satisfies the resolvent estimate

C

2. B-2)! < -
(2.3) [[(B = 2) Hxﬁxz_lﬁzr

for all z with Rez > 0. Then B generates a holomorphic semigroup
(eB)4>0 with ||eBt|| < Ce ! for t > 0.

According to [9] we define, for § € (0,1), the interpolation spaces
Dp(0) = {zy € Xy | ||sB(B — s) x| = 0 for s — oo},
allo = max{ s B(B — 2) o] | 5 > 0},

Dp(0+1) ={z2 € D(B) | Bxs € Dp(0)}, ||22]lo+1 = [|Ba2||o-
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Lemma 2.1. Assume B : D(B) — X3 is closed, densely defined and
satisfies (2.3). Let 8 € (0,1). Then, the mapping g2 — T2 with

t
z2(t) = / eBt=9go(s) ds

— 00

is a bounded linear mapping from Cy((—00,0], D(6)) into C}((—o0, 0],
Dg(#)) N Cy((—o0,0], Dp(0 + 1)).

Here Cy(I,Y) denotes the space of bounded continuous functions
u : I — Y. The lemma is a direct consequence of Theorem 3.1 in
[9], so we omit the proof.

For fixed 6 € (0,1) we require the following conditions for (2.2).

Al: dim X; < oo, Respec(A4) > 0.

A2: B : D(B) — X3 is closed, D(B) is dense in X5, and (2.3) is
satisfied for all z with Rez > 0.

A3: There exist neighborhoods U; C X; and Uy C Dp(6+1) of zero
and an integer k£ > 1 such that

f=(f1,f2) = Cfynig R x A x Uy x Uz, X1 x Dp(6)).

For some A\g € A and all t we have f(¢, Ao, 0)=0, (8/0z)f(t, Mo,0)=0.

Theorem 2.2. (Existence of a local center-unstable manifold). Let
A1, A2, and A3 be satisfied. Then there exist neighborhoods U, C U
and U C Uy of zero, a neighborhood A’ C A of \o, and a function

h=h(t,\,z1) € CE(R x A x U{,U3)

with the following properties (for A € A fized):

a) The set M = {(t,z1,h(t,\,z1)) E R x X1 x Dg(0+1) | (t,z1) €
R x Uj} is a local integral manifold of (2.2). (For a definition of local
integral manifolds, see [14].)

b) Every solution (z1(-),z2(-)) € C((—o0,to], X1 x Dp(#)) which
belongs to Uy x U} for all t < ty lies in M, i.e., xz2(t) = h(t, X\, z1(t)),
t < to.
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c) Fordllt € R, h(t,\p,0) =0, (0/0x)h(t, Xo,0) =0.

Proof. Observe that Lemma 2.1 guarantees just a gain of regularity
of the order B; but this is exactly the same as the loss through the
nonlinearity f. Hence, by a careful bookkeeping of the regularity we
will be able to solve (2.2) via the same iteration procedure as in the
semilinear case. This proof essentially goes along with the proof of the
center manifold theorem in [14], and, therefore, we only point out the
necessary changes one has to do.

We may assume, after multiplying with a suitable cut-off function,
if necessary, that f € Cb it R XA X Xy x Dg(8 +1), X1 x Dp(8))

Whereby5:sup{Haf (t,\ @ H\ (t, A, m)ERxAxXlxDB(9+l)}

is sufficiently small. If there is no smooth cut-off function on Dg(6+1)
we can proceed as in [14], where only a cut-off on the finite-dimensional
part X7 is needed.

To find all solutions of (2.2) being bounded on (—oo, 7] we transform
(2.2) into the corresponding integral equation with the additional initial
value condition z1(7) = £. Let y(¢) = z(t + 7) for ¢ < 0, then y has to
satisfy the fixed point problem

(2.4) y(-) =T(y, 72 8)()

where

0
Ti(y, 7 A, 6)(t) = '€ — /t e i (s + 7\ y(s)) ds

and

t
Ty(y, 7 0 €)(t) = / B9 fo(s + 7,0, y(s)) ds.

For v € R define the weighted function spaces

={y € C((=00,0], X1 x Dp(0 + 1)) | |yl, < oo},
lyly = sup{e”*(lyal| + |y2llo+1) | £ < 0}.

Using the estimates ||e4|| < C(1 —t)™, t <0, ||[eB!|| < Ce™*t, t > 0,
and Lemma 2.1 we see that T': Y, x Rx A x X; — Y, is locally Lipschitz
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continuous whenever v € (0,a). For sufficiently small 6 = d(v) it
is even a uniform contraction in y € Y,. Thus, (2.4) has a unique
fixed point y = g(7, A, €)(+) in Y}, depending continuously on (7, A, §).
The function h is defined as h(7, A, &) = a2(1, A, £)(0); hence we have
h e C(R x A x Xl,DB(9+ ].))

All further properties of § (resp. h) can be obtained in a similar
fashion as in [14]. o

The flow on the center-unstable manifold M is now completely
described by the reduced equation

(25) :1'31 7AI1 = fl(t,)\,Il,h(t,)\,Il))

which is an ordinary differential equation since dim X; < co. However,
to this equation the classical theorems for invariant manifolds [11, 5]
apply, and we obtain

Corollary 2.3. (Existence of local center manifold and local unsta-
ble manifold). Let Al, A2, and A3 be satisfied by our system (2.2).
Then there exist a local center manifold and a local unstable manifold.

Remarks. 1. This approach does not yield the uniqueness of the
unstable manifold. Yet, if we construct the unstable manifold directly
(using a similar technique as for Theorem 2.1 but with v < 0) we need
no cut-off function and the uniqueness can be shown.

2. The same method should apply to the construction of the infinite-
dimensional stable manifold (cf. [7]).

3. Nikolski spaces. Parabolic equations are most conveniently
viewed as abstract evolution equations in X = L,(Q) with p € (1, 00).
Then, L : D(L) — X is an elliptic operator of order 2m, and D(L) is
some closed subspace of the Sobolev space ng (€2). The corresponding
interpolation spaces Dy, (6) are the Nikolski spaces h2™ (). Because
of the limited size of this paper, we only give the definitions and some
of the main properties. For further information and proofs, we refer
the reader to [9]. Subsequently, we assume that 2 is a bounded region
in R™ with 0Q of class C?™.
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Definition 3.1. Let o € (0,1), p € (1,00), and m € Ny. Then

hy (R") ={u € Lp(R") | [y |Ju(- +y) — u(")|[z, — 0 for y — 0},
RS (Q) = {u € Ly(Q) | 3i € hY(R™) : o = ul,
hpte(9) = {u € WJ(Q) | DPu e hg(Q), 0< 6] <m).

It is known [9] that the interpolation space D (6) depends only on
D(L) and X but not on the operator L itself. Therefore, we are able
to introduce the interpolation spaces (Y, X)g for every Banach space Y’
continuously embedded in X. Then we have Dy, (6) = (D(L), X)1—¢.

Lemma 3.2. Let m € N, p € (1,00), and 6 € (0,1) such that
mbé ¢ N.

a) Then, (W (), Ly(2))1-6 = hE™(Q).

b) Let VEI)/;”(Q) be the closure of C§°(2) in W;™(Q2), and let Y be

any closed subspace of W;"(Q2) such that VCE/'Z’(Q) CY Ccwy(Q). If
additionally ém < 1/p, then (Y, L,(Q))1-¢ = hgm(ﬂ).

Lemma 3.3. a) Fors > n/p, s ¢ N, the space h;(Q2) is continuously
embedded in C°(Q) and, thus, forms an algebra.
b) For s = m+o0 > n/p, m € Ny and 0 € (0,1), and f €
C™tk(RY,R), then evaluation mapping (uy(-),...,w(-)) € (h5(Q))" —
fQur(-), - w(-)) € h3(Q) is k-times continuously differentiable.

4. Quasilinear parabolic systems. For a vector-valued function
u = (u1,...,u,) we consider a quasilinear equation on the bounded
domain 2 € R"™.

(4.1) i — Lu = F(u) for x € Q,
Biu=---=B,u=0 for z € 09,

where Lu = > jaj<zm Aa(z)D%u is an elliptic operator of order 2m
and Bi,...,B,, is a set of boundary operators of degree 0 < 3; <
- < Bm < 2m, respectively. Let p > max{1l,n/2} and assume
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that L : D(L) — Lp(2); v — Lu is the generator of a holomorphic
semigroup (eft);>o (sufficient conditions for this are given in [1,2]).
Here D(L) is defined as {u | u; € W2™(Q), i = 1,...,7; Bju =0,
j=1,...,m, on 0Q}. The function F = F(u) may be a classical
function of all the derivatives D*u up to order 2m; yet the highest
derivatives D%u, |a| = 2m, may appear linearly only. Moreover, we
assume F(u) = O (||u||? + || Lu|[?) for u — 0.

We choose 8 > 0 such that 1/p > 26m > n/p — 1. Then, because
of Lemma 3.2b, we know D () = h2(Q) and, because of Lemma
3.3a, h2™T1(Q) is continuously imbedded in C°(£2). The quasilin-
earity and Lemma 3.3b now yield that the mapping F = F(u) €
Ck(hf,(eﬂ)m(ﬁ), h28™(€2)). On the other hand, the resolvent (L —s)~*!
exists for sufficiently large s > 0 and is compact since {2 is bounded.
Hence, the spectrum of L is discrete and the L-invariant eigenspace
X1, corresponding to the spectral points z with Rez > 0, is finite
dimensional.

Altogether we have now shown that the assumptions A1, A2, and A3
are satisfied for our system (4.1). Thus, Theorems 2.2 and 2.3 give the
existence of center-unstable, center, and unstable manifolds.

Remark. Here we have restricted ourselves to linear homogeneous
boundary conditions. However, using the method described in [3], it is
possible to treat nonlinear boundary conditions also.
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