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ON ITERATED TORSION PRODUCTS
OF ABELIAN p-GROUPS

PATRICK KEEF

ABSTRACT. The question of when Tor (A1, . . . , An) is a
dsc for abelian groups A1, . . . , An is discussed. The proofs
involve inductions on both the number and cardinality of
the groups. When A1, . . . , An have countable length and
cardinality ℵn, necessary and sufficient conditions are given
using invariants from set theory.

0. Introduction. In this paper the term “group” will be used
to mean an abelian p-group for some fixed prime p (except for a
momentary consideration of cotorsion groups in Theorem 12). In [12]
Nunke investigates the question of when Tor (A, B) is a direct sum of
countable groups (dsc). He arrives at an answer (cf ., our Theorem 1)
in the case where A and B have different lengths. The case where the
lengths are the same was left unresolved. In that paper Nunke also looks
at iterated torsion products with an eye toward constructing ℵn-cyclic
groups (groups whose subgroups of cardinality strictly less than ℵn are
direct sums of cyclics). A special case of Nunke’s question is considered
by Hill [5]. He arrives at separate necessary and sufficient conditions
for Tor (A, B) to be a direct sum of cyclic groups which essentially
induct on the cardinality of the groups involved. These conditions are
generalized in Keef [7] which considers when Tor (A, B) is a dsc whose
length is a limit ordinal.

The purpose of the present paper is to generalize the above results in
two ways. First, instead of simply considering when Tor (A, B) is a dsc,
we look at the question of when Tor (A1, . . . , An) is a dsc. This allows
us not only to induct on the cardinality of the various groups, but also
on the number of groups involved. We also discuss the case where the
length of the groups involved is an isolated countable ordinal. Perhaps
the most interesting result of the present paper is a determination of
when Tor (A1, . . . , An) is a dsc of countable length and cardinality ℵn

(Theorem 10).
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1036 P. KEEF

One problem of the inductive approaches of [5] and [7] is that the
answers given seem to depend upon selecting ascending chains of sub-
groups with certain required properties. In the present paper we borrow
ideas from set theory and the study of κ-free groups to present results
which do not employ particular chains of subgroups. Specifically, we in-
troduce an invariant ΓA which has values in a certain quotient boolean
algebra which is a simple generalization of a construction in this other
area.

To quickly summarize the contents of this work, the first section is
concerned with preliminaries and definitions. In particular, we present
a generalization of the notion of a Cλ group to the case where λ is
an isolated countable ordinal. The second section is concerned with
applying these notions to iterated torsion products. Some of these
results apply when the groups have different cardinalities and others
when the cardinalities are the same. The third section is devoted to
extending some of these results to the case where λ is uncountable. By
a result of [7] we are led to a consideration of the balanced projective
dimension (b.p.d.) of the groups involved. A generalization of the
notion of a κ-free group is given involving the b.p.d. of a group. A
version of Shelah’s singular compactness theorem is presented. These
notions allow us to generalize some of the results of the previous section
to larger cardinalities, provided the groups involved are “almost” of
b.p.d. at most 1.

Briefly reviewing some standard notation and ideas, we identify a
cardinal with the first ordinal of that cardinality. The cardinality of a
group A will be denoted by |A|. If α is an ordinal, let A(α) = {a ∈ A :
ht(a) ≥ α} and l(A) be the length of A, i.e., the smallest ordinal such
that A(α) = A(α + 1). By an α-high subgroup we mean a subgroup
maximal with respect to trivial intersection with A(α). We assume
familiarity with the standard facts on the Tor functor (see [12]) as well
as those on α-pure exact sequences (see [10] and [11]), e.g., an α-high
subgroup is α + 1-pure.

1. In [8], for a limit ordinal λ ≤ Ω, Megibben calls G a Cλ group if
for every α < λ the group G/G(α) is a dsc. We wish first to extend this
definition to isolated countable ordinals. If λ < Ω is isolated it is easy
to see that as it stands the above merely requires that G/G(λ) is a dsc.
An alternative, which will be more appropriate for our purposes, is to
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define a Cλ group to be a group which has, for every ordinal α < λ,
an α-high subgroup which is a dsc. By [7, Theorem 8], when λ is a
limit ordinal these two definitions agree. That they say different things
when λ is isolated can be seen by observing that if G is a group with
an ω-high subgroup which is a direct sum of cyclic groups, then G is a
Cω+1 group under the second definition. It is easy to construct such a
G with the further property that G/G(ω) is not a direct sum of cyclics
and such a G fails to satisfy the first definition. In this paper we will
use this second extension of Megibben’s definition.

Throughout this paper we will let λ denote an ordinal not exceeding
Ω. Observe that if λ is an isolated ordinal, then a group G is a Cλ

if and only if it has a (λ − 1)-high subgroup which is a dsc. To see
this, note that, for any α < λ, an α-high subgroup can be extended
to a (λ − 1)-high subgroup, and, by a result of Nunke [12], if one
(λ − 1)-high subgroup is a dsc then they all are. The result then
follows by a well-known result of Hill’s on isotype subgroups of dsc’s
[3]. Observe that this easily implies that when λ is isolated, a Cλ group
G with G(λ) = 0 is summable (i.e., its socle is free as a valuated vector
space). This follows since K is a (λ − 1)-high subgroup of G, then
G[p] ∼= K[p]⊕G(λ−1)[p] and since K is a dsc, K[p] is summable. This
is in marked contrast to the situation at limit ordinals (cf. [8]).

The results in this paper will often be stated for all λ ≤ Ω, but we
will occasionally ignore the case where λ is finite. We leave it to the
reader to fill in the usually trivial details of this case. The advantage
of infinite values of λ is that λ-pure sequences are pure in the usual
sense of the word and the Tor functor is exact on the category of pure
exact sequences. The triviality of the finite case is due to the fact that
bounded groups are direct sums of cyclics.

We note in passing the following simple fact.

Proposition 1. If K is an isotype subgroup of the Cλ group G, then
K is also a Cλ group.

Proof. If α < λ and L is an α-high subgroup of K, then L is
contained as an isotype subgroup of an α-high subgroup of G. Since α
is countable, Hill’s theorem on isotype subgroups of dsc’s implies the
result.
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One nice feature of our definition is that it allows us to recast a result
of Nunke’s [12].

Theorem 1. Let A and B be reduced groups with λ = l(A) < l(B).
Then Tor (A, B) is a dsc if and only if A is a dsc and B is a Cλ group.

The following characterization of Cλ groups is a slight variation on
Theorem 1.

Theorem 2. Let G be a group and H a reduced dsc of length λ.
Then G is a Cλ if and only if Tor (G, H) is a dsc.

Proof. When λ is a limit ordinal, the result follows from induction
since H is the direct sum of dsc’s of shorter length. If λ is isolated and
K is a (λ − 1)-high subgroup of G, then

0 → Tor (K, H) → Tor (G, H) → Tor (G/K, H)(∼= ⊕H) → 0

is λ-pure exact and hence splitting. So Tor (G, H) is a dsc if and only
if Tor (K, H) is a dsc and the result follows from Theorem 1.

The last theorem can be used to give the following necessary and
sufficient condition for a Cλ group of length λ to be a dsc. We say a
Cλ group G is normal if G(λ) = 0.

Proposition 2. If G is a normal Cλ group, then G is a dsc if and
only if G is a λ-pure projective.

Proof. Necessity being clear, we suppose G is a λ-pure projective. If
λ is a limit ordinal, the result is clear using Megibben’s definition of
Cλ and Nunke’s homological characterization of dsc’s (see [11]). If λ is
isolated, let L be a (λ − 1)-high subgroup of a dsc group H of length
λ. Since G is a λ-pure projective, the sequence

0 → Tor (L, G) → Tor (H, G) → ⊕G → 0

splits because it is λ-pure. So since, by Theorem 2, Tor (H, G) is a dsc,
so is G.
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The following lemma will be crucial in ensuring that we can construct
chains of subgroups which are “well-behaved.” We let Hλ denote the
“generalized Prüfer group” of length λ.

Lemma 1. Suppose K is a pure subgroup of G. Then Tor (K, Hλ)
is a summand of Tor (G, Hλ) if and only if K is a λ-pure subgroup of
G. If, in addition, G is a Cλ group, then so is G/K.

Proof. If K is a λ-pure subgroup, then

0 → Tor (K, Hλ) → Tor (G, Hλ) → Tor (G/K, Hλ) → 0

is also λ-pure, and since the last group is λ-pure projective it must
split.

For the converse, recall that for a group A there is a (natural) map
∂A : Tor (A, Hλ) → A and a short exact sequence X → Y

α→A is λ-
pure exact if and only if ∂A factors through α (see [10]). Suppose
π : G → G/K is the natural projection. If

φ : Tor (G/K, Hλ) → Tor (G, Hλ)

is a right inverse for Tor (π, 1Hλ
), then we have

π ◦ (∂G ◦ φ) = ∂G/K ◦ Tor (π, 1Hλ
) ◦ φ = ∂G/K

and so K is a λ-pure subgroup of G.

The last statement follows from Theorem 2.

We come now to a definition which is fundamental for the results of
this paper. Let G be an infinite Cλ group. By a λ-development of G we
mean an ascending chain of subgroups {Gi}i∈I of G, where I = [0, α]
for some limit ordinal α such that we have

(a) for all i < α, Gi is a λ-pure subgroup of G;

(b) G0 = 0, Gα = G;

(c) if i ≤ α is a limit ordinal, ∪j<iGj = Gi (i.e., the chain is smooth).

If, in addition to the above, we have
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(d) |Gi| < |G| for all i < α,

we will call the λ-development proper. Finally, if in addition to (a) (d)
we have

(e) (Gi+1/Gi)(λ) = 0 if and only if (G/Gi)(λ) = 0, for all i < α,

we will call the λ-development normal. Observe one consequence of
Lemma 1: if {Gi} is a λ-development of G, then for each i the groups
Gi+1/Gi and G/Gi are Cλ groups.

Theorem 3. Suppose A and B are normal Cλ groups with |λ| ≤
|A| < |B|. Then Tor (A, B) is a dsc if and only if B has a λ-
development {Bi} such that, for each i, Tor (A, Bi+1/Bi) is a dsc.
Furthermore, if Tor (A, B) is a dsc, we may choose the λ-development
to be normal.

Proof. If B has a λ-development as stated, then each sequence

0 → Tor (A, Bi) → Tor (A, Bi+1) → Tor (A, Bi+1/Bi) → 0

must split because it is λ-pure and the last group is a λ-pure projective.
So Tor (A, B) is clearly isomorphic to the direct sum of the groups
Tor (A, Bi+1/Bi), which proves this part.

Conversely, if Tor (A, B) is given to be a dsc, we construct the re-
quired λ-development as follows. Suppose {xi}i<|B| is a well-ordering
of B. Observe that by Theorem 2, Tor (Hλ, B) is a dsc. Fix decom-
positions of Tor (A, B) and Tor (Hλ, B). Let B0 = 0. Suppose, for
some j ≤ |B| we have constructed a smooth ascending chain {Bi}i<j

satisfying

(a) Bi is pure,

(b) Tor (A, Bi) and Tor (Hλ, Bi) are the direct sums of certain terms
in the decompositions of Tor (A, B) and Tor (Hλ, B), respectively,

(c) |Bi| ≤ |A||i|,
(d) if i + 1 < j, then xi ∈ Bi+1,

(e) if i + 1 < j, then (Bi+1/Bi)(λ) = 0 if and only if (B/Bi)(λ) = 0.

If j is a limit ordinal, then smoothness dictates our choice of Bj . If
j = i + 1 is isolated, we begin by constructing an extension K0 of Bi
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which contains xi so that (K0/Bi)(λ) �= 0 if and only if (B/Bi)(λ) �=
0. Using a “back-and-forth” technique, we can construct extensions
Kn which are alternately pure subgroups and subgroups for which
Tor (A, Kn) and Tor (Hλ, Kn) are the direct sum of certain terms in
fixed decompositions of Tor (A, B) and Tor (Hλ, B), respectively. This
can clearly be done so that |Kn| ≤ |A||i|. Let Bj = ∪nKn. Observe
that conditions (a) and (b) together with Lemma 1 imply that Bj is a
λ-pure subgroup of B (cf. case II of [5, Theorem 2]).

The last result is a generalization of [7, Theorem 17]. The present
proof, instead of employing the notions of λ-isotype and λ-nice sub-
groups in the successive building of extensions, uses Lemma 1. This
not only has the advantage of simplicity, but it also applies equally well
to the case where λ is isolated. That this is a true generalization follows
from the fact that when λ is a limit ordinal and A is a Cλ group, a
sequence X → Y → A is λ-pure if and only if it is λ-balanced (see [11,
Theorem 2.9]). We will use this technique frequently in our proofs to
guarantee that we are, in fact, creating λ-pure subgroups.

Corollary 1. If B is a Cλ group with |B| > |λ|, then B has a normal
λ-development.

Proof. Use the last result with A = Hλ.

If α is an uncountable cardinal and S1, S2 are subsets of [0, α), define
S1 ∼ S2 if S1 ∩ C = S2 ∩ C for some cub (closed and unbounded)
C ⊆ [0, α). This can easily be seen to be an equivalence relation and
the usual set operations can be performed on the various equivalence
classes. Another way to view this construction is to define I to be the
collection of all S ⊆ [0, α) such that S ∩ C = ∅ for some cub C. It
can be seen that I is an ideal in P([0, α)) and the equivalence classes
mentioned are simply cosets in the quotient boolean algebra. Denote
this quotient boolean algebra by ρα. Let 0 = [∅] and 1 = [[0, α)].

Recall that a cardinal α is called regular if the cofinality of α is
α. Otherwise, it is called singular. Suppose α > |λ| is a regular
cardinal and A is a Cλ group of cardinality α. If {Bi}i<α is a normal
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λ-development of A, let

Γ′{Bi} = {i < α : (Ai+1/Ai)(λ) �= 0}
and ΓA = [Γ′{Bi}] in ρα.

Lemma 2. With the above notation, ΓA does not depend on the
particular normal λ-development chosen.

Proof. If {B′
i} is another normal λ-development, then by the regu-

larity of α,
C = {i < α : Bi = B′

i}
is a cub, and by the normality condition,

Γ′{Bi} ∩ C = Γ′{B′
i} ∩ C,

hence [Γ′{Bi}] = [Γ′{B′
i}] in ρα.

If we are given a normal λ-development of a Cλ group and we select
from it those terms corresponding to some cub, the result is another
normal λ-development (which we will call a subdevelopment). So if {Bi}
is a normal λ-development for A (where |A| > λ is regular) and ΓA = 0,
then by passing to a subdevelopment, we may assume Γ′{Bi} = ∅.

When there are several cardinals being discussed we may use the
notation ΓαA for emphasis. We may also use ΓnA for Γℵn

A.

Observe that if A is a Cλ group with |A| ≤ |λ|, then A may not have
a proper λ-development. In this case we define Γ|A|A to be 0 = [∅]
if A is a dsc and 1 = [[0, |A|)] otherwise. This is consistent with the
following observations:

Proposition 3. Suppose A is a normal Cλ group.

(a) If |A| = ℵ1, then ΓA = 0 if and only if A is a dsc.

(b) If |A| = ℵ2 and λ = Ω, then ΓA = 0 if and only if the b.p.d. of
A is at most 1.

Proof. In (a) we may clearly consider only the case where λ is
countable. If A is a dsc, then letting the Bi be the direct sum of
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certain terms in a decomposition of A, we clearly have Γ′{Bi} = ∅.
Conversely, if Γ′{Bi} = ∅, then for each i < ω1, the short exact
sequence Bi → Bi+1 → Bi+1/Bi must split, giving a decomposition
of A, as required, into countable groups.

(b) is essentially a restatement of [7, Theorem 22].

2. Recall that the iterated torsion product is defined inductively by

Tor (A1, . . . , An) = Tor (Tor (A1, . . . , An−1), An).

It is consistent with the above to define Tor (A) = A. Because of
standard commutativity and associativity relations, the iterated torsion
product can be “built up” in many different ways from products
involving fewer terms.

Proposition 4. (a) If A1, . . . , An are Cλ groups, then Tor (A1, . . . ,

An) is a Cλ group.

(b) If Tor (A1, . . . , An) is a Cλ group of length at least λ, then each
Aj is a Cλ group.

Proof. By induction we may assume n = 2. Let H be a dsc of length
λ. In (a) we may assume l(Aj) ≥ λ for each j (otherwise replace Aj by
Aj ⊕ H). Considering the isomorphism

Tor (Tor (A1, A2), H) ∼= Tor (A1, Tor (A2, H)),

Theorem 2 now implies this part. As to (b), let α < λ and K be an
α-high subgroup of A1. Then Tor (K, A2) is an isotype subgroup of
Tor (A1, A2) of length at most α, so it must be a dsc. So by Theorem
1, K must be a dsc. Therefore, A1, and similarly A2, is a Cλ group.

Suppose we wish to decide when Tor (A1, . . . , An) is a dsc of length
λ for reduced groups A1, . . . , An. If we renumber the groups so that
l(Aj) = λ for j ≤ k and Aj(λ) �= 0 for j > k, then by Theorem 1 and
our last proposition,

Tor (A1, . . . , An) ∼= Tor (Tor (A1, . . . , Ak), Tor (Ak+1, . . . , An))
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is a dsc if and only if Tor (A1, . . . , Ak) is a dsc. So in deciding when
Tor (A1, . . . , An) is a dsc, there is no loss in generality in restricting to
the case where each Aj is a normal Cλ group.

Theorem 4. Suppose A1, . . . , An are normal Cλ groups with λ-
developments {B1,i}, . . . , {Bn,i}. If for each i and j, the group

Xj,i = Tor (B1,i, . . . , Bj−1,i, Bj,i+1/Bj,i, Bj+1,i+1, . . . , Bn,i+1)

is a dsc, then Tor (A1, . . . , An) is a dsc.

Proof. For each i and j there a is a λ-pure short exact sequence

Tor (B1,i, . . . , Bj,i, Bj+1,i+1, . . . , Bn,i+1)
→ Tor (B1,i, . . . , Bj−1,i, Bj,i+1, . . . , Bn,i+1) → Xj,i

which clearly must split. Therefore, Tor (A1, . . . , An) is isomorphic to
the direct sum of the Xj,i.

In the remainder of this paper, the notation Xj,i will be reserved for
the above iterated torsion product. The above condition can be used
to prove

Theorem 5. Suppose A1, . . . , An are normal Cλ groups of cardinality
at most ℵn−1. Then Tor (A1, . . . , An) is a dsc group.

Proof. We may clearly assume |Aj | = ℵn−1 for each j (otherwise
replace Aj by the direct sum of ℵn−1 copies of Aj). The result is clear
for n = 1. When n = 2 and λ = Ω the result is [6, Theorem 6]. So
assume the result is true for n − 1 ≥ 1 and ℵn−1 > |λ|. By Theorem 3
there are proper λ-developments {B1,i}, . . . , {Bn,i} of A1, . . . , An. By
induction and Theorem 2, each of the groups

Xj,i
∼= Tor (Tor (B1,i, . . . , Bj−1,i, Bj+1,i+1, . . . , Bn,i+1)Bj,i+1/Bj,i)

is a dsc, so the result follows from the last theorem.

Corollary 2. If A1, . . . , An are a normal Cλ group, and λ is
countable, then any isotype subgroup of Tor (A1, . . . , An) of cardinality
at most ℵn−1 is a dsc group.
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Proof. Any isotype subgroup of cardinality at most ℵn−1 is contained
in a subgroup of the form Tor (K1, . . . , Kn), where Kj is an isotype
subgroup of Aj of cardinality at most ℵn−1. Since isotype subgroups of
dsc groups of countable length are dsc groups, the result follows from
the preceding theorem and Proposition 1.

Corollary 3. Suppose A1, . . . , An are normal Cλ groups of cardinal-
ity ℵn. If ΓA1, . . . , ΓAn are all 0, then Tor (A1, . . . , An) is a dsc.

Proof. Passing to subdevelopments, if necessary, suppose {B1,i}, . . . ,
{Bn,i} are normal λ-developments such that for each i and j, (Bj,i+1/
Bj,i)(λ) = 0. By Theorem 5 each Xj,i is a dsc, so by Theorem 4 we are
done.

We will have use for the following simple observation.

Lemma 3. Suppose A1, . . . , An are Cλ groups of cardinality at most
ℵn−1. If A1, . . . , An−1 are normal, then Tor (A1, . . . , An) is a dsc if
and only if either Tor (A1, . . . , An−1) is a dsc or An is normal.

Proof. If An is normal, this follows from Theorem 5. If An(λ) �= 0, it
follows from Theorem 1.

Theorem 6. Suppose A1, . . . , An are normal Cλ groups with |λ| ≤
|A1| < · · · < |An|, where for each j, |Aj | is regular. If Tor (A1, . . . , An)
is a dsc, then, for some j, Γ|Aj |Aj = 0.

Proof. If A1 is a dsc, we are clearly done, so suppose it is not. Choose
j such that Tor (A1, . . . , Aj−1) is not a dsc, but

Tor (A1, . . . , Aj) ∼= Tor (Tor (A1, . . . , Aj−1), Aj)

is a dsc. By Theorem 3, Aj has a normal λ-development {Bi} such
that for all i,

Tor (Tor (A1, . . . , Aj−1), Bi+1/Bi)

is a dsc. By the choice of j and Theorem 1, we must have (Bi+1/Bi)(λ) =
0 for all i, and we are done.
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The following observation can be viewed as a generalization of
Nunke’s construction of ℵn -cyclic groups (see [12]).

Corollary 4. If λ is countable and A1, . . . , An are normal, infinite
Cλ groups of strictly increasing, regular cardinality, with Γ|Aj |Aj �=
0 for each j, then Tor (A1, . . . , An) is not a dsc, but every isotype
subgroup of cardinality at most ℵn−1 is a dsc.

Proof. This is a result of Corollary 2 and Theorem 6.

The following indicates that for sufficiently small cardinals, the con-
verse of Theorem 6 is valid.

Theorem 7. Suppose for j = 1, . . . , n, Cj is a normal Cλ of
cardinality ℵj. Then Tor (C1, . . . , Cn) is a dsc if and only if there is a
j such that ΓjCj = 0.

Proof. Necessity being Theorem 6, suppose {Bi} is a normal λ-
development of Cj with (Bi+1/Bi)(λ) = 0 for all i. By Theorem
5, Tor (C1, . . . , Cj−1, Bi+1/Bi) is a dsc for each i, so by Theorem 3,
Tor (C1, . . . , Cj), and hence Tor (C1, . . . , Cn) is a dsc.

The remainder of this section we will be primarily concerned with the
case where λ is countable. In the next section we will present versions
of these results for λ = Ω.

Theorem 8. Suppose λ is countable, A1, . . . , An are normal Cλ

groups of equal uncountable cardinality. If Tor (A1, . . . , An) is a dsc,
then there are normal λ-developments {B1,i}, . . . , {Bn,i} such that for
all j and i,

Yj,i = Tor (B1,i, . . . , Bj−1,i, Bj,i+1/Bj,i, Bj+1,i, . . . , Bn,i)

is a dsc.

Proof. Using a “back-and-forth” argument as in Theorem 3, we
can construct normal λ-balanced towers {Bj,i}, such that, for all i,
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Tor (B1,i, . . . , Bn,i) is a summand of Tor (A1, . . . , An), and hence also
of

Tor (B1,i, . . . , Bj−1,i, Bj,i+1, Bj+1,i, . . . , Bn,i).

This group is a dsc by Hill’s theorem, and so the quotient, which is
isomorphic to Yj,i, is also a dsc.

We introduce now some additional notation. If {Bi} is a normal
λ-development for the normal Cλ group A, and |A| is regular, let

Λ′{Bi} = {i : Bi is not a dsc}
and ΛA = [Λ′{Bi}] in ρ|A|. As in Lemma 2, ΛA is independent of the
particular λ-development employed. Observe that if λ is countable,
then by Hill’s theorem ΛA is either 0 or 1. Also, if A1, . . . , An are
normal Cλ groups of the same regular cardinality, define

τ (A1, . . . , An) = ∪j{ΓAj ∩ ΛTor (A1, . . . , Aj−1, Aj+1, . . . , An)}.
We use this new notation in the following theorem.

Theorem 9. Suppose λ is countable, n ≥ 2, and A1, . . . , An are
normal Cλ groups of cardinality ℵn. Then Tor (A1, . . . , An) is a dsc if
and only if τ (A1, . . . , An) = 0 in ρℵn

.

Proof. If Tor (A1, . . . , An) is a dsc, then by Theorem 8 there are
λ-developments such that

Yj,i
∼= Tor (TorB1,i, . . . , Bj−1,i, Bj+1,i, . . . , Bn,i), Bj,i+1/Bj,i)

is a dsc. By Lemma 3, Yj,i is a dsc if and only if (Bj,i+1/Bj,i)(λ) = 0
or

Tor (B1,i, . . . , Bj−1,i, Bj+1,i, . . . , Bn,i)

is a dsc, which implies that the complement of τ (A1, . . . , An) in ρℵn
is

1, and this part follows.

Conversely, if τ (A1, . . . , An) = 0 choose λ-developments {B1,i}, . . . ,
{Bn,i} of A1, . . . , An so that for all j, Γ′{Bj,i} = ∅ whenever ΓAj = 0.
Choosing subdevelopments, if necessary, we may assume that

Tor (B1,i, . . . , Bj−1,i, Bj+1,i, . . . , Bn,i)
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is either always or never a dsc. Observe that this second restriction
also guarantees that

Tor (B1,i, . . . , Bj−1,i, Bj+1,i+1, . . . , Bn,i+1)

is always or never a dsc. Now using these λ-developments, if τ (A1, . . . ,

An) = 0, then each Xj,i in Theorem 4 will be a dsc, and hence so will
Tor (A1, . . . , An).

The following generalizes Theorem 7 to groups of arbitrary cardinal-
ity.

Theorem 10. Suppose λ is countable and A1, . . . , An are normal Cλ

groups. Then Tor (A1, . . . , An) has an isotype subgroup of cardinality
ℵn which is not a dsc if and only if after possibly reordering, there exist
isotype subgroups C1, . . . , Cn of A1, . . . , An respectively such that for
each j, |Cj | = ℵj and ΓjCj �= 0.

Proof. If the given Cj exist, then Tor (C1, . . . , Cn) is an isotype
subgroup of Tor (A1, . . . , An) which is not a dsc, by Theorem 7.

As to necessity, we may clearly assume that |Aj | ≤ ℵn for each j (cf.
Corollary 2), and Tor (A1, . . . , An) fails to be a dsc. Renumber the Aj

so that |Aj | < ℵn for j ≤ k and |Aj | = ℵn for j > k. By Theorem 5,
k < n. For j ≤ k, let Aj = ⊕ℵn

Aj . Clearly, ΓnAj = 0. By Theorem
9, after possibly interchanging some Aj for j > k with An, we have
ΓnAn �= 0 and

ΛTor (A1, . . . , Ak, Ak+1, . . . , An−1) = 1.

Let Cn = An. Clearly, the above condition implies that there are
isotype subgroups A′

1, . . . , A
′
n−1 of A1, . . . , Ak, Ak+1, . . . , An−1 of car-

dinality ℵn−1 such that Tor (A′
1, . . . , A

′
n−1) fails to be a dsc. Clearly

this also implies that

Tor (A1, . . . , Ak, A′
k+1, . . . , A

′
n−1)

also fails to be a dsc (for Tor (A′
1, . . . , A

′
n) is contained as an isotype

subgroup in the direct sum of a collection of copies of this). Induction,
using the groups A1, . . . , Ak, A′

k+1, . . . , A
′
n−1, implies the result.
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It can easily be seen that in the last result we can equally well use
λ-pure subgroups instead of isotype ones.

Corollary 5. Suppose λ is countable and A1, . . . , An are normal Cλ

groups of cardinality ℵn. If for each j, every isotype subgroup of Aj of
cardinality ℵ1 is a dsc, then Tor (A1, . . . , An) is a dsc.

Proof. This follows from Theorem 10 and Proposition 3(a).

It seems to the author that without major excursions into logic and
set theory a satisfactory answer to the question of when Tor (A, B)
is even a direct sum of cyclic groups will be impossible. As a simple
illustration of the difficulties involved, consider the following. Suppose
A is an unbounded torsion complete group with a countable basic
subgroup.

Proposition 5. The continuum hypothesis is equivalent to the
statement that Tor (A, A) is a direct sum of cyclics.

Proof. If the continuum hypothesis is true then |A| = ℵ1, and then
Tor (A, A) is a direct sum of cyclics by Theorem 5. If the continuum
hypothesis is false, then A has pure subgroups C1 and C2 of cardinality
ℵ1 and ℵ2 respectively. It is easy to see that Γ1C1 = 1 and Γ2C2 = 1,
so by Theorem 10, Tor (A, A) is not a dsc.

3. In this section we concentrate on the ordinal Ω. If G is a group
with G(Ω) = 0, a subgroup W of G is called separable if for every
g ∈ G,

sup{ht(g + w) : w ∈ W} < Ω.

Let F denote the class of groups G with G(Ω) = 0 whose b.p.d. is at
most 1. The next two results are from [2].

Theorem 11. Let G be a group with G(Ω) = 0. Then G is
in F if and only if G is the union of a smooth ascending chain of
subgroups {Bi} such that for each i, Bi is a separable subgroup of G
with |Bi+1/Bi| ≤ ℵ1.
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Corollary 6. The class F is closed with respect to isomorphism and
the formation of subgroups.

Proof. Closure with respect to isomorphism being trivial, suppose
G′ is a subgroup of G ∈ F . If {Bi} satisfies Theorem 11 then, letting
B′

i = Bi ∩ G′, it can easily be seen that G′ also satisfies Theorem 11.

Recall that if G is a cotorsion group and α is an ordinal cofinal with
ω, then G/G(α) is complete in its α-topology (see [9]). The following
then gives a similar characterization of those CΩ groups in F .

Theorem 12. A normal CΩ group A is in F if and only if for every
group W ,

ZW = Ext (A, W )/Ext (A, W )(Ω)

is complete in its Ω-topology.

Proof. Let K → H → A be a balanced resolution of A, where H is a
dsc. Note that since A is a CΩ group, this is also an Ω-pure sequence.
For any group W we have an exact sequence

· · · → Hom (K, W ) → Ext (A, W )(Ω) → Ext (H, W )(Ω) = 0

which leads to an Ω-pure exact sequence

0 → ZW → Ext (H, W ) → Ext (K, W ) → 0.

Note H ∼= ⊕αLα where the length of each Lα is strictly less than Ω.
Therefore,

Ext (H, W ) ∼=
∏

α

Ext (Lα, W )

is complete in the Ω-topology (each term in the product is discrete in
this topology). So for all W , ZW is complete in its Ω-topology if and
only if Ext (K, W )(Ω) ≡ 0 if and only if K is Ω-projective if and only
if K is a dsc if and only if A is in F .

We now restate a theorem of [7]:
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Theorem 13. If A and B are CΩ groups in F , then Tor (A, B) is a
dsc.

If α is a cardinal, we say a group G is α-F if every subgroup of G of
cardinality strictly less than α is in F . It is essentially a consequence
of Shelah’s singular compactness theorem that we can restrict our
attention to regular cardinals in the above definition. To verify this
we use the following version of Shelah’s result, valid in valuated vector
spaces, due to Eklof (see [1]). Call a subspace S of a vector space V
small if dimS < dimV .

Theorem 14. Let V be a valuated vector space over a field F (e.g.,
Zp). If dim V is singular and every small subspace of V is contained
in a free subspace, then V is free.

This implies

Theorem 15. Let G be a group with G(Ω) = 0 and α be a singular
cardinal. If G is α-F , then G is α+-F .

Proof. We may assume |G| = α. Let K → H → G be a balanced-
projective resolution of G, where H is a dsc. Clearly, H can be chosen
so that |H| = α. We need to show that K is also a dsc. By a result
of Hill [4], it is sufficient to show that K[p] is free as a valuated vector
space. If L⊆K[p] with dim L < α, then by a straightforward “back-
and-forth” argument we can construct subgroups K ′ ⊆K, H ′ ⊆H and
G′ ⊆G, such that

(a) L⊆K ′,

(b) H ′ is a summand of H and hence a dsc,

(c) K ′ → H ′ → G′ is balanced short exact,

(d) |G′| < |G|.
Since G′ ∈ F , K ′ must be a dsc and hence K ′[p] is a free valuated
vector space. So by Eklof’s theorem we are done.
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We now apply this concept to get some generalizations of the results
of the last section to the case where λ = Ω. For their statements we
let β be an ordinal. In the corresponding results of the last section we
had β = 2.

Theorem 16. Suppose n ≥ 2 and for each j = 1, . . . , n, Aj is a
normal CΩ group which is ℵβ-F . If |Aj | < ℵβ+n−2 for all j, then
Tor (A1, . . . , An) is a dsc.

Proof. If n = 2, this is clear from Theorem 13. If the result is true
for n − 1 ≥ 2, and for each j, {Bj,i} is an Ω-development of Aj with
|Bj,i| < ℵβ+n−3, then by induction each Xj,i in Theorem 4 is a dsc
and, hence, so is Tor (A1, . . . , An).

Corollary 7. Suppose n ≥ 2 and for each j = 1, . . . , n, Aj is a
normal CΩ group which is ℵβ-F . If |Aj | ≤ ℵβ+n−2 for all j, then
Tor (A1, . . . , An) is in F , in fact ΛTor (A1, . . . , An) = 0.

Proof. If {Bj,i} is an Ω-development of Aj with |Bj,i| < ℵβ+n−2, then
Tor (A1, . . . , An) is the union of the isotype subgroups Tor (B1,i, . . . ,

Bn,i) and by the last result these are all dsc’s. The result then follows
by [2, Theorem 5.2].

Corollary 8. Suppose n ≥ 2 and for each j = 1, . . . , n, Aj is a
normal CΩ group which is ℵβ-F . Then Tor (A1, . . . , An) is ℵβ+n−1-F .

Proof. Any subgroup of Tor (A1, . . . , An) of cardinality ≤ ℵβ+n−2 is
contained in a subgroup of the form Tor (C1, . . . , Cn), where Cj is an
isotype subgroup of Aj of cardinality ≤ ℵβ+n−2. So the result follows
from Corollaries 6 and 7.

The following is a version of three of the results of the last section
valid when λ is uncountable (Theorems 8, 9 and 10).

Theorem 17. Suppose n ≥ 2 and for each j = 1, . . . , n, Aj is a
normal CΩ group of cardinality ℵβ+n−2, which is ℵβ-F .
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(a) If Tor (A1, . . . , An) is a dsc, then there are Ω-developments
{B1,i}, . . . , {Bn,i} such that for all i,

Yj,i = Tor (B1,i, . . . , Bj−1,i, Bj,i+1/Bj,i, Bj+1,i, . . . , Bn,i)

is a dsc.

(b) If Tor (A1, . . . , An) is a dsc, then τ (A1, . . . , An) = 0.

(c) If Tor (A1, . . . , An) fails to be a dsc, then after possibly reorder-
ing, there are isotype subgroups C1, . . . , Cn of A1, . . . , An respectively
such that for each j, |Cj | = ℵβ+j−2 and ΓCj �= 0.

Proof. The proof of (a) follows as in Theorem 8, with one change.
Instead of using Hill’s theorem to ensure that

Tor (B1,i, . . . , Bj−1,i, Bj,i+1, Bj+1,i, . . . , Bn,i)

use Theorem 16. Parts (b) and (c) follow from part (a) in exactly the
same manner as the corresponding parts of Theorems 9 and 10 follow
from Theorem 8.

We conclude with a pair of results which are valid for the ordinary
torsion product (i.e., when n = 2).

Theorem 18. Suppose A and B are normal CΩ groups of equal
regular cardinality. If Tor (A, B) is a dsc, then ΓA ∩ ΓB = 0.

Proof. Choose normal Ω-developments {Ki} and {Li} such that for
each i, Tor (Ki, Li) is a summand of Tor (A, B). Then

Pi = Tor (Ki+1, Li+1)/Tor (Ki, Li)

is a dsc. By [7, Theorem 1], there is an Ω-pure exact sequence

0 → Pi → Tor (Ki+1/Ki, Li+1) ⊕ Tor (Ki+1, Li+1/Li)
→ Tor (Ki+1/Ki, Li+1/Li) → 0.

Observe that if G denotes the middle term of the above, then clearly
G(Ω) = 0. Since the dsc Pi is absolutely separable (i.e., separable in
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any group which contains it as an isotype subgroup), we must clearly
have

Tor (Ki+1/Ki, Li+1/Li)(Ω) = 0

for each i and so either Ki+1/Ki(Ω) or Li+1/Li(Ω) vanishes and the
result follows.

The following is an analogue of Theorem 9 (or a converse of Theorem
17 (b)) for n = 2.

Theorem 19. Suppose A and B are normal CΩ-groups of cardinality
ℵ2. Then Tor (A, B) is a dsc if and only if

τ (A, B) = [ΓA ∩ ΛB] ∪ [ΛA ∩ ΓB] = 0 ∈ ρω2 .

Proof. By [7, Theorem 22], Tor (A, B) is a dsc if and only if there are
Ω-developments {Ki} and {Li} such that for all i, Tor (Ki, Li+1/Li)
and Tor (Ki+1/Ki, Li) are dsc groups (the λ-developments in that
result are only assumed to be proper, but they could have easily been
constructed to also be normal). By Lemma 3 these are dsc’s if and only
if Ki is a dsc or Li+1/Li is normal, and Ki+1/Ki is normal or Li is a
dsc. The result is now clear.
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