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CONSTRICTED SYSTEMS

ROBERT SINE

0. Introduction. Recent interest in the investigation of chaotic
behavior of dynamic systems has led to a broad renewed interest in L,
Markov operators. The recent monograph of Lasota and Mackey [11]
gives a very readable introduction to the methods and applications of
this approach to the randomness of deterministic processes. Lasota, Li,
and Yorke [10] and Lasota and Yorke [12] have studied the asymptotic
periodicity of an L; Markov operator which has a constricting set
which attracts densities. For strongly constricted systems we obtain
asymptotic finite dimensionality for a contraction on any B-space.
Similar results are obtained for weakly compact constrictors on B-
spaces for which the geometry can be exploited. Bartoszek [1] has
extended the strong constrictor results of [10] to positive operators on
arbitrary Banach lattices. The approach here has some advantages in
that positivity is not required and the B-space can be arbitrary.

Using a clever and elementary argument Komornik [7] has shown
that weak implies strong for a constricted L; Markov operator. While
the deLeeuw—Glicksberg machinery we bring to bear does give some
results in an effortless fashion, it does not give this result. We give
an example of a positive isometry of C'(X) which is weakly but not
strongly constricted to show that a full strength Komornik Theorem is
not possible in C(X).

1. Let T be a linear contraction on a B-space X. Suppose F' is a
compact subset of X with the property that for each x in the unit ball,
B(X),

dist(T"z, F) — 0.

We will call F a (norm or strong) constrictor for T'. Note that we have
not assumed that F' is convex or invariant under the action of 7. The
first defect is easily fixed, for if F is a constrictor for 7" so is the norm
closed convex hull of F'. The second defect is also easily fixed—indeed
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in two different ways. The external solution is to replace F' with the
closure of its orbit under T,

F' =closure U{T"F :nin Z,}.

As F' is larger the distance condition holds for F’. It is not as obvious
at this stage that the orbit closure is again compact but this will be
clearer in what follows. The internal solution to the lack of invariance
is next considered. It is obvious that each z in B(X) has a compact
orbit closure, so for each such x there is a nonempty w limit set which
is contained in F'. We then define

Q= UH{w(z): 2z in B(X)}

to obtain a compact invariant constrictor for 7.

A construction T is called strongly almost periodic if each point
has a compact orbit closure. For such operators there is a deLeeuw—

Glicksberg decomposition. The space X has a T reducing decomposi-
tion
X =Xy ® X;.

For z¢ in Xy we have
HT”Z()H —0

while X; can be characterized as the closure of the span of the
eigenvectors corresponding to unimodular eigenvalues. This description
must be modified for the action on real B-spaces. All we will need
to know is that on X; the action of T is a surjective isometry and
each point x; in X; is recurrent in the sense that x; is a norm
cluster point of {T™z;}. The applications are usually to positive
operators on function spaces and in those circumstances the choice
of using real or complex functions is a matter of convenience. The
space X; is the range of a contractive projection 7 which commute
with 7. This deLeeuw—Glicksberg decomposition (along with its weak
counterpart) is one of the most useful results of algebraic analysis. A
very readable exposition is to be found in [8, p. 103]. With the aid of
the decomposition we obtain the following characterization of strongly
constricted operators.
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Theorem 1. A contraction T is strongly constricted if and only if
T is strongly almost periodic and dim X; < oo.

Proof. If T is strongly almost periodic with dim X; < oo we can take
F to be B(X;) which is compact if X is finite dimensional. On the
other hand, if T is strongly constricted it is strongly almost periodic.
We see that if z is in B(X;), we must have {I™z} clustering to = while
at the same time dist(T"z, F') goes to zero. This implies that each
point z of B(X;) is in F.. Then as X; has a norm compact ball it must
be finite dimensional.

Now we can return to our earlier claim. If 7T is strongly almost
periodic and F is any compact set, the orbit {T™F : n in Z} is norm
precompact. This follows either from the Moore-Osgood double limit
theorem or is an easy consequence of sequence chasing in the orbit
closure. a

Next we consider the implications of some special constricted con-
tractions.

Theorem 2. Suppose T is a strongly constricted contraction on a
real Ly space. Then T 1is periodic on Xy and is asymptotically periodic
in the sense that

IT"f T f)] = 0

where w is the deLeeuw—Glicksberg projection onto Xj.

Proof. Now X is the range of an L contractive projection w. The
isometric structure of such spaces is well known [3 or 9]. X is isometric
to a finite dimensional L; space. T on that space is a surjective isometry
and so must permute the extreme points. This shows that 7T is periodic
on X;. The asymptotic statement is just the characterization of X in
disguise. O

Remarks. (1) The same sort of result is available in L,, p # 2. For p
not 1, 2, or co the range of a contractive projection is again isometric
to some L, space. This is due to Ando and to Tzafriri and can be
found in [9, p. 152]. The Lamperti characterization of isometries in L,
spaces [14] is particularly easy in finite L, spaces. Not because the
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space has few extreme points but rather because it has few isometries,
the argument goes through as before. Some power of 7% = R must
correspond to the identity permutation and the multiplier for this power
is +1-valued. Thus T?N = R? is the identity. The L, case can be
argued again from the known properties of the range of contractive
projections in Stonian spaces. The next theorem includes the L., case
via a Gelfand representation.

(2) In the case of an L; Markov operator we will describe X; in
greater detail in the next section.

Theorem 3. If T is a strongly constricted contraction on a real
C(X) space, then T is periodic on X1 and T is asymptotically periodic
in the sense that

" f = T"nf|l =0

where w is the deLeeuw—Glicksberg projection onto X;.

Proof. The argument is essentially the same as that of the previous
theorem with the exception that the structure of the range of a con-
tractive projection in C'(X) is not as well known. We will develop the
necessary structure in the corresponding weak constrictor theorem of
the next section. o

2. We will say that F' is a weak constrictor for a contraction T if F' is
weakly compact and for each z in B(X), we have in the norm topology

dist(T"z, F) — 0.

A contraction is weakly almost periodic if for each x in X, the orbit
{T™z : n in Z,} is precompact in the weak topology. There is a (far
deeper) deLeeuw—Glicksberg decomposition for weakly almost periodic
contractions. As before, we have a reducing pair

X=Xy X,
and a commuting contractive projection 7 on X;. The description of

X remains the same. Xy is characterized by the fact that 0 is in the
weak closure of the orbit for all z in Xg.
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Theorem 4. Let T be a weakly constricted contraction, then T is
weakly almost periodic and X is reflexive.

Proof. The weak compactness of F' and the distance condition
together imply that {T"z : n in Z,} is weakly compact. Now
recurrence in X; and the distance condition imply that B(X;) is
contained in F'. Thus X is reflexive as its unit ball is weakly compact.
]

Remark . We are missing a great deal here. We do not know
a necessary and sufficient condition for a contraction to be weakly
constricted. The condition we do have tells us nothing on a reflexive
space where every contraction is weakly almost periodic. As before, the
lack of convexity is easily fixed by replacing F' with its weakly closed
convex hull. The lack of invariance is another matter however. The
external construction may not work. The author is grateful to Paul
Milnes for showing him how an example of Ching Chou can be used to
produce a weakly compact set and a weakly almost periodic contraction
so that the orbit is not weakly precompact. The internal approach is no
better. We have precompact orbits in the weak topology so there is a
nonempty invariant set €2 contained in F' but this set could be so much
smaller than F' that the distance condition fails for {2. We will be able
to obtain some positive results in certain spaces using the reflexivity of
X together with the fact that it is the range of a contractive projection.

Theorem 5. Let T be a weakly constricted contraction on real Ly or
C(X). Then X; is finite dimensional and T is periodic on X;.

Proof. As we mentioned earlier, the range of a contractive projection
in Ly is known to be isometric to another L; space. Now this space
is reflexive if and only if its dual is reflexive. But that clearly implies
that X; must be finite dimensional.

We now consider the C'(X) case. Grothendieck [5] has shown that the
only complemented reflexive subspaces of C[0, 1] are finite dimensional.
In our setting, a reflexive range of a contractive projection, we can give
a fairly direct elementary argument. Let M denote X;. The basic idea
is to put an isometric copy of ¢; into M*. But M™ is also reflexive so
cannot contain ¢;. Now if {¢;} is a sequence of functionals in M* and
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b = {b,} is a member of ¢; we certainly obtain a member of M* by
¥b, dn. The problem is to control the norm of the functional by careful
choice of {¢;}. Suppose ¢ is in ext B(M*). Let u be an extreme Hahn
Banach extension of ¢ to all of C(X). A standard convexity argument
shows that p is an extreme point of B(C'(X)*). Hence, this ¢ has
representing measures which are + or — Dirac measures on X. Let Sy
be the set of points z in X so that §(z) represents ¢(mod M), and let
S_ be the set of points = so that —§(z) represents ¢(mod M). Both
sets are closed, they are clearly disjoint, and at least one is nonempty. If
fisin B(M), then f must have a constant value —1 < k <1 on S and
is then the constant —1 < —k <1 on S_. For any point y in Sy and
any f in M we have (£,6) = (£,8(y)) = (v£,8(y)) = (f, 7*(y)). Thus,
the measure 7*§(y) represents ¢. But we already know the extreme
representing measures of ¢, so 7*6(y) is a norm one measure with
positive part supported on S, and negative part supported on S_.
From these observations we see that if f is in C(X) and has constant
value k on S, and constant value —k on S_, then 7 f has the same
property. Now suppose that {¢, } is a collection of independent extreme
points of B(M*). If any two sets of the corresponding collection of sets,
{S4(n)}, have a point in common, the sets have the same index and the
same sign. Given a finite collection of these sets and a corresponding
finite collection of constants so that the constants are antisymmetric
on the sets we can certainly find f in C'(X) which interpolates the
constants on the sets. We enlarge our finite collection of sets so that
for any S (n) in the collection, S_(n) is included (if not empty) and for
any S_(n) in the collection, Sy (n) is included (again if not empty). We
can still find g in C'(X) of norm at most one which interpolates. By the
remarks above, wg, which is in M, also interpolates. This shows that
b — Xb, ¢, embeds isometrically ¢; into M* if B(M*) has an infinite
set of independent extreme points. If M* were infinite dimensional it
would have an infinite collection of independent extreme points in its
unit ball. Thus, M is finite dimensional. We may also show that M is
isometric to some C'(Y") where Y is obtained as a maximal collection on
independent extremes in B(M*), again by transferring interpolation in
C(X) to interpolation in M.

In either the Ly or the C(X) case, the X; space is finite dimensional
and has a finite number of extreme points in its unit ball. Thus, the
restricted operator is the composition of a multiplier and a permutation.
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For some N we see that R = T is an isometric multiplication operator
so R?N is the identity.

Remarks. (1) For the L,, p # 2, case it can be shown that X, is
isometric to some L, which decomposes into pieces on each of which T’
is represented by an invertible measure preserving transformation with
Lebesgue spectrum (at least in the separable case—otherwise a field
automorphism must be used in place of the point map of the Lamperti
representation).

(2) In the complex case some power of T' will be a unimodular
multiplier. If T is a positive operator (or just real) on the complex
space the multiplier must be real and the square of the power is again
the identity.

Corollary 6. If {T? : t > 0} is a weakly constricted contraction
semigroup on the real space L1 or C(X), then Xy consists of invariant
functions and T is the identity on X;.

An L; Markov operator has a Hopf decomposition X = CUD [8]. It
is straightforward using the properties of this decomposition to show
that

ILpT™ f|| =0

for any f.

In our setting we also can show that the support of X; is C' and
that the extreme points of the unit ball of X; which are permuted
correspond to a decomposition of C' into a finite number of disjoint
pieces Ci,...,C, which are permuted by the operator. Each Cj is
the support of a unique extreme invariant probability pj for 72N = R.
This N need be no larger than n!

Lasota and Yorke [12] showed that a weakly constricted L; Markov
operator is strongly constricted if the operator is the dual of a deter-
ministic nonsingular L, transformation. This can be obtained fairly
directly from Lin [13, Corollary 4.1]. However, Lin’s criterion for con-
vergence of iterates in norm seems difficult to apply in the general sit-
uation. Komornik [7] has shown weak implies strong for an arbitrary
L, Markov operator essentially from first principles. We will examine
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what can be obtained for weakly constricted contractions on L; and
C(X) from the deLeeuw—Glicksberg machinery.

Theorem 7. Let T be a weakly constricted contraction on Ly or
C(X). Then for z in Xy, the iterates T™x converge weakly to zero.

Proof. For any operator S which is a weak operator cluster point
of {T"} we clearly have for each z in B(X) that Sz is in F. Thus,
S is a weakly compact operator and S itself gives a splitting of
X = X1 (5) + X (S) where X;(S) is finite dimensional with S periodic
on X;(S). Suppose y is in X¢(7T) and S™y = y. A weakly compact
operator on either L; or C'(X) maps weakly compact sets to norm
compact sets [4, pp. 498, 508]. Let {n‘} be arbitrary and look at

Triy =TSy = S™(TTy).

Now S™ takes the weakly precompact set {T™iy} to a norm precompact
set {T™y}. But 0 is a weak cluster point of {T™y}, so 0 must be a
norm cluster point as well. Since the norm is monotone decreasing on
iterates, it follows that ||[T"y|| — 0. Thus Sy = 0. We then have the
asserted claim and we see that the weak operator cluster points of {17}
is the finite set {m, 7T,... ,7T™ '}, where 7 is the deLeeuw—Glicksberg
projection.

Remark . In light of Komornik’s result this is of no interest for an L,
Markov operator.

We will examine the C(X) case in further detail and will assume
that T" is Markov on C(X) for the rest of the section. The invariant
functions for T generate an upper semicontinuous decomposition of
the state space into closed sets. Each stochastically closed ergodic set
supports exactly one invariant probability. There are at most a finite
number of such sets. If f is in C'(X) with support disjoint from the finite
number of decomposition sets which do support invariant probabilities,
then

[ £l o.

These results together with a description of the sample path behavior
can be found in [6, 15, and 17]. Each ergodic invariant probability
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is supported on an irreducible stochastically and topologically closed
set. We can restrict the process to such a set, and for this restriction
the following result of Jamison applies. See [8] for a discussion of this
result.

Proposition 8 (Jamison). An irreducible weakly almost periodic
Markov operator on C(X) is strongly almost periodic.

If T is uniquely ergodic on C(X) we can identify the invariant support
of the single invariant probability to a point to study the behavior of
the iterate of a function of f which is zero on that support set. We will
now look at two examples of such a set up.

Example 9. Let ¢(z) = 2z mod(l) on J = [0,1]. Let p =
.1010010001 ... . Then the orbit closure of p is a countable compact
subset X of J. Moreover, it can be shown that ¢ is a continuous map
of X into X. It can also be shown that the induced deterministic
Markov operator T' is weakly almost periodic with X; being the space
of constants. But it can also be shown that {T™} has weak operator
cluster points other than the deLeeuw—Glicksberg projection. From
Theorem 7 it follows that 7" is not weakly constricted. Further details
of some of the above assertions can be found in [16].

Example 10. Here we will take all of [0,1] as the state space
but identify the points 0 and 1. The operator is induced by the
point map # — 22. This gives us a surjective Markov isometry. X;
is the one-dimensional space of constants, and clearly T cannot be
strongly constricted. We will show that T is weakly constricted. To
this end, it will be convenient to change variables. The process is
equivalent to the translation £ — x — 1 on R where the B-space is the
continuous functions on R which have equal limits at —oco and +o0o0. An
obvious density argument shows we need only worry about a continuous
function g with compact support and a bound on the derivative.

Now we define

Fo = {f € B(X) : suppf C [, —n] and ||f'|| < n}.
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Then F,, is norm precompact and it is not hard to see that
F =UF,
is weakly precompact. For any g as above, we have
Trg € F, n>N,

where N is clearly dependent on g. Thus, T is weakly constricted.
Thus, we cannot have a Komornik type theorem for C'(X).

3. A number of the properties of strongly constricted linear contrac-
tions remain true for nonlinear nonexpansive maps. A necessary and
sufficient condition for such a map to be strongly constricted is that
each point of the domain have norm precompact iterates and that the
union of the w-limit sets be norm compact. This set up was investi-
gated in [18]. An investigation of asymptotic periodicity of nonexpan-
sive maps in finite dimensional polyhedral B-spaces is carried out in
[21]. If the union of the w-limit sets is convex, then it can be shown
that the asymptotic action is actually affine [20].

There seems to be little more to be said about weakly constricted
nonexpansive maps. Bruck [2] has given some positive results in Hilbert
space for the structure of the weak w-limit sets. In [19] it is shown that
the limit of weakly-convergent iterates need not be invariant.
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Added in Proof. Related work is to be found in my paper, Weakly
Constricted Operators and Jamison’s Convergence Theorem, Proc.
Amer. Math. Soc., 106 (1989), 751-755, and in Rainer Wittman’s
paper, Schwach Irreduzible Markoff-Operatoren, Monat. Math., 105
(1988), 319-334.
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