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EXTENSIONS OF MODULES CHARACTERIZED BY
FINITE SEQUENCES OF LINEAR FUNCTIONALS

URI FIXMAN AND FRANK OKOH

ABSTRACT. Let S be an algebra over an algebraically
closed field, K. If S is different from K, then it contains
K? = K @ K as a K-vector subspace, e.g., S = K[(], the
polynomial ring in one variable over K. Then any S-module
M gives rise to a pair of K-vector spaces M = (M, M) and
a K-bilinear map from K2 x M to M. This makes M a

. . K K2
right module over the matrix ring, R = . An R-
0 K

module isomorphic to M = (M,M) where M is a K|[(]-
module is said to be nonsingular; an R-module is torsion-
free if it is isomorphic to a submodule of M = (M, M)
where M is a torsion-free K[(]-module. In this paper it is
shown that extensions X of finite-dimensional torsion-free R-
modules U by nonsingular R-modules are characterized by
finite sequences of linear functionals. This provides an upper
bound on the dimension of the vector space of extensions of U
by V. Questions about such extensions become questions on
the existence of linear functionals with appropriate properties.
In particular, when V = (K(¢),K(¢)), where K({) is the
K[{]-module of rational functions the setup provides a fertile
source of indecomposable infinite-dimensional R-modules. We
describe extensions, X, of U by V, with the property that the
endomorphism ring of X is an integral domain. Moreover,
X shares an infinite-dimensional indecomposable submodule
with V.

Introduction. We fix a field K which we assume to be algebraically
closed, and, unless otherwise stated, we let all vector spaces, linear
and bilinear maps be over K. That K is algebraically closed is often
dispensable in the paper, but it is convenient. For instance, the set
B={1/¢-0)":0c K,n=12,...}U{(":n=0,1,2,...}is a
K-basis for K(¢). If the set of positive prime numbers is replaced by
the set {1/(¢—0) : 8 € K}, then one sees that a characterization of the
K|[¢]-submodules of the K [(]-module K () is given in Section 85 of [7].
With this characterization as a point of departure, many attempts have
been made to classify other torsion-free K[(]-modules, see Section 93
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of [7]. Progress in this direction would also be useful in linear algebra
as can be seen in Chapter VI of [9]. A linear operator 77 on a vector
space can be “perturbed” on some subspace to a new operator T5.
To have a framework for such perturbations Aronszajn and Fixman
studied K?2-systems in [1]. By regarding one of the operators as the
identity operator, the new framework subsumes the case of a single
linear operator. By viewing pairs of matrices over K as K?2-systems
the classical result of Kronecker on pencils of matrices are recovered
in [1]. The term Kronecker module for K2-systems is due to Ringel.
As is pointed out below, K[{]-modules are also Kronecker modules.
As a Kronecker module, K(¢) has finite-dimensional submodules. We
shall give a description of these submodules below in the form they
will be used here. One way to obtain new families of modules from
a family of modules is to take extensions. Since the ultimate goal
is a classification, it is best to start from modules with tractable
characterizations. Therefore, we concentrate on extensions of finite-
dimensional submodules, U, of K({) by K|[(]-submodules of K(()
regarded as Kronecker modules. (Reversing the order in the extensions,
or replacing U by a finite-dimensional torsion module, results in a
split extension—as can be deduced from [4].) Many of the difficulties
encountered in the study of infinite-dimensional modules are already
manifested in these extensions. The extensions can be constructed from
linear functionals. We shall be dealing mostly with linear functionals
on subspaces of K({) given by subsets of B—the basis of K((), given
above. If S is a subset of a vector space, [S] denotes the subspace
spanned by S. We now illustrate the above concepts with an easy
example.

Fix a basis (a,b) of K2. Let ¢ be a K-linear functional on K(¢). It
gives rise to a K-bilinear map

0: K?x K(¢) — K ®K(()
o(e, f) = (ab(f) - 1, (a+ BC)f)

where e = aa + 8b. This makes the pair of vector spaces (K({), K &
K (()) a Kronecker module: a pair of vector spaces V' = (V4, V2) is said
to be a Kronecker module if there is a K-bilinear map o : K2 xV; — Va.
Call V; the domain space, V5 the range space, o the system operation
in' V. For e € K?, v € Vi, eowv will denote the image o(e,v).
When it is necessary to keep track of the system operation o in V'

(1)
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we write V = (V,Va,0). When we let G be a module, then G; and
G4 are automatically the domain space and range space, respectively.
“Module” always means Kronecker module.

A module U is a submodule of X if U; is a subspace of X;, i = 1,2,
and the system operation in U is the restriction of that in X. In that
case we can form the quotient module X/U = (X1/U1, X2/Uz) with
system operation

(2) eo(xy+Uy) =eoxy + Us.

In (2) the element e o 1 on the right is from the system operation
in X. The module in (1) is an extension of (0, K) by (K(¢), K(¢))-
A homomorphism ¢ = (¢1,¢2) : X — V is a pair of K-linear maps
¢1: X1 — Vi, ¢ : Xo — V5 such that

€o ¢1(I1) = ¢2(€ o CU1)
for all z1 € Xy,e € K?2.

(3)

The category of Kronecker modules is equivalent to the category of
right R-modules where R is [10{ I;{ : } This category behaves in many

ways like the category of modules over a commutative ring, see [5] for
details.

Let

(4) E:0 U™ xYy o

be a short exact sequence. It gives rise to a factor set (or “factor
system”). A factor set usually involves two functions, one describing
the additive structure of the extension, the other the way that scalars

from the ring act on it. (See, e.g., [11, p. 69 ff].) However, in (4) the
exact sequences of vector spaces

0—U — X1 —V7; —0

and
0—U; — Xo—Vo —0

split. Hence, the first mentioned function of the factor set can be taken
to vanish identically and is, therefore, superfluous. We wind up with
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a single function as in the factor sets of p. 83 of [8] for inessential
extensions. Since the domain and range spaces of X can be taken
to be direct sums of those of U and V, not just as abelian groups,
but as vector spaces, the factor sets of [8] simplify further. Instead
of being maps from R to Hom(V,U) they can be taken to be linear
maps of K2 into Hom(Vy,Us). Thus, a (V,U)-factor set is a module
(V1,Usa, %) where x is the system operation. For simplicity we refer
to x as the factor set. The zero factor set is the factor set * with
exv=0foralle e K2 v &V, In Section 1 we explain the relation
between extensions of our modules and factor sets ab initio, showing
that Ext(V,U) is naturally isomorphic to a vector space of equivalence
classes of factor sets (Theorem 1.1).

Let U = (U, Uz, 01),V = (V1,Va,09). A (V,U)-factor set « is said to
be equivalent to another factor set x if there exist linear transformations
S:Vi — Uy and T : Vo — U, such that, for all e € K2, v € V;,

(5) exv—exv="Teoyv —eo; Sv.

The set of (V,U)-factor sets forms a vector space F(V,U) with a
subspace Fy(V,U) consisting of the factor sets equivalent to the zero
factor set.

Every K[¢]-module M may be considered a Kronecker module M =
(My, M), where My = My = M with aoxz = z, boz = (z for
all z € M, (a,b) a fixed basis of K2. We say that M comes from
the K[¢]-module, M. This gives rise to a subcategory of our module
category (depending on (a,b)) which is equivalent to the category of
K[¢]-modules. We now describe the extensions that we classify in
Corollary 1.6 up to congruence. Let P be the Kronecker module that
comes from the K[(]-module, K[(]. For each positive integer m, let
P,, be the subspace of K[(] spanned by polynomials of degree strictly
less than m. Let P, be the zero subspace. Restricting the system
operation in P to P, 1 = (Py_1,Pn) we see that P = UX_, P, ;.
(It follows from the version of Kronecker’s theorem in [1] that every
indecomposable finite-dimensional Kronecker module is a quotient of
Pp,—1 for some m.) If, in (4), U = ®}_; P, ,, where r,m1,...,m,
are arbitrary positive integers, and V' is a module that comes from a
K[(]-module, then extensions of U by V are classified up to congruence
by sequences of linear functionals, (Zj)gzl, in V¥, the vector space of
linear functionals on V;.
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Let V = (V1, V2) be a module. The dual module V* = (V5, V;*) has
system operation given as follows: Let e € K2, £ € V. We want e o £
in V*. For v € V1, set

(6) (o f)(v1) = £leow),

where e o v; € V3 is from the system operation in V. We need dual
modules in the statement of Proposition 1.5 from which Corollary 1.6
is obtained. With these results, indecomposable extensions of U by
V' are constructed with facility. The emphasis here is on the facility
as there are quite sophisticated methods available for constructing
indecomposable modules over algebras, see for instance [2, 3, 6, 10,
and 16]. It is in the nature of things that no one approach can account
for all infinite-dimensional indecomposable modules.

1. Factor sets and linear functionals. We begin by establishing
a natural isomorphism between Ext(V,U) and F(V,U)/Fy(V,U). Con-
sider the extension FE of (4). Let oy, 0, and oy be the system operations
in U, X, and V, respectively. Let u,v be splittings as vector spaces in
the domain and range spaces of E, ie., p:V; - Xy andv: Vo — X,
are linear and

op =1y, and 7v =1y,

(7)

where 1y,, 1y, are the identity maps on Vi, V.

(We shall be sparing in the use of parentheses, e.g., vy in place of u(vy)
when no confusion results.) Since (o,7) : X — V is a homomorphism it
follows from (3) that for any e € K2, vy € V4, T(eop(v1)) = eogopu(vy).
So by (7), T(eopu—veos)(v1) =0, i.e., (eop—veoy)(vy) € KerT =Im A
for all v; € V4. As A is monic, there exists a unique element, denoted
by e x vy, in Uy such that

(8) Ae x v1) = (eo p — veog)(vy).
Due to the linearity of all the maps involved, (e,v1) — e x v; is a

bilinear map from K2 x V;j to U,. Hence, (V1, Uz, *) is a factor set.

We now show that congruent extensions of U by V give rise to
equivalent factor sets. This implies in particular that the equivalence
class of a factor set attached to a given extension does not depend on
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the choice of the splittings p,v. Let E be another extension of U by V.
Maps and systems operations arising from £ will be decorated with ~.
The analogues for E of (7) and (8) are

9) oh =1y, and 70 =1y,

(10) A(exv1) = (eopn — veos)(v1).

Suppose (8,7) : (X1,X2) — (X1,X2) is a homomorphism that
renders E congruent to E. So we have the following diagram of
commutative squares which will be referred to subsequently as the
diagram:

E:0

Using A = 7], (8); veo = €33, i.e., (3) applied to the homomorphism
(8,7), we get that

Aex = YAex = ye o fi — yveoy

(11) .
= eofu — yre og .

Also, from (10), Aex = edfi — Peos. So

(12) Aex — ex) = (yv — D)eog —ed(Bu — fi).

From the diagram, (7) and (9), respectively, we get that 7y = 1,
7 = v = ly,. Therefore, (yv — 7)(v2) € Ker 7 = Im X for all vy € Va.
Since A is monic there exists a unique element, denoted by T'(v3), in
U, such that AT'(v2) = (yv — 7)(ve). Hence, we have a linear map
T:Vy — Us.

From the diagram, (7) and (9) we get that 68 = 0,64 = ou = 1y,.
Therefore, (Bu—pi)(v1) € Ker & = Im & for all v; € V;. Since & is monic,
this results in a linear map S : V4 — Uy with &S (v1) = (Bu— i) (vq) for
allv; € V;. Using S and T, (12) becomes A(ex — ex) = ATeoy —€edRS =
A(Te oy —€ 01 S), because ek = Aeoy, by (3) applied to (&, \). Since
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\is monic, we conclude that ex — ex = Te o5 —e 01 S. Hence, * and *
are equivalent. Therefore, we have a well-defined map

[+ Ext (V,U) — F(V,U)/Fy(V, D).

f is one-to-one: Suppose f(E) = x is equivalent to * = f(E),
and x defined by (8) and (10). We have to define a homomorphism
(B,7) : (X1, X3) — (X1, X2) that makes E equivalent to E. Let S and
T be the maps that render x and * equivalent as defined in (5).

As vector spaces, X1 = kU;+uVi, Xo = \Ux+v Vs, u,v as defined in
(7). Hence, for every z; € X; and z2 € Xo,

Tr1 = KU1 + pou
(13) 1 1T MHU1
To = Aug + Vg

for unique choices of u1,v1,us and vo. With &, 7 as defined in (9) set

(14) By = Ruy + (RS + fi)vy
Yo = Aug + (AT + 7)vs.

Using (7), (9), (13), (14), and ok = 6k = 0, TA = 7\ = 0, one
verifies that (3,~) as defined in (14) makes the squares in the diagram
commutative.

To prove that (8,7) is a homomorphism we have to show, by (3),
that (e — yeo)zr; = 0. From (3), edR = MAeoy, e 0 K = Aeoy.
So (e38 — veo)zy = ed(Ruy + (RS + f@)vy) — ve o (kuy + pvy) =
e o1 uy + \e oy Svy + edfivy — yAe o1 u; — ye o pvy. Since YA = A,
the penultimate expression simplifies to Ae o; Sv; + edfivy — ve o pvy.
Therefore,

(15) (€58 — yeo)zy = (Ae oy S + €dfi — ye o p)vy.

From (8) we get that (e o p)vy = de * vy +veog vy € AUy + vVa.
Therefore, by (14), y(e o pv1) = Xe * vy + (AT + D)e o v;. From
(10), edjiv; = (Xex + Deog)vy. So (15) becomes: (€38 — yeo)zy =
A(ex — e x —(Te oy —e 01 S))vy,which is 0, by (5), because S and T
render x and * equivalent. This completes the proof that f is one-to-
one.
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f is onto: Let x be a factor set. Let X7 = Uy ® Vi, Xo = Us & Vs.
We make X = (X1, X2) a module by

(16) eo (u1,v1) = (eo1 u; + e * v1,€ 03 V1)

for all e € K2, u; € Uy, v1 € Vi. The following is an exact sequence of
modules.

(17) E:0—U™x2y g

where k, A are the natural injections, o, 7 the natural projections. We
now show that the factor set attached to E following the procedure
that led to (8) is the factor set . Let u,v be the natural injections
of V; into X; and V; into X, respectively. Then (e o u — veog)v; =
€o(0,v1)—(0,e02v;1). By (16), eo(0,v1) = (e * v1,e09v1). Therefore,
(e oy —veoy)vy = (e * v1,0) = A(e * v1). Hence, (8) is satisfied. We
have proved the essentials of the following theorem.

Theorem 1.1. There is a natural isomorphism between the vector
spaces Ext (V,U) and F(V,U)/Fo(V,U).

Corollary 1.2. Let E: 0 - U — X — V — 0 be an extension of
U by V. Then E is congruent to an extension, where X1 = Uy @& V1,
X2 = U2 D sz and

(18) eo (ug,v1) = (eog u; +e % vy,e o9 vy)

where * is some (V,U)-factor set.

Note. From now on, (a,b) is a fixed basis of K?2.

In Proposition 1.3 we shall be dealing with ®7_; Pp,; 1 for arbitrary
positive integers r, my, mo,... ,m,. It will be notationally convenient
to use the following module in place of P, ,_1. Let Vi be a vector
space with basis {v1j,... ,0m;—1;} (if mj = 1, set V; = 0). Let W,
have basis {wi;, waj,... ,Wn,;}. We make V' = (V1,W1) a module by
setting
ao Vij = Wiy

(19) ,
bovij:wiﬂ,j, Z:l,...,mj—]..
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The maps ¢; : (* = Viy1,5,%2=0,1,...,m; — 2, and
9023(i'—>wi+1, Jt=0,1,...,m; — 1,

establish an isomorphism (1, p2) between P, _; and V, i.e., ¢; :
Py, 1 — Vi, p2 : Py, — V3 are isomorphisms of vector spaces and

¢ = (¢1, ¢2) satisfies (3).

A module V = (Vi, Vz) is torsion-free if for each nonzero e in K? the
linear map

T, : Vi — Vs

(20) T.(vi) =eowy

is one-to-one. An extension of a torsion-free module by a torsion-free
module is also torsion-free.

Proposition 1.3. Let E be an extension of U by V. Suppose U is
P, _1®---® Py, _1 for some positive integers r,my,... ,m, and V is
torsion-free. Then E is congruent to an extension in which the middle
term is (U @ Vi, Uz @ Vo) with the system operation given by

ao (ug,v1) = (aoyuy,aovp)

bo (ur,v1) = (b o1 ui + Zgj(vl)ejab% U1>,

j=1

(21)

where {e;}7_, is the standard basis of K", and {; € Vi, the space of
linear functionals on Vi. (Note that Uy contains K".)

Proof. We may replace Pp,;_1 by the module in (19). So {e;}}_;
becomes {wy;}7_; and Ui, Uz have respective bases Uj_, U;’;’fl {vi;}
and U7_; Ui {wi;}

By Corollary 1.2, we may assume that the middle term X = (X1, X3)
of E is of the form (U; @ V1,U @ V2) and the system operation in X
is given by

ao (up,vy) = (aogu; +a * vy,a09vy)

bo (ul,vl) = (b01 u1 + b x vy,bog ’Ul),
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where « is some (V, U)-factor set. So

T m;

a x v = ZZfij(vl)wij
j=1li=1
r Mmj

bxuv = Zzgij(vl)wijv
j=1i=1

where f;;, g;; are in V{*. We shall define linear maps S : V; — U; and
T : Vo — U,, which will give rise to a factor set * equivalent to %, and
at the same time realize the conclusion of the proposition. For v; € V7,
vy € Vo, set

r mjfl
(22) Svi =Y hij(vi)vy;
j=1 i=1
(23) Tvz = Z Z kij(vz)wij
j=1i=1

where h;j, k;; are to be determined. By (5) and (19) we get a factor
set, x, equivalent to x if we put, for each vy € V7,

r mj r  mj
axvy = Z Z fij(v1)wi; + Z Z kij(a o2 v1)w;;
j=1i=1 j=11i=1
r mji—1
=2 2 h(wwi;
j=1 i=1
r  m; r Mmj
bxv, = Z Zgij (vl)wij + Z Z k‘ij (b (oD vl)wij
J=1i=1 j=1i=1
r mji—1

—Z Z hij(vl)wiJrl,j-

j=1 i=1

The plan now is to define h;; and k;; in terms of f;; and g;; to get
(21). The coefficient of wy,,; in a*vy is fr,;(v1) + km;(a o2 v1). Set

J

km;j(aogv1) = —fm,j(v1). Since V is torsion-free, a op v; = 0 implies



EXTENSIONS OF MODULES 1245

that v; = 0. Hence, ky,,; is well defined on a0y Vi = {aogv; : vy € Vi}.
Forall j=1,...,r,i=1,...,mj, set k;; = 0 on a vector space direct
complement of a oo V7 in V5.

If m; > 2, the coefficient of wy,;; in bxvy is g, ;(v1) +Em,;(b o2 v1)

—hum;1,j(v1). Set by 1(v1) = bm,j(v1) 4 Em;j(bog v1). In this way
we get that the coefficients of Wp,;j in both a%v; and bxv; are zero.
For i # m; we make the coefficient of w;; in a*v; zero by setting
kij(a oz v1) = —fij(v1) + hij(v1).

For i # 1, we make the coefficient of w;; in b%xv; zero by setting
hi—1,;(v1) = gij(v1) + kij(b oz v1). We now have that axv; = 0 for all
v1 in V; while bxv; = Z;Zl(glj (v1) + k1j(bogv1))wij. The proposition
now follows with £;(v1) = g1j(v1) + k1;(b o2 v1). O

Corollary 1.4. Let U and V be as in Proposition 1.3.
(a) There is an onto linear map from rV* =V @--- @V (r copies)
to Ext(V,U).

(b) dimExt(V,U) < rdim V{*, where dim is dimension as a K -vector
space.

Proof. (a). Given (¢;)7_; in rV}* we make X = (X1, X») a module by
using (21) to define the system operation. This makes X an extension
of U by V. In this way we get a map, f, from rV}* to Ext(V,U). By
Theorem 1.1, f is a linear surjective map. Part (b) follows from Part

(a). o

Given (¢;)7_, and (£;)5_, in 7V} the next proposition tells us when
the extensions F and E that they give are congruent. By Theorem 1.1,
Proposition 1.3 and (5), E is congruent to F if and only if there exist
linear maps S : Vi — Uy, T : Vo — Us such that, for every vy in Vi, we
have

r

(24) Tb Og V1 — b o1 S’Ul = Z(ZJ(W) - E] (vl))wlj
j=1
(25) Taoy vy —ao; Sv; =0.
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Using (19) and the expressions for S and T from (22) and (23), (24)
and (25) respectively become

r r mJ—
szw boyv)wi; =Y D hij(v)wit
(26) j=1i=1 j=1 =1
= Z(Zj(vl) - Ej(vl))wlj
j=1
and
T r mj—1
(27) szm (@ozvi)wig — Y D hijvr)wi; =0.
j=li=1 j=1 i=1

Equating coefficients of w;; in (26) and (27) leads to

(28) k1j(boz v1) = €;(v1) — £;(v1),

(29) kiy1,j(boyv1) = hij(v), i=1,...,mj_1,
(30) kij(a oz v1) = hij(v1), i=1,...,mj_1,
(31) o, (@ 02 1) = 0.

Recalling the definition of the system operation in the dual module
V* = (V5, Vi), see (6), we have proved the following proposition.

Proposition 1.5. Suppose E and E are two extensions as in

Proposition 1.3, given by (¢;)5_,, ((;)j—,. Then E is congruent to E if

and only if, for each j = 1,...,r, V5 contains kyj,... ,km;; and V{*
contains hyj, ... ,hm; 1 such that, m V>, bogkyj =0 —{j,a00k;; =
b02 k‘i+1,j = hi]',i: 1,... My — 1,(1,02 kmjj =0.

Corollary 1.6. Suppose that in V = (V1,Va),a 09 Vi = Va. Then E
is congruent to E if and only if {; ={; forj=1,...,r
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Proof. If aoy Vi = V3, then from (31) we get that &, ; is the zero map
on V. From (29) and (30) we get that kij, j =1,... 7, i=1,... ,mj,
are zero maps. From (28) we get that ¢; = ¢;. u]

Remark 1.7. In Proposition 1.3 it was not necessary that V be torsion-
free, only that the linear map T, : Vi — Va, Ty (v1) = a 02 v1, be one-
to-one. Similarly, if T}, is one-to-one, the system operation in V' can be
simplified to

'
ao (uy,v) = <a 01 U1 + ij(vl)wlj,a 02 Ul)
i=1

(32)

bo (u1,v1) = (boy u,b oz v1).

Both forms of Proposition 1.3, (21) and (32), are needed in the study
of infinite-dimensional modules. In this paper we use only (21).

Examples 1.8. Let M be a K[¢]-module. Then M = (M, M) is
made a Kronecker module by setting, for all z € M,

(33) aoxr =, box = (.

In particular, a o M = M. So, with U as in Proposition 1.3 and M
infinite-dimensional, the set of inequivalent extensions of U by M has
the same cardinality as M™*, the vector space of linear functionals on
M. An important example of M is R = (K (¢), K(¢)), where K(¢) is
the K[¢]-module of rational functions. It follows from Corollary 1.6,
Lemma 1 and Theorem 2 in Chapter IX of [9] that Ext(R,U) has
dimension 24 £ both as a K-vector space and a K (¢)-vector space,
as stated in [12, Proposition 1.7].

2. Constructing indecomposable extensions. In [7], Lemma
88.3 on rigid systems of groups is crucial in proving that various groups
are indecomposable. If we were working inside the Kronecker module
R = (K(¢), K(¢)) one could imitate Section 88 of [7] to construct inde-
composable submodules of R from rigid systems of infinite-dimensional
submodules of R, see [15]. (These indecomposable modules in [15] do
not come from KI[(]-modules.) In [15] every element was required to
have infinitely many divisors. It can be shown that the elements in
the submodule U in Proposition 1.3 do not have this property. This
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explains why this requirement is assumed in a restricted form in The-
orem 2.1. There are several references on the use of linear functionals
to construct indecomposable Kronecker modules, e.g., [13] and [14].
The advantage of Theorem 2.1 over the others is that one also obtains
direct information on endomorphism rings. We now give the details.

As in Section 1 (a,b) is a fixed basis of K2. Let X = (X1, X3) be a

module. An element zo in X5 is said to be divisible in X by b — fa if
for some x1 in X; we have that

(34) (b—0a) oxy = xo.

Let H be a nonempty subset of K. To each § € H we attach
either co or a positive integer denoted in both cases by h(f). And
to {h(0) : 6 € H} we attach the following submodule V of R. Let V;
have basis

(35) {1/(¢-6)t:0€ HO<t<h(8)+1},
and let V5 have basis
(36) {1/(¢—-6)":60€ H, 0<t<h(h)+1}.

Restricting the system operation in R, given in (33), to Vi makes
V = (V4,V2) a submodule of R. We shall denote it by V},. Its domain
space is V7 and its range space is Va.

Theorem 2.1. Let X be an extension of U = Py, 1 ®---® Py, 1
by Vi, with the system operation given as in (21). If every element
(uz,v2), v2 # 0, is divisible by b — Oa for infinitely many 6 in K, then
the endomorphism ring of X s an integral domain. In particular, X
s 1ndecomposable.

Proof. Step 1. Let (p,v) be an endomorphism of X. Then (p, )
is the zero map if ¢¥(0,v2) = 0 for all vo in Va: Since a o2 v = v, we
get from (3) and (21) that (0,v2) = ¢ (a o (0,v2)) = a o ¢(0,vs2). So,
ao¢(0,v2) = 0. As X is torsion-free this implies that ¢(0,v2) = 0
for all vg in V3. For the rest of the proof of Step 1 we use 1(0,v2) =
©(0,v2) = 0 for all vy in V3. We shall use the notation in the proof of
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Proposition 1.3. So, Pp,;_1 is given as in (19). By hypothesis, (wy;,1)
is divisible by b — fa for infinitely many 6 in K. Choosing one such 6,
we have, for some u; in Uy, v; € K({) that

(37) (b —ba) o (ur,v1) = (wiy, 1).

For appropriate scalars a;j, u1 = > ,_, Z;’;jl_l hirvi. By (19), (21),
and (33), (b—fa)o(u1,v1) = (Yhoy T4 @inwisre—0 35y 7
aikwik—}-zzzl L (v1)wik, ((—6)vy). Substituting this last expression in
(37) and equating coefficients of w;y, leads to u; = 0 and v; = 1/(¢—6).

Now, by (37) and (3), ¢(wi;,1) = ((b - ba) o (0,1/(¢ = 6)))
(b —0a) o v(0,1(¢ — 0)). By the last paragraph, ¢(0,1/(¢ — 6))
Hence, 9¥(w1;,1) = 0. Therefore, ¥(w1;,0) = 0 because 1(0,1) =
by hypothesis. Again by (3) and (21), a o ¢(v;5,0) = ¥(a o (vi},0))
¥(w;j,0). Since X is torsion-free, ¥(w;j,0) = 0 implies that ¢(v;;,0) =
0. From 9(bo (vi5,0)) = ¥(wit1,5,0) = bo p(vs,0), we deduce that
¢(vi;,0) = 0 implies that ¢(w;11,j,0) = 0. Therefore, 1(wy;,0) = 0
implies that (p,1) vanishes on P, _1 @ (0,0) for j = 1,...,r. This
completes the proof of the assertion in Step 1.

I
e e

Let = be a nonzero element of X5, the range space of X. Let @ be
an element of K with z divisible in X by b —fa. So (b—fa)oxy; =z
for some element x1; in the domain space X; of X. We want to
define the height of = at 6, h, (). To that end, set © = z12,a 0 ;1 =
Tit1,2, (b —0a) o ;1 = mija. Set hy(0) = t if ¢ is the largest positive
integer such that aox;; = 11,2, (b—6a)ox; = x42,i=1,...,t, and
Zy41,2 is not divisible by b—6a. If there is no such ¢, put h,(8) = co. To
define h,(00), * = 212, let a o ;1 = @42, box;1 = xi41,2. Then h,(00)
is the largest positive integer ¢ such that bo x;1 = x;11,2, a0 x5 = T42,
i =1,...,t, and for no element z; in X; is a o x; = w1 . If there
is no such ¢, put h;(c0) = oco. In what follows it is convenient to
recognize the dependence of z;;, 7 = 1,2, on 6. So we shall replace z;;
by xg¢;;. For each 0,912 = x12 = x. Since X is torsion-free, the xp;;’s
are uniquely determined.

With x = x5 divisible by b — fa, let

Xo1 = [{zoin : 1 < i < hy(6) + 1},
Xg2 = [{wgig 1< < hw(e) + 2}]
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The restriction of the system operation in X to Xjp; makes Xy, =
(Xo1, Xp2) a submodule of X. Let X, = ZGEKU{OO}‘ We now define a
submodule of R isomorphic to X,. Let

Ver=[{1/(C—0)":0<t<h,(0)+1;0 € K}]
+[{¢": 0 <t < ha(o0)}],

Voo = [{1/(C—0)':0<t < hy(0)+1,0 € K}]
+[{¢":0 <t < hy(co)+1}].

Restricting the system operation in R, given in (33), to V1 we see that
Ve = (Vz1, Vo) is a submodule of R. The maps ¢; : X1 — V1, given
by ¢1(zgi1) = (( — 0)7%, d1(Tocir) = ¢“7F, and @3 : Xao — Vig, given
by ¢a(zi2) = ((—0)17%, ¢p2(Tooiz) = C?, yield an isomorphism between
X, and V,. It follows from [4, Thoerem 3.3] that ¢; and ¢ are well
defined.

Step 2. Properties of X,. The properties below can all be deduced
from [4] and [13]. In fact, we duplicate some arguments there in several
places.

(a). X/X, is torsion-free: Let X' be the smallest submodule of X
containing X, with the property that X/X' is torsion-free. In the
terminology of [4, Section 2], X' is a torsion-closed submodule of X of
rank one. By [4, Theorem 3.3], X' = X,.

(b). X, = Xy for every nonzero element f in the range space of X,:
By (a), X; and X are rank one torsion-closed submodules of X. Since
X.NX 0 one readily shows that X, = X, see, e.g., |13, Lemma

f Yy I ’ g, )
4.1].

(c). Let f and = be two nonzero elements in the range space of
X. Then Xy N X, = 0 unless Xy = X,: Let X; = (X1, Xy2),
Xe = (Xa1, Xz2). If 0 # 2’ € X;1 N Xyq, then a o2’ = w is a nonzero
element in XN X, because X is torsion-free. By (b), X = X,, = X,.

(d). If ¥(w) = 0 for any nonzero element w in X5, then (p, )X, =
0: By (b), X, = X,. The argument at the end of Step 1 and the
definition of X,, give that ¢(w) = 0 implies that (¢, %)X, = 0.

(e). The endomorphism ring of X, End(X,) is an integral domain.
We prove this for V.. Suppose (1) = f € K(¢). Then by (3) and (33)
we get that ¥(1/(¢—0)") = f/(C—0)" = ¢(1/(¢—6)") for all possible #
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and t. Hence, (p,%) = (f, f), multiplication by f in both the domain
and range spaces of V.

Step 3. Let (p,%) € End(X). Then (p, ) restricts to an element in
End(X,) for all z = (0, v2), v # O:

We shall need the following partial fraction expansions. Let n be any
positive integer, § and 1 two distinct elements in K. Then one has

(n _ n— n— n— 6"
(38) 4_9_4 Y0P 40 1+C—9'
1 _ =07 =07
(C=0C¢-m -m" (-t
m—6" (-6
+ = + i

(39)

If ¥(x) = 0, then by (d), (p,%)X, = 0. We may then suppose that
¥(z) # 0. Since (p, ) is a homomorphism it follows from (3) and the
definition of X, that we have

We claim that ¢(z) = (uq, f), f # 0. Suppose f = 0 and (ue,0) is
divisible by b — #a. Then for some (uy,v1), (b —0a) o (u1,v1) = (ug,0).
Then by (21), v1(¢ —0) = 0. Hence, vy; = 0. Since U is finite-
dimensional and torsion-free it follows that (ug,0) is divisible by b — fa
for only finitely many 6 in K. However, by hypothesis, z = (0, v2),
ve # 0 is divisible by b—0a for infinitely many 6 in K, i.e., h,(6) > 0 for
infinitely many 6 in K. So, f = 0 contradicts (40). So, ¥(x) = (ue, f),
f#0.

Let K, = {# € KU{oo} : z is divisible by b—6fa}. By hypothesis, K,
is infinite. Using (3) and (21), we see that the range space of (¢, ¥)X,
is contained in the vector space C' = [{f/(¢ —0)" : 0 < i < h, () + 1,
6 € Ky} +Us. (If § = 0o,(¢ — ) % is ¢*.) Moreover, it is of finite
codimension in C.

For v in K U {o0}, let O,(g) denote the order of the pole of g at v.
Recall that = (0,v2), 0 # v2 € K({), ¥(x) = (u2, f), f # 0. Let



1252 U. FIXMAN AND F. OKOH

Sr={1/(¢-v) :vapoleof f,0 <t <O,(f)}. Sy, isdefined similarly.
Let D=[{1/(¢—0)":0 € K, 0 <4< hy(0)+ 1} + [St] + [Su,] + Us.
From (38) and (39) we deduce that C' is of finite codimension in D.
Therefore, the range space of (¢, )X, is of finite codimension in D.
The same holds for X,. Hence, Range(X,)N Range(p,¥)X, # 0
because D is infinite-dimensional. By (41) and Step 2(c), X = Xy (4)-
So, X 2 (¢, )X, by (41).

Step 4. End(X) is commutative. Let (p, ), (o, 7) be two elements
in End(X). For every x = (0,v2), with va # 0, step 3 tells us that
(p, ), (o, T) restrict to elements of End(X,), which is commutative by
Step 2(e). Hence, (79 — ¢¥7)(0,v3) = 0. By Step 1, this implies that
(0:7)(p, %) = (¢, ¥)(o,7) = 0.

Step 5. End(X) is a domain. Let (p,%) and (o,7) be two nonzero
elements in End(X). By Step 1, ¢(0, f) # 0 and 7(0,g) # 0 for some
f,g in K(¢). We want to show that ¢7 is not the zero map. By
Step 3, (¢, %) and (o, ) restrict to elements of End(Xy) and End(X,),
where f = (0,f), g = (0,9). If 7(f) # 0 or ¢(g) # 0, then (p,¢)
and (o, ) restrict to nonzero elements in End(X¢) or End(X,) and we
would be done by Step 2(e). Suppose 7(f) = 0 and ¥(g) = 0; then
T(f+9)=7(9) #0, ¥(f+g9) =¥(f) #0. So, (¢,v) and (o, T) restrict
to nonzero maps in X(,4). By Step 2(e) we are done with Step 5 and
Theorem 2.1 is proved. ]

Remark 2.2. Since Steps 4 and 5 are consequences of Steps 1 to 3
without further recourse to the nature of X, the conclusion of Theorem
2.1 is valid for any submodule of X for which Steps 1 to 3 can be proved.

The module X given as in (21) begets a submodule of itself and a
submodule of V in the following way: let Xy = ﬂ;leer G CViCXy
and Xy = Vo C Xo. For vy in Xy, we have from (21) that
a0 (0,01) = (0,a03 v1) € Vs and bo (0, 1) = (327_, €5(v1)eg boz vy) =
(0,b 02 v1) € V4. So the system operations in X and V agree when
restricted to Xy and they take Xy to Xyo. Therefore, Xy = (X1, Xo2)
is both a submodule of X and a submodule of V. Let (¢, %) € End(X,).
If ©(0,v1) # 0, then acp(0,v1) = 9 (ao(0,v1)) # 0 because X is torsion-
free. Hence, (¢,%) = 0 if and only if » = 0. This is the analogue of
Step 1 in the proof of Theorem 2.1. If X satisfies the hypotheses of
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Theorem 2.1, then with X replaced by X, one gets the proofs of all
the other steps in the proof of Theorem 2.1. Therefore, End(X}) is an
integral domain. The above discussion is summarized in Corollary 2.3.

Corollary 2.3. Let X be an extension given as in (21) of Proposition
1.3. Then X, = (Nj_ Ker{;,V2) is a submodule of both X and V.
Moreover, End(X,) is an integral domain whenever X satisfies the
hypotheses of Theorem 2.1.

Remark 2.4. The endomorphisms of X in Theorem 2.1 and X; in
Corollary 2.3 are in fact multiplications (a,a),a € K. We forego
the details in favor of giving examples of extensions that satisfy the
hypotheses of Theorem 2.1.

For r a positive integer let X" denote the set of r-tuples of elements
of X. In particular, K({)" is the set of r-tuples of rational functions.
Since K is infinite, Card K = Card K (¢) = Card K(¢)". Let H be any
subset of K with Card H = Card K. We write H as a disjoint union of
subsets indexed by K ({)", where each subset has cardinality Card H:

(42) H= |J Hf, cardH;=cardH.
fFeK(Qr
Let g;, j =1,...,r be functions from H to K. These yield a function
g:H — K",

where g(0,...,0) = (g1(8),...,9-(9))

and g(z) = (0,...,0) for all other elements

zin H".

Let f = (f1,...,fr) € K(¢)" and let # € K, 6 not a pole of any f;,
j=1,...,r. Set f(0,...,0) = (f1(0),...,fr(0)). By setting f(z) =0
on all other elements of H" we get a function, also denoted by f, from
H" to K. We say that f agrees with g in (43) at 6 € H if f(6,...,0)
is defined and f;(6) = g;(0),j=1,...,r.

(43)

Lemma 2.5. Let H be a subset of K with card H = card K. Then
there are functions g; : H — K, j =1,...,r, such that g: H" — K"



1254 U. FIXMAN AND F. OKOH

given as in (43) agrees with every element f in K({)" on an infinite

subset of H.

Proof. Express H as in (42). For 6 € Hy, f = (f1,..., f+), 8 not a
pole of any f;, j = 1,...,r, set g;(8) = f;(0). Set g;(#) = 0 on all
other elements 6 in Hy. Now, use these g;’s to define g : H" — K" as
n (43). Since Hy is infinite and the set of poles of f;, j =1,...,r, is
finite, g has the required property. m]

Let H be as in Lemma 2.5. To each element § € H we attach co or a
positive integer denoted in both cases by h(#). And to {h(6):6 € H}
we attach the submodule V},, of R defined in (35) and (36). Let V4 be
the domain space of V3. We define ¢; in V}* by letting £;(1/({ — 0)) =
g;(6), g; as in Lemma 2.5. Set ¢;(x) = 0 on all other elements x in
the basis of V4 given in (35). With U = P,,, 1 ® - ® Pp,,—1 as in
Proposition 1.3, we use the above ¢;’s in (21) with V' = V}, to obtain
an extension, X of U by V.

We claim that X satisfies the hypotheses of Theorem 2.1. To check
that (ug,v2), va # 0, is divisible in X by b — fa for infinitely many 6
in K we revert to the polynomial form of U. Denote elements of U; or
U by p = (p1,... ,pr). We recall that a o1 p; = pj, bo1p; = (p;.

Lemma 2.6. Let X be an extension of U by V},. An element (p,v2)
in Xo is divisible by b — Oa if and only if
(44) vy /(¢ —0) is in Vy '
and C;j(v2/(¢ —0)) =p;(6), ji=1,...,r

Proof. By (21), (b — fa) o (¢,v) = (p,v2) if and only if (((¢ —

0a, - - ,(gfa)qr)+Z§:1 li(v)ej, ((—6)v) = ((p1,.-. ,pr), v2); where
q=1(q,...,¢) € U,v € V5. Therefore,

(€= 0)g; +£;(v) = p;

and

(= 0)v=vs.
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Hence, ¢;(v) = p;(#) and v = v2/({ — ) as required. O

Example 2.7. Let v; = 1/(¢ —n)™. By (39), for 6 # n,

v =07 =6 0= =0

— )*
¢=0 (C—m  (C—m)n? ¢—n ¢—0
With ¢; and p; as in Lemma 2.6, ¢;(v2/({ — 6)) = p;(#) if and only if

1 1 \" 1 1 \"!
/. _ /.
TIW(C??) (770)”<Cn> *

Sl ((in> £ (<i9> =20

if and only if

5(e)- i(n_e)n{ﬁlﬂej () -7 <<1n>n_1+
i (0—19)”Zj (Cin> —p,-(e)}.

With z as an indeterminate we get from (45) that ¢;(1/(¢—6)) = f;(6),
where f;(z) is the rational function

w i(nZ)n{n%/j <ﬁ>" (n—IZ)er <Cin>n1+m

* (n—IZ)"ej <Cin> pj(z)}'

If v = (™, we use (38) to obtain that the resulting rational function
fi(2) is (1/2"){ps(2) — £;(C" ™) — 24;(¢"7%) — -+ — 2" 7H;(1)} with
6i(1/(¢—0)) = f;(6).

For the rest of the verification that (ug,vs),ve # 0 is divisible in X
by b — 6a for infinitely many 6 in K, we shall restrict to 8 outside the
finite set of zeros and poles of vs.

(n
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If 0 € H, then, by (35) and (36), ((—6) ! € V1NVa. Since any v in Va
is a linear combination of ((—n)~™ for various n’s in H and nonnegative
integers n, it follows again from (35), (36) and (38), (39) that if v, € V5
and 0 € H, then v2(¢ — 0)~! € V4. The computations in Example 2.7
show that ¢;(v2(¢ — 0)™') = p;(0) if and only if £;(¢ — 0)~! = f;(0)
for a rational function f;(z) which is a linear combination of the
functions in (46) and the line after (46) in Example 2.7. By choice,
0;(¢ —0)"1 = g;(0), where the g,’s satisfy Lemma 2.5. Therefore,
for infinitely many § € H we have £;(( — 6)~' = g;(0) = f;(8). So
from Example 2.7, for infinitely many 6 € H, £;(v2(¢ — 0)™1) = p;(6),
va(¢ — 0)"! € V4. By Lemma 2.6 the element (uz,vs), va # 0, is
divisible by b — fa for infinitely many 6 in H C K, as claimed. This
completes the proof of the following proposition.

Proposition 2.8. Let H be a subset of K with card H = card K.
There is a submodule Vi, of R and an extension X of U = Pp,—1 @
-+ ® Pp,—1 by Vi, such that each element (ug,v2), ve # 0, is divisible
by b — Oa for infinitely many 6 in H.

Remark 2.9. In order to include R among the modules Vy in Theorem
2.1 and the subsequent discussions we would take H C KU{oco}. In case
oo € H, the bases (35) and (36) would be supplemented respectively
with {¢*: 0 <t < h(o0)} and {¢* : 0 < t < h(c0) + 1}, where h(oc0) is

00 or a positive integer.

Proposition 2.8 and the fact that K = Ugc i Hy (disjoint union) with
card H, = card K for each & € K enables one to construct card K
isomorphism classes of modules that satisfy the hypotheses of Theorem
2.1. In fact, if k1 # ko the modules X, , Xy, corresponding to Hy,
and Hy, in Proposition 2.8 have the property that the vector space of
module homomorphisms from Xy, to Xj,, Hom(Xy,, X,) is 0. This
can be seen by observing that the elements of the form (us, f), f # 0,
and ¥ (uz, f), (¢,v) in Hom(Xy,, Xk,) have nonzero height in disjoint
sets. This forces ¥(uz, f) to be zero.

Remarks 2.10(a). The hypothesis in Theorem 2.1 that (uz,vs), va # 0
is divisible by b — fa for infinitely many 6 in K implies the following



EXTENSIONS OF MODULES 1257

property: Let X' = (X7, X}) be the smallest submodule of X such that
(ug,v2) € X} and X/X' is torsion-free. Then X' is infinite-dimensional.

There is a class of indecomposable extensions X = (Xi,X3) of
U=P,,-19:-®P,,_1 by V} characterized by the opposite property:
Let F be any finite subset of X with card F < r. Let X' = (X1, X3)
be the smallest submodule of X such that FF C X} and X/X' is
torsion-free. Then X' is finite-dimensional. It follows that X is an
extension of a finite-dimensional torsion-free module by V}, for some
height function, h. Therefore, X is in the class of modules considered
in Proposition 1.3. The module X is said to be purely simple. Given
the easy characterization of torsion-free purely simple K [(]-modules,
see, e.g., [7, Section 85], torsion-free purely simple Kronecker modules
are tantalizing. We refer to [12-14] for some of their properties. The
divisibility hypothesis in Theorem 2.1 also implies that every finite-
dimensional torsion-closed submodule of X is a submodule of U.

Acknowledgment. We thank the referee for his careful reading of
the paper and for his suggestions which we found very helpful.
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