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LINEAR INDEPENDENCE OF THE TRANSLATES
OF AN EXPONENTIAL BOX SPLINE

AMOS RON

ABSTRACT. Complex exponential box splines are intro-
duced and the space of entire functions spanned by their in-
teger translates is investigated. The information obtained al-
lows us to establish a necessary and sufficient condition for
local linear independence of the integer translates of a com-
plex exponential box spline. It is interesting to note that the
condition known for polynomial box splines is necessary here
but not sufficient.

1. Introduction. Let ¢ be a compactly supported distribution in
D' := D'(R?®) the space of all Schwartz’s s-dimensional distributions,
and let Z; be {a € R* | h~lax € Z°}, where h is a fixed positive scaling
parameter. For ¢ € C%r denote

(1.1) prne= Y ¢(-—a)a

ez

Let Sy (¢) be the range of ¢x,. It is well known that significant prop-
erties of Sy (¢) may be characterized by m,(¢): the set of polynomials
in Sy (¢). For s = 1 this observation was already made by Schoenberg
[20]. In [22] the authors considered the multivariate situation and es-
tablished conditions usually referred to as “Strang and Fix conditions”
which characterize certain approximation properties of S;(¢) in terms
of 7,(¢) and ¢: the Fourier transform of ¢. The introduction of the
box splines [2, 3] renewed the interest in this area and since then many
results concerning ¢, (¢) and Sp(¢) have been established. We se-
lected some of them in the references [3, 8, 9, 11, 4, 6, 7, 1]. See
also [10] and the references within.

Our interest here concerns the case when ¢ is an exponential box spline
(EB-spline). To recall its definition from [18], denote as usual, by -, | |,
and ( ), scalar product, cardinality and linear hull, respectively, and let
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332 A. RON

v be a pair (x,A,) where A\, € C and x, € Z°\{0}. The EB-spline
based on a single element, By (), is a distribution which can be defined
via its Fourier transform by

(1.2) Bi(7)(x) = /0 eP Xy Xt g

When T contains |I'| elements of the above form, the EB-spline By (T')
is defined by

(1.3) By(T) = [ Bn(),

yer

which means that B (T) is a convolution of By(y), vy € I'. A set I' as
above is termed a defining set. In case (Xp = {xy | v € T'}) = R,
B, (T") defines a function Bp(I' | x). We review in Section 2 some
relevant properties of By, (I') from [18]. In particular, revealing the local
structure of By, (T'|x), we show that usually 7, (T') := 7, (B, (T")) = {0},
and that the right space to be examined instead is Hy(T'): the space of
all entire functions contained in S;,(T") := Sy (Bp(T)). It is known, [18],
that every function in Hp,(T") is a finite linear combination of functions
of the form f(x) = eo'xp(x), where 6 € C® and p(x) € , the space of
all polynomials.

Given f(x) = eo'xp(x), we derive in Section 3 a formula for ¢ x f,
which is obtained by an elementary application of Fourier transform
in Gelfand—Shilov’s sense and is valid for all distributions of compact
support. This formula is used in Section 4 for the investigation of
H;,(T). The information obtained, combined with a fundamental result
from [11], allows us to establish a necessary and sufficient condition for
the local linear independence of translates of EB-splines. In Section
5 we follow [6, 7] and [1] and derive two recurrence formulae for the
solution g of the equation

0-x

(1.4) Bp(L) *4 glz: = e’ p(x), 0cC’ p(x)em,

i.e., to Marsden’s identity for EB-splines. The results of Section 3 are
applied again in Section 6 to connect between certain results from [3]
and [8].
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Finally, we would like to mention several other investigations of
exponential box splines completed after this paper was submitted [19,
13, 5]. Specifically, the question of linear independence of the integer
translates of an exponential box spline was solved in [13] with the aid
of Poisson’s summation formula and in [5] by a direct application of
the relevant difference and differential operators.

2. Some preliminaries on EB-splines. We select here some
relevant results from [18] concerning EB-splines. It should be empha-
sized that the definition of Bp(I") in [18] was restricted to the case
Ar = {\, | v € I'} C R. Nevertheless, the results stated here, as well
as their proofs, remain unchanged under the extension Ar C C. The
case Ar C R will be referred to later as real EB-splines.

Let T' be a defining set as in the introduction. The set Xr = {x, |
v € I'} is treated here as a set of vectors as well as a matrix with s
rows and |I'| columns. When Ar = 0, B,(T") is the usual polynomial
box spline (PB-spline). Therefore, to each set of vectors X C Z*\{0}
one can associate A = 0 to get a PB-spline denoted by Bj(X). We also
use (I') := (X7).

Proposition 2.1 [18, Corollary 2.2]. Assumey € ' and (I'\7y) = R?,
then

h
(2.1) Bh(I‘|x):/0 eMiBy, (D\y | x — txy) dt.

The above proposition is valid (in the distributional sense) even for the
case (I'\7y) # R*®.

Proposition 2.2 [18, Proposition 2.1]. Bp(T') is a compactly sup-
ported distribution of order 0. Its support is contained in the image of
[0, h) T under Xr.

When By, (T") is a real EB-spline (and in particular PB-spline), B,(T")
is positive and its support equals Xrp([0,h]I'!). Later, we give an
example where supp By, (T') # Xr([0, h]™).
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An important feature of By, (T') is the set of its nodes. In case (I') = R?
and @ € C® denote first

(2.2) Fg={yeTl|x,-0=X\}

Then the set of nodes O(T") is defined as follows

(2.3) o) ={0cC”|(I'y) =R}

When |©(T)| = 1, T' is termed single-noded. Clearly, if B, (T') is a

PB-spline, then 0 is its only node. We also have

Proposition 2.3 [18, Theorem 3.2]. T' is single noded if and only if
B,(T) = ee'th(Xp) where 0 is the unique node of O(T') and Bp(Xr)
is the PB-spline based on the directions set Xr.

In the following we use the notations Xg := Xr 0 where I'g is as in
(2.2). So, for 8 € O(T"), Proposition 2.3 implies

(2.4) Bu(Tg) = €2 By(Xy).

From [18, Corollary 2.5] we know that {B,(I'|- —a) | a € Zj} are
infinitely differentiable in an open and dense set of R®. Every connected
component of this set is termed a I' — h cell.

Using recurrence relations for EB-splines one has

Proposition 2.4 [18, Corollary 4.3]. Assume (I') = R?; then the
restriction of By(T' | x) to each T — h cell belongs to

(2.5) H(T) := ({f(x) € Hu(Tg) | 6 € O(I)}).

In view of (2.4) we also have

(2.6) H(T) = ({P*p(x) | 6 € O(T), p(x) € mi(Xg)}).

The subscript h was omitted from H(T') since it is well known that
mh(Xg) (which equals Hy(Xg)) is independent of h. We will see later
that for EB-splines Hj, (T") is sometimes dependent on h.
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Proposition 2.5 [18, Corollary 5.1]. Assume (I') = R® and let
0 € ©(T). Then

(2.7) Bi(T) 1, 9|z = h=* By (T | —i)e?

3. Invariant subspaces of S,(¢) under convolution. In this
section it is shown that certain subspaces of Sy, (¢) are preserved when
convolving ¢ with a compactly supported distribution.

We use here some standard multivariate notations. For a,v € R?,

a < vmeans o;j < vj, j =1,...,s whereas a < v means that at
least one of the inequalities above is strict. Z% := {a € Z° | a > 0}.
For a,v € Z% and a > v denote |a| = a1 + -+ + a5, a! = a1l ;!

and ($) = a!/(v!(a — v)!). Otherwise |a| = a! = () = 0. The

Bz;f?‘.fa_gz?sf(-) is denoted by f(®)(-) or sometimes

Df and x® := z% ... 2% Finally, D’ denotes the range of D' under
the Fourier transform and 4(+) is the Dirac distribution.

partial derivative

The following proposition is a slight modification of [1, Proposition
2.1].

Proposition 3.1. If f(x) = ee"‘p(x) € Su(¢), where 8 € C* and
p(x) € m, then for every o € Z5. we have eo'xp(a)(x) € Sn(9).

Proof. The case @ = 0 was established in [1]. Applying this result to
d(x) = e Oxgp(x ) we find é € C%#, such that ¢ %), é = p(® (x). Thus,
denoting cg=e 'Bcﬂ, B € Z;, one has

¢ *xpc= ee'x(gg xp, C) = eo'xp(a)(x). O

Theorem 3.1. Let ¢1,¢2 be compactly supported distributions.
Assume that there exists ¢ € C%h such that ¢y *p ¢ = Oxxex for
some 8 € C°, a € Z5.. Then for ¢ := ¢y * ¢2,

(3.1)

¢*hce0x[¢72 x& 4+ > ( > )XV ) (—ig)xY

v<o
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Proof. The fact that ¢o is compactly supported implies that (]32 is a
multiplier in D’. Therefore, since convolution commutes with the shift
operator, we have, by Leibniz’s rule,

(64 " = [(92 % 1) wn ] = g2 5 (61 % )] = [z % ¥ *x)"
=i ¥ga()' N (- +i6)
= i1% §y(—i0)6 ) (- +i0)
_pled ) gl iy (L 4
+ ) (i) <V>¢2 (—i0)6¥) (- + i0).
v<a
Hence (3.1) is obtained by inversion. O
Remark 3.1. In order to apply Fourier transform to I xx® e
used its Gelfand—Shilov’s extension [14]; nevertheless, the proof is

based merely on elementary calculus with distributions and Fourier
transform.

Remark 3.2. The conditions “¢2 is compactly supported” and “¢A72
is a multiplier” are actually equivalent. To see it recall that QZ/SQ is a
multiplier in D' if and only if it is an entire function of exponential type
which is slowly growing on R®. Therefore, the Paley—Wiener—Schwartz
Theorem (see, e.g., [14, p. 162]) establishes this equivalence.

Substituting & = 0 in (3.1) one obtains

Corollary 3.1. Let ¢, ¢1, ¢2 be as in Theorem 3.1. Assume ¢y xpc =
0 where 0 € C?, ¢ € C%:; then

(3.2) ¢ %1, ¢ = o(—i0)ed .

This last result generalizes the main assertion of [18, Theorem 5.1].
See also Proposition 2.5 here.

Formula (3.1) can be written as

N _N\vl
o1ne=O[bal o+ 30 EIA0 (o) 0¥ x|
Uv>0 ’
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thus we have

Corollary 3.2. Let ¢, 01,02 be as in Theorem 3.1. Assume that
¢1 *p C = eo'xp(x) where @ € C*, p(x) € m and ¢ € CZh; then

. )Wy,
33) g e=cI*|da-iop + X CO (i )|

From Proposition 3.1 and Corollary 3.2 we conclude

Corollary 3.3. Let ¢, 1,02 be as in Theorem 3.1. Assume that
ee"‘p(x) € Si(¢1) and ¢2(—10) # 0. Then ee"‘p(x) € Si(9).-

Proof. By induction on deg p(x). The case p(x) = 0 is trivial. Assume
degp(x) > 0. Since eo'xp(x) € Sp(41), there exists ¢ € CZ%r such that
¢1 *p C = ea'xp(x). Therefore (3.3) implies
(3.4)

. )l v
¥ *p(x) = 3y (~i6) [¢ o=@ 3 EOZH0 i)
V>0 :

By Proposition 3.1 ee'xp('/)(x) € Sy (¢1) for every v < a'. Thus the
induction hypothesis gives eg'xp(y) (x) € Sp(¢), v > 0, and so from
(3.4) we conclude ee'xp(x) € Si(9). o

Denote now by 7. the space of all polynomials of degree < k. Let
¢1,¢2 be compactly supported functions with ¢;(0) = ¢2(0) = 1
and assume 7w C mh(1), < C mh(p2). Then, using Strang-Fix
conditions it can be proved that m<p4; C 7h(P1 * ¢2) [6, 1]. For I =0
it follows that

(3.5) Tk C Th(d1) = Tk C Th(d1 * d2).

The extension of (3.5) to compactly supported distributions is straight-
forward and can also be used to derive Corollary 3.3. Note also that if
¢2 is a compactly supported integrable function, (3.5) can be obtained
by a straightforward manipulation of [;,(x — t)%@(t) dt.
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4. Translates of exponential box splines. Here, choosing ¢ to
be the EB-spline Bp(T'), we utilize the results of the previous section
in order to characterize Hy(T"). This allows us to settle completely the
question of linear independence for the translates of By (T).

For every complex valued f : R® and compactly supported ¢ € D',
let

(4.1) ¢ xp, = ¢ *n f|z;-

Let I' be a defining set. Unless stated otherwise we always assume
(T') = R®. Define

(4.2) H,(T) = {f € C(R®) | Bi(T) #}, f is entire}.

Proposition 4.1.

(4.3) H;,(T) c H(T') c HL(T).

Proof. From Proposition 2.4 we know that the restriction of B, (T | -)
to each I'— h cell is in H(T), so Hy(I') € H(T"). For the other inclusion
let & € O(T) and f(x) € Hp(T'g). From (2.4) it is easily concluded

that f(x) = ea'xp(x) with p(x) € mn(Xg), and by [3, Corollary 1],
Bh(Xo) pL D € Wh(Xe); thus Bh(ro) *Ih f € Hh(Fo) Now (].3)
implies By, (I") = Bp(I'\T'g) * Bx(I'g) whereas Bj,(I'\T'g) is a compactly
supported distribution, so by (3.1),

By(T)*), f € span{eo'xq(y) (x) | g € Th(Xg),v € Zi},

and, therefore, f € Hy,(I'). Since, clearly, H(T') is a linear space the
proof is completed. i

Theorem 4.1. If Bj,(T' | —i0) # 0 for all 8 € O(T), then

H,(T) =H(T).

Proof. Let 8 € O(T'), p(x) € m4(Xg). Since Hy(I'g) = ea'xﬂ'h(Xo)
we have eo"‘p(x) € Hy(T'g). Now By(I') = Bn(I'\I'g) * Br(I'g), so
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By(T'| —i6) # 0 implies By,(I'\I'g | —i0) # 0. Therefore, by Corollary
3.3, 9%p(x) € H,L(T). O

Remark 4.1. The same result is proved in [13] with the aid of Poisson’s
summation formula. In [5] it is shown that a weaker condition on the
location of the nodes is still sufficient for the equality Hj (T') = H(T')
(compare with Example 4.2 below). We note that the proofs in [13] and
[5] do not make use of the theory of polynomial box splines. Moreover,
for polynomial box splines as well as real exponential box splines, a
relatively elementary proof is available (see [5]). Theorem 4.1 can also
be obtained via commutator theory, as pointed out to me by K. Jetter
in a private communication.

Note that the condition By (I'| —i@) # 0, 8 € O(T') is to say that the
Laplace transform of Bj(I') vanishes nowhere on O(T"). The following
simple example shows that this restriction in Theorem 4.1 cannot be
removed.

Example 4.1. Let s=1,n>2, T ={vy,... ,7} with 27 := T, =
1 and \j := X\, = 2nk;i, where {ki,...,k,} are distinct integers. In
this case H(T') = ({e?™%% | j = 1,... ,n}); hence, every f € H(I)
is periodic with period 1. But, since n > 2, By(T | ) is continuous;
therefore, the periodicity of the functions in H(I") implies B (I'|a) = 0
for all @ € Z. Hence e™i° ¢ H;(T'), j = 1,...,n. In particular,
H, (') # H(T). This is an agreement with Theorem 4.1 since from (1.3)
it is easily seen that Bl(I‘|27rkj) =0,75=1,...,n. With somewhat
more effort it can be shown that dim H; (T") = 1.

Nevertheless, the converse of Theorem 4.1 is not valid as is shown by
the following example.

Example 4.2. Let s=1, || =2, 2! =2, 22 =1, \; =0, Ay = 7i.
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Applying Proposition 2.1 to this case we easily obtain

miw _q

€

0 0<z<1,

1

) — I
B (T'|z) = ", )

_emin

s> 25T <3,
0, otherwise.

Hence, choosing f1(x) = 1, fa(z) = xe™®, one obtains

2
Bi(T)*] fi = ——
1( ) *1 fl ﬂ'i’
, ewiz
By (D) *) fa= —
i
Since H(I') = (1,e™) we conclude H;(I') = H(T) although
B(T | ) = 0. For a necessary and sufficient condition for the equality
H, (') = H(T) see [5].

A set which plays an important role in the analysis of By (T') is the
set of all its “bases” to be defined as follows:

(4.5) JI)={JCT||J]=s(J) =R}

Note that if By(T') is a polynomial box spline, then O(I') = {0},
thus H(T) contains only polynomials, and so Proposition 4.1 implies
H;(T') = 7, (7). In [11] Dahmen and Micchelli computed the dimen-
sion of 7, (I") (hence H},(T')) for polynomial box splines:

Theorem 4.2 [11, Theorem 2.1]. Let By(T') be a polynomial box
spline. Then
dimH(T') = dim Hy(T) = |J(T)|.

Example 4.1 shows that for general EB-splines such a result is no longer
valid. Instead we have
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Corollary 4.1. For any defining set ',

(4.6) dim H(T) = |J(T)].

Proof. Tt is obvious that

dimH(T) = > dimH(Ty).
Oco()

By Proposition 2.4 and Theorem 4.2
dimH(Tg) = dimH(Xg) = [J(Tg),

SO
dmH(T) = > [J(Tg)l-
Oco(r)

Now (4.6) follows from the fact that each J € J(I') is contained exactly
in one set J(I'g). o

Remark 4.2. Theorem 4.2 is extended in [13] to a very general
setting which includes Corollary 4.1 as well. In [5] Corollary 4.1 (hence
Theorem 4.2) is obtained as a limit of the so-called “simple case” with
the aid of some elements of function theory.

Given a I' — h cell A, the following set is very useful for analyzing
local properties of By (T") and its translates:

(4.7) bi(A) = {a € Z; | ACsuppBu(l' |- — @)}
For PB-splines, |b} (4)| was computed in [11]. The result is as follows:

Proposition 4.2 [11, Theorem 3.1]. Let By (I') be a polynomial boz
spline. Then for every I' — h cell A,

bRl = |det Xy].

JeJ(I)
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Combining Propositions 4.2 and 2.2 we conclude

Proposition 4.3. Let By(T') be an EB-spline and A a T'— h cell.
Then

(4.8) (A < D |det X,.
JeJ(T)

Equality in (4.8) cannot always hold as is shown in the following
example.

Example 4.3. Take s = 1, |[['| =2, 2! = 1, 22 = 2, \; = 0 and
A2 = 2mi. In this case direct computation (use, e.g., Proposition 2.1 or
[18, Theorem 4.2]) shows that

827\'7,1 1

5 0<z<1,

T

BiTfa) = L& 2 <z <3,
0, otherwise.

So |bh (A)| = 2 while > e ldet X[ = 3.
We are ready now to state and prove the main theorem of this section:

Theorem 4.3. For any defining set I' the following conditions are
equivalent:

(a) If A C R® is open, (Bp(T) *p c)|la = 0 and cow # 0 for some
acZj, then ANsuppBr(T' | - — o) = @,

(b) Bp(T') #p ¢ =0 implies ¢ = 0,

(c) |det X;| = 1 for all J € J(T') and B(T' | —i0) # 0 for every
0 € (I,

(d) |det X;| =1 for every J € J(T') and Hy(T') = H(T).

Conditions (a) and (b) are usually referred to as local and global
linear independence, respectively. Note that the implication (d) =
(c) establishes a partial converse to Theorem 4.1.



LINEAR INDEPENDENCE 343

Proof of Theorem 4.3. The implication (a) = (b) is trivial. The
fact that (b) implies |[det X;| = 1 for all J € J(I') was proved in
[18, Theorem 5.2]. If B,(I' | —i0) = 0 for some 8 € O(T"), then for

f(x) = eo'x, Proposition 2.5 gives
By(T) ), f = h™*By(T' | —i0) f(-) =0,

hence (b) = (¢). (¢) = (d) by Theorem 4.1. Finally assume (d) and
let Abeal —h cell. Since Hy(I') contains only holomorphic functions,
Corollary 4.1 and the assumption Hy (') = H(T') yield

dim ({B(T' |- - a)|a | e € Z3}) > [3(D)]

But, since |det Xj| = 1 for every J € J(I'), Proposition 4.3 implies
bt (A)] < |J(T)], and therefore we must have

(4.9)  [bh(4)] = I(O)] =dim ({B(I' |- — &) |a | e € b (A)}),

which shows that (a) holds. If A is not a I' — h cell, choose A;
to be any open subset of A contained in a I' — h cell A;. Since
(Bp(T') *p, ¢)|a, is holomorphic, the assumption (By(T) x5 c)|a, = 0
implies (B (T') #1, ¢)|a, = 0; thus, by the above proof cq = 0 for all
a € b} (A2). But this is valid for every I' — h cell intersected by A so
(a) follows and the proof is completed. O

Remark 4.3. Another way to prove the implication (c) = (a) is by
applying induction on |I'| > 1. This method was used by Jia [15,16],
in the polynomial case, for establishing the global as well as the local
independence of the integer translates.

In view of Theorem 4.3, it is important to describe situations when
the Laplace transform of By (I") does not vanish at the nodes. We give
here two simple sufficient conditions.

Theorem 4.4.
(a) If A\r C R, then By,(I'| —i6) # 0 for all 8 € O(T).

(b) For a given set of directions X and t > 0 there exists hy > 0 such
that, if Xr = X, ||Ar]||ec <t and h < hy, then By (T | —i@) # 0 for all
0 € O(I).
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Proof. If Ar C R, then clearly (') C R® and (a) follows directly
from (1.2), (1.3).

For (b) note that, when foh e =ixy 0t = 0 one must have h(Ay —
ix - 0) = 2mij where j € Z\{0}. Now if @ € O(T") then there exists
J € J(T) such that @ = A; X', 50 [|0]|s < c1||Ar||co where ¢; depends

only on X ;. Therefore, there exists cy such that for every v € I' and
0 c O(T), Ay —ixy - 0] < c2||Ar]|oo. Now (b) easily follows. O

In the univariate case, Theorem 4.4 (b) is closely related to a basic
property of L-splines (see [21, Theorem 10.5]).

5. Extensions of Marsden’s Identity. In order to derive
multivariate analogs of Marsden’s Identity [17, Theorem 7] for EB-
splines, we follow the approach of [6, 7, 1] and establish two recurrence
formulae complementary one to the other.

Throughout this section gy := gjf = gjfyh denotes a solution of the
equation ¢ x}, g = f where g, f € Hyp(¢). When f(x) = eo"‘p(x) or
f(x) = x%* we may write 99 ,» 9o, respectively. For EB-spline Bp(T")
or PB-spline By, (X) the notations g}:,g])f are used.

Given x% € m,(¢), where a € Z% and $(0) = 1, Chui, Jetter and
Ward established the following recurrence formula for the evaluation of
Jo:

51 sabd ==Y o) 3 (2) 9 Vanto).

jezs o<r<a

With the aid of Poisson summation formula, (5.1) can be transformed
to [7]

52 ga)=rex® - Y (2) 0@ M 00
Since [7, Lemma 2] g(o?fu) (x) = (a!/v!)gy(x), (5.2) implies that for
p(x) € mp(P) we have

()"

v!

(5.3) gp(x) = h*p(x) — > ) (0)g,w) (x);

V>0
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hence, we can easily conclude

Corollary 5.1. If f(x) = ea'xp(x) € Hy,(¢) and ¢(—i@) # 0, then
(5.4)

R )l
g6, (%) = B(—i6) [th(x) -3 BT i8)gg, 0 )|

V>0

For EB-splines this last result can be combined with Proposition 2.5
to yield:

Algorithm 5.1. Let B,(I') be an exponential box spline. Assume
By(T'|—i0) # 0 and f(x) = eo"‘p(x) € Hyp(T). Then gg  can be
computed recursively as follows:

(a) gg,(x) = h*By (| i0) 10,
(b) gg,,(x) = Bu(T| —i6)~" [1*f(x)
— Suao(=)V /) B (D] -i0)gg ) (x)].

Application of Corollary 3.2 yields another result which is analogous
to (5.4).

Corollary 5.2. Let ¢, ¢1,¢2 be as in Theorem 3.1. Assume f(x) =
e9>p(x) € Hy(¢1) and h2(—i) # 0; then

(5.5)
5 )= da(=i0) o 00— 3 ELLG0 Ciongh 0
99, %) = 92 9.\ * vl 72 1)9g pan X/ |-
V>0
Example 5.1. Let
1, -1<z<0,
d1(z) =4 -1, 0<z <1,
0, otherwise.

A simple calculation gives ¢y () = fol (€7t — e~!) dt, hence ¢1(0) =0
and Corollary 5.1 cannot be applied. Yet, for g(z) = z, ¢1 %] g = L.
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Therefore, for a compactly supported distribution ¢» we have by
Corollary 5.2,

where ¢ = ¢1 * ¢o.

For EB-splines the space H(T') reflects the local structure of By, (')
and its translates, so it makes sense to define here H(¢;) = (1). Thus
we have H;(¢;) = H(¢;) although ¢;(0) = 0. Compare this with the
equivalence of (c) and (d) in Theorem 4.3.

Assume ¢ is an EB-spline By(I'), f(x) = ee'xp(x) € Hp(T) and
B(I'|—i@) # 0. Then, since B,(I') = Bx(T'g) * Bn(I'\I'g), f € Hx(T'g)
and By (Tg) = eo'th(Xg), (5.3) and (5.5) can be combined to obtain
the following two step algorithm:

Algorithm 5.2. Let By(I') be an EB-spline, f(x) = eo'xp(x) €
H,(T'), By(I'| —i@) # 0. Then ggm can be computed recursively as
follows:

Step 1. ggz = ea'ngo where g;{o is computed by (5.3) with
¢ = Br(Xg).

Step 2. gp _(x) = Br(I'\Tg | —i6)~" [ggi(X) ~Lusol(=0)¥/w)

(V) 0\ ,T
It should be noted that Algorithm 5.2 is sometimes useful even for PB-
splines. In particular, if x° € X, p(x) € (X \x°) and g;((,\j’g are known,

g7 can be computed using only the simple derivatives of B({x°} | ).

6. A remark on polynomial box splines. We show here that the
observations made in Section 3 can be used to connect certain results
from [3] and [8]. Throughout this section, we choose h = 1 and omit
this subscript.
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Let X = {Xj};-’:1 be a fixed set of directions in R*\{0}. Given a
subset Y C X we denote as before,

DY = ] Dw:
xieY

where D,; is the directional derivative.

In [3] de Boor and Hollig showed that for a polynomial box spline
B(X), we have

(6.1) 7(X) = 7 N D(X),
where
(6.2) D(X)=n{ker DY | Y C X,(X\Y) # R"}.

In [8] Dahmen and Micchelli showed that D(X) contains only polyno-
mials, hence

(6.3) 7(X) = D(X).

Applying Corollary 3.3 to (6.2) we conclude

Corollary 6.1. Let B(X |-) be a polynomial box spline. Assume ¢(-)
is a compactly supported distribution and ¢(0) # 0. Then

(6.4) D(X) C n(B(X) * ¢).

In [8] Dahmen and Micchelli also examined compactly supported func-
tions ¢(+) which satisfy

(6.5) o(x) = [ [ 2i(’ - %),

(6.6) p;i(2mk) =0 Vk € Z\{0}, j=1,...,n,
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and

(6.7) 5;(0)£0,  j=1,...,n
They denoted by A the set of functions satisfying (6.5)—(6.7) and proved

Theorem 6.1 [8, Corollary 3.1]. If ¢ € A, then

D(X) C 7(¢).

Our aim is to reveal the nature of condition (6.6). For this purpose
denote
L, 0st<1,
X(t) = .
0, otherwise,

and note that X clearly satisfies (6.6)—(6.7). Moreover, given a com-
pactly supported p(+), let

(6-8) () =Y 0= k)

k=0

then obviously 7(-) is well defined and

69 7ox=|SSC =R x=pr XN C-i)=pri=p

k=0 =0

thus p = 7X. Nevertheless, 7 is not necessarily of compact support,
hence 7 need not be defined in the pointwise sense. Yet, we have

Proposition 6.1. Let p be a univariate compactly supported distri-
bution. Define 7(-) as in (6.8). Then 7(-) is compactly supported if and
only if p satisfies (6.6).

Proof. If T is compactly supported, then 7 is analytic and the claim
follows from (6.9). For the converse assume that p satisfies (6.6) and
supp p C [a,b]. Clearly, supp7 C [a,00). Let f(t) be a test function
satisfying supp f(t) C (b — 1,00). Given k < —1, one has

p'(-=k)(f) =—p(f'(- + k) =05



LINEAR INDEPENDENCE 349

thus, by Poisson’s summation formula and (6.6),

() = [gpx- -5 <f>——p(§f'<t+k)) - —p(k_fjoof'(wk))
= —p(k_iooikezmkt f(27rk)> =0.
Hence, supp T C [a,b — 1]. O

Since E(X | x) = H?Zl X(x7 - x), Proposition 6.1 implies

Corollary 6.2. For every ¢ € A there exists a compactly supported
distribution ¢ such that ¥ (0) # 0 and

¢ = B(X) % 1.

Consequently, Corollary 6.1 can be viewed as a generalization of The-
orem 6.1.

Now we utilize Remark 3.2 to reveal the Fourier transform analog of
Proposition 6.1.

Corollary 6.3. Let T denote the space of all univariate entire
functions of exponential type which grow slowly on R. Assume f(t)
and g(t) = itf(t)/(1 — e~%) are entire. Then f € T if and only if
geT.

Proof. Since g is entire then f(27k) = 0 for every k € Z\{0}. Now,
if f € T, by Remark 3.2 and Proposition 6.1 there exist compactly
supported distributions p,7 such that p = 7% X and p = f. Since
X(t) = (1 — e~)/(it) it follows that g = 7 and, since 7 is compactly
supported, g € T'. The converse implication is trivial. ]
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