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QUASI-MULTIPLIERS OF PEDERSEN’S IDEAL

BRUCE DEARDEN

ABSTRACT. For the Pedersen ideal K of a C*-algebra A,
the space QM (K) of quasi-multipliers of K is investigated.
It is shown that QM(K) is a complete involutive locally
convex space under a naturally defined topology wk. A theory
is presented whereby QM (K) is represented by a space of
densely defined sesqui-linear forms on a Hilbert space.

1. Introduction. A general C*-algebra A is often considered
as a noncommutative analog of the algebra Co(X) of all continuous
functions, on a locally compact space X, vanishing at infinity. Along
this line of thought, Pedersen [4] showed the existence of a minimal
dense ideal K(A), or K, in the C*-algebra A, corresponding to the ideal
Coo(X) of Cy(X) consisting of all continuous functions on X having
compact support. Using Pedersen’s ideal, Lazar and Taylor [1,2] have
studied the (double) multiplier algebra I'( K) of the ideal K as an analog
of the algebra C'(X) of all continuous functions on X. This note is an
investigation of another analog of C'(X)—that being the space QM (K)
of quasi-multipliers of Pedersen’s ideal.

We recall that for an algebra D, a quasi-multiplier on D (or quasi-
centralizer) is defined to be a bilinear map M from D x D into D
such that for all a,b,¢,d in D we have M(ab,cd) = aM(b,c)d. Let us
denote the space of all quasi-multipliers of D by QM (D). Let D be
an algebra with an involution denoted by *. For any M in QM (D)
we define M*(a,b) = M(b*,a*)*, where a,b € D. Clearly, this x*
operation satisfies M** = M and (AM)* = AM* for M € QM (D),
A € C. Hence, we say QM (D) is an involutive vector space. Finally,
if D is a normed *-algebra, we may consider the space of bounded
quasi-multipliers QMy(D) consisting of all M € QM (D) for which
sup{||M(a,b)|| : a,b € D, ||a|]| < 1,]||b]| < 1} is finite. Defining ||M]|| to
be this finite supremum, we easily see that QM (D) is a normed linear
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space. Furthermore, if D is a Banach algebra, then Q M;(D) is complete
[3, Theorem 2]. The Cohen-Hewitt factorization theorem shows that
for a Banach algebra D with a bounded approximate identity, every
quasi-multiplier on D is bounded and jointly continuous [3, Theorem
1].

2. The structure of QM(K). Restricting the norm || - || of A to
K we may consider K as a normed *-algebra. The following theorem
identifies the space QM;(K) of bounded quasi-multipliers on K.

Theorem 2.1. FEvery bounded quasi-multiplier on K may be ex-
tended uniquely to a quasi-multiplier on A.

Proof. Let M € QMy(K). Let {uq} be an approximate identity for
A contained in K. For a,b € A we have that

|| M (aua, uab) — M(aug, ugb)||
< ||M (ava; wab = ugb)|| +[| M (aua — aug, ugb)||
< |[M]] llava||[uab = ugb|| + || M]] llauq — aug|| [[usb]]
< |1M]] llal luab = ugb|| + ||M]] ||aua — aug|| |[b]]-

Since au, converges to a and u,b converges to b, this implies that
M (auq,uqb) is a Cauchy net in A. Hence, it converges to an element
M{(a,b) in A.

Now it easily follows that M(-,-) is in QM (A). A calculation similar
to that above shows that M is a well-defined extension of M to A x A.
Uniqueness follows from the fact that any quasi-multiplier on A is
jointly continuous [3]. O

From Theorem 2.1 it follows that the map restricting any M in
QM(A) to K x K provides an imbedding of QM (A) into QM (K)
with image QM;(K). Furthermore, the density of the unit ball of K in
that of A implies that this imbedding is an isometry of QM (K) onto
QM,(K). Thus, we may consider QM (A) as a subset of QM (K).

Lemma 2.2. Let B be a hereditary C*-subalgebra of K(A). Then the
restriction of each M in QM (K) to B x B is an element of QM (B).
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Proof. Let M € QM(K) and a,b € B. Applying a variant of the
Cohen-Hewitt factorization theorem found in [1, Lemma 3.1], we may
find ¢ € BT and z,y € B such that a = cx and b = yc. Then we
have M(a,b) = M(cz,yc) = cM(z,y)c. Since B is a hereditary C*-
subalgebra, it follows that M(a,b) is in B. Therefore, M|gxp is in
QM (B). o

A similar argument proves the following lemma.

Lemma 2.3. Let B and B’ be hereditary C*-subalgebras in K such
that B C B'. Then the restriction of each M in QM (B') to B X B is
an element of QM (B).

For B and B’ as in the above lemma we define maps pp from QM (K)
into QM (B) and Ppp/ from QM (B') into QM (B) by the restriction
of an appropriate quasi-multiplier to B x B. It follows easily that the
maps pp and ppps are linear and preserve the * operation.

We define a topology on QM (K) that is an analog of the compact-
open topology on C(X). For each a,b € K, define the function pgp
from QM (K) into R by pay(M) = ||M(a,b)|| for all M € QM (K). 1t
is clear that pgp is a seminorm for all a and b. We denote the topology
on QM (K) generated by the family {pgp : a,b € K} of seminorms by
WkK.

Theorem 2.4. Under the wk-topology, QM (K) is complete.

Proof. Let {My} be an wk-Cauchy net in QM (K). Then for all
a,b € K, the net {M,(a,b)} is a Cauchy net in A under the norm
topology. Hence, there exists an element M(a,b) in A to which
{My(a,b)} converges. Since each M, is a quasi-multiplier, it follows
from the uniqueness of the limit that M is also a quasi-multiplier. Thus,
{M,} is wk-convergent to M. Hence, (QM(K),wk) is complete. O

A similar argument shows that the x-operation on QM (K) is wk-
continuous. Thus, we may say that under wx, QM (K) is a complete
involutive locally convex space.
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Theorem 2.5. Pedersen’s ideal K is wr-dense in QM (K).

Proof. Let M € QM(K) and c¢,d € K. Let B be the hereditary
C*-subalgebra generated by ¢ and d. Proposition 5.6.2 in Pedersen [5]
shows that B C K. Let n € N. Since pg[M] is contained in QM (B),
Theorem 5 in McKennon [3] shows that there exists an element a,, €
BT with ||a,|| = 1 such that ||cM (an,a,)d — M(c,d)|| < 1/n. That is,
{M(an,a,)} converges in the wk-topology to M. O

Corollary. The linear space QM (K) is the wk-completion of K.

Let B be a hereditary C*-subalgebra of K. We give QM (B) the
quasi-norm topology generated by {pas : a,b € K}, where each such
seminorm is restricted to QM (B). It is clear that pp and ppp are
continuous in the quasi-norm topologies, where B and B’ are hereditary
C*-subalgebras. By the standard construction of the projective limit
of locally convex spaces [6, Chapter II, sec. 5], we have the following.

Theorem 2.6. Under the wk topology, QM (K) is the projective
limit of the family {QM (B) : B hereditary C*-subalgebra of K} with
respect to the mappings {ppp,: B C B’ hereditary C*-subalgebras}.

3. A representation theorem for QM (K). Consider A as a
nondegenerate C*-algebra of operators on a Hilbert space H. As usual,
let K denote Pedersen’s ideal of A. For a set D of operators on H, the
linear span of the set {d¢ : d € D,§ € H} will be denoted by [DH].
The nondegeneracy of A is equivalent to [AH] = H. The inner product
on H is denoted by (-, ).

Lemma 3.1. The span [K H] is precisely the set {a€ : a € K, € H}.

This follows easily from the factorization theorem found in Lazar and
Taylor [1, Lemma 3.1]. We use H' to represent the span [K H].
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Lemma 3.2. For each M € QM (K) define the mapping M on
H' x H' into C by

M (b€,a*n) = (M (a,b)é,n)

for b€, a*n € H'. Then M is a well-defined sesqui-linear form on H'.

Proof. Let M € QM(K). Suppose that a*n, b§, b'¢’ € H' where
b = V'¢'. Let B be the hereditary C*-subalgebra generated by a, b and
b'. We can assume B acts on the closed subspace [BH| of H. Since
pp(M) is in QM (B), Proposition 3.12.3 of Pedersen [5] shows that there
exists a unique operator mp in the weak closure of B in the bounded
operators on [BH| such that M(c,d) = empd for all ¢,d € B. Then

we have L
<M(a’7 b)§7 7]> = <ame£a 77) = <ame 6 717>
= (M(a,b")¢',m).
Similarly, M (b€, a™n) is independent of the particular representation of
a*n. Hence, it follows that M is well-defined.

Sesqui-linearity of M is a result of an application of the now familiar
factorization lemma [1, Lemma 3.1]. O

Let p be a sesqui-linear form on H' and a,b € K. Define ,up to be
the sesqui-linear form on H given by ,up (§,17) = u(b€,a*n) for every

&,m € H. When ,pu; is continuous, we write Xt(a, b) for that operator
guaranteed by the Riesz representation theorem, such that

otte (€,1) = (u(a, D)€, 1)

for all £,n € H. We denote by SQ(H') the set of all sesqui-linear forms
on H' such that ,u; is continuous for every a,b € K.

For p € SQ(H') define p*(b€,a*n) = p(a*&,bn) for all a*n,bé € H'.
Then this definition of * makes SQ(H') into an involutive vector space.
For a,b € K, define the seminorm pg, on SQ(H') by

Pab(p) = sup{|p(b€,a™n)| : &, n € H, ||| < 1, In|] < 1}

This family of seminorms defines a topology, denoted w#, on SQ(H').
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Theorem 3.3. (Representation Theorem) Let A be a C*-algebra of
operators on a Hilbert space H such that [AH) = H. Let H = [KH].
Then the map A provides a x-isomorphism of involutive vector spaces
QM (K) onto SQ(H'), under the wk and wk topologies, respectively,
whose inverse is given by the map v.

Proof. Let M € QM (K). For a,b € K, we have

a(M)b(ga 77) = <M(a’ b)fa 77>

for all £&,n € H. By the Riesz representation theorem, M(a,b) is the
unique bounded operator on H that makeis the above equality true.
Hence, we obtain that M € SQ(H') and (M) = M.

On the other hand, take u € SQ(H'). For a,b,c,d € K, we have

(fu(ab, cd)€,n) = p(cd€,b*a*n) = (4(b, c)d€, a*n) = (ap(b, ¢) d€, n)

for all £, € H. Thus, by uniqueness, we obtain ;\i(ab, cd) = a;\i(b, c)d.
The bilinearity of /\,/L follows easily from the definition. Thus, ;\2 €
QM(K) and (/\2)/\ = p. Hence A is onto and is obviously linear.

A calculation similar to that above shows that A preserves the x-
operation.

Continuity of A and V is clear from the definitions of the wx and
wk-topologies. O

4. Examples. It is clear that the double multiplier algebra I'(K) of
Lazar and Taylor is contained in QM (K). The last example will show
how different these two spaces can be.

Example 4.1. If A is an abelian C*-algebra, then QM (K) can be
identified with the set C'(A) of all continuous functions on the spectrum
A. The demonstration of this is similar to the argument in Lazar and

Taylor [1] identifying I'(K') with C(A).

Example 4.2. Let A be the C*-algebra By(H) of compact operators
on a Hilbert space H, with Pedersen’s ideal Byo(H), the operators of
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finite rank. Then QM (K) is represented by the set of all sesqui-linear
forms on H. This easily follows from two facts. First, that [K H] equals
H. Second, if, for any sesqui-linear form p on H, we define

M(t§n7 tf'n') = /I‘(g,a g)tW'TI

for £,¢',n,m € H, (where t¢,(¢) = (¢, )¢ for all &, u,¢ € H), then
linearly extending M to all of K, we obtain a quasi-multiplier M such

that M = p.

Contrast the above result with the fact that the multiplier algebra
['(K) is the set of all bounded operators on H; as Lazar and Taylor
show.
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