QUASI-MULTIPLIERS OF PEDERSEN'S IDEAL

BRUCE DEARDEN

ABSTRACT. For the Pedersen ideal K of a C^* -algebra A, the space QM(K) of quasi-multipliers of K is investigated. It is shown that QM(K) is a complete involutive locally convex space under a naturally defined topology $\omega \kappa$. A theory is presented whereby QM(K) is represented by a space of densely defined sesqui-linear forms on a Hilbert space.

1. Introduction. A general C^* -algebra A is often considered as a noncommutative analog of the algebra $C_0(X)$ of all continuous functions, on a locally compact space X, vanishing at infinity. Along this line of thought, Pedersen [4] showed the existence of a minimal dense ideal K(A), or K, in the C^* -algebra A, corresponding to the ideal $C_{00}(X)$ of $C_0(X)$ consisting of all continuous functions on X having compact support. Using Pedersen's ideal, Lazar and Taylor [1,2] have studied the (double) multiplier algebra $\Gamma(K)$ of the ideal K as an analog of the algebra C(X) of all continuous functions on X. This note is an investigation of another analog of C(X)—that being the space QM(K) of quasi-multipliers of Pedersen's ideal.

We recall that for an algebra D, a quasi-multiplier on D (or quasi-centralizer) is defined to be a bilinear map M from $D \times D$ into D such that for all a,b,c,d in D we have M(ab,cd)=aM(b,c)d. Let us denote the space of all quasi-multipliers of D by QM(D). Let D be an algebra with an involution denoted by *. For any M in QM(D) we define $M^*(a,b)=M(b^*,a^*)^*$, where $a,b\in D$. Clearly, this * operation satisfies $M^{**}=M$ and $(\lambda M)^*=\bar{\lambda}M^*$ for $M\in QM(D)$, $\lambda\in C$. Hence, we say QM(D) is an involutive vector space. Finally, if D is a normed *-algebra, we may consider the space of bounded quasi-multipliers $QM_b(D)$ consisting of all $M\in QM(D)$ for which sup $\{||M(a,b)||:a,b\in D,||a||\leq 1,||b||\leq 1\}$ is finite. Defining ||M|| to be this finite supremum, we easily see that $QM_b(D)$ is a normed linear

Received by the editors on October 4, 1988, and in revised form March 18, 1989.

AMS (MOS) Subject classification (1980). Primary 46L05; Secondary 46A05. Key words and phrases. Quasi-multiplier, Pedersen's ideal, C^* -algebra, sesquilinear form.

space. Furthermore, if D is a Banach algebra, then $QM_b(D)$ is complete [3, Theorem 2]. The Cohen-Hewitt factorization theorem shows that for a Banach algebra D with a bounded approximate identity, every quasi-multiplier on D is bounded and jointly continuous [3, Theorem 1].

2. The structure of QM(K). Restricting the norm $||\cdot||$ of A to K we may consider K as a normed *-algebra. The following theorem identifies the space $QM_b(K)$ of bounded quasi-multipliers on K.

Theorem 2.1. Every bounded quasi-multiplier on K may be extended uniquely to a quasi-multiplier on A.

Proof. Let $M \in QM_b(K)$. Let $\{u_\alpha\}$ be an approximate identity for A contained in K. For $a, b \in A$ we have that

$$\begin{aligned} ||M(au_{\alpha}, u_{\alpha}b) - M(au_{\beta}, u_{\beta}b)|| \\ &\leq ||M(au_{\alpha}, u_{\alpha}b - u_{\beta}b)|| + ||M(au_{\alpha} - au_{\beta}, u_{\beta}b)|| \\ &\leq ||M|| \, ||au_{\alpha}|| \, ||u_{\alpha}b - u_{\beta}b|| + ||M|| \, ||au_{\alpha} - au_{\beta}|| \, ||u_{\beta}b|| \\ &\leq ||M|| \, ||a|| \, ||u_{\alpha}b - u_{\beta}b|| + ||M|| \, ||au_{\alpha} - au_{\beta}|| \, ||b||. \end{aligned}$$

Since au_{α} converges to a and $u_{\alpha}b$ converges to b, this implies that $\underline{M}(au_{\alpha}, u_{\alpha}b)$ is a Cauchy net in A. Hence, it converges to an element $\overline{M}(a,b)$ in A.

Now it easily follows that $\overline{M}(\cdot,\cdot)$ is in QM(A). A calculation similar to that above shows that \overline{M} is a well-defined extension of M to $A \times A$. Uniqueness follows from the fact that any quasi-multiplier on A is jointly continuous [3].

From Theorem 2.1 it follows that the map restricting any M in QM(A) to $K \times K$ provides an imbedding of QM(A) into QM(K) with image $QM_b(K)$. Furthermore, the density of the unit ball of K in that of A implies that this imbedding is an isometry of QM(K) onto $QM_b(K)$. Thus, we may consider QM(A) as a subset of QM(K).

Lemma 2.2. Let B be a hereditary C^* -subalgebra of K(A). Then the restriction of each M in QM(K) to $B \times B$ is an element of QM(B).

Proof. Let $M \in QM(K)$ and $a, b \in B$. Applying a variant of the Cohen-Hewitt factorization theorem found in [1, Lemma 3.1], we may find $c \in B^+$ and $x, y \in B$ such that a = cx and b = yc. Then we have M(a, b) = M(cx, yc) = cM(x, y)c. Since B is a hereditary C^* -subalgebra, it follows that M(a, b) is in B. Therefore, $M|_{B \times B}$ is in QM(B).

A similar argument proves the following lemma.

Lemma 2.3. Let B and B' be hereditary C^* -subalgebras in K such that $B \subseteq B'$. Then the restriction of each M in QM(B') to $B \times B$ is an element of QM(B).

For B and B' as in the above lemma we define maps p_B from QM(K) into QM(B) and $P_{BB'}$ from QM(B') into QM(B) by the restriction of an appropriate quasi-multiplier to $B \times B$. It follows easily that the maps p_B and $p_{BB'}$ are linear and preserve the * operation.

We define a topology on QM(K) that is an analog of the compactopen topology on C(X). For each $a,b \in K$, define the function ρ_{ab} from QM(K) into \mathbf{R}^+ by $\rho_{ab}(M) = ||M(a,b)||$ for all $M \in QM(K)$. It is clear that ρ_{ab} is a seminorm for all a and b. We denote the topology on QM(K) generated by the family $\{\rho_{ab} : a,b \in K\}$ of seminorms by $\omega \kappa$.

Theorem 2.4. Under the $\omega \kappa$ -topology, QM(K) is complete.

Proof. Let $\{M_{\alpha}\}$ be an $\omega\kappa$ -Cauchy net in QM(K). Then for all $a,b \in K$, the net $\{M_{\alpha}(a,b)\}$ is a Cauchy net in A under the norm topology. Hence, there exists an element M(a,b) in A to which $\{M_{\alpha}(a,b)\}$ converges. Since each M_{α} is a quasi-multiplier, it follows from the uniqueness of the limit that M is also a quasi-multiplier. Thus, $\{M_{\alpha}\}$ is $\omega\kappa$ -convergent to M. Hence, $(QM(K), \omega\kappa)$ is complete.

A similar argument shows that the *-operation on QM(K) is $\omega \kappa$ continuous. Thus, we may say that under $\omega \kappa$, QM(K) is a complete
involutive locally convex space.

Theorem 2.5. Pedersen's ideal K is $\omega \kappa$ -dense in QM(K).

Proof. Let $M \in QM(K)$ and $c, d \in K$. Let B be the hereditary C^* -subalgebra generated by c and d. Proposition 5.6.2 in Pedersen [5] shows that $B \subseteq K$. Let $n \in \mathbb{N}$. Since $p_B[M]$ is contained in QM(B), Theorem 5 in McKennon [3] shows that there exists an element $a_n \in B^+$ with $||a_n|| = 1$ such that $||cM(a_n, a_n)d - M(c, d)|| < 1/n$. That is, $\{M(a_n, a_n)\}$ converges in the $\omega\kappa$ -topology to M.

Corollary. The linear space QM(K) is the $\omega\kappa$ -completion of K.

Let B be a hereditary C^* -subalgebra of K. We give QM(B) the quasi-norm topology generated by $\{\rho_{ab}: a,b \in K\}$, where each such seminorm is restricted to QM(B). It is clear that p_B and p_{BB} are continuous in the quasi-norm topologies, where B and B' are hereditary C^* -subalgebras. By the standard construction of the projective limit of locally convex spaces [6, Chapter II, sec. 5], we have the following.

Theorem 2.6. Under the $\omega \kappa$ topology, QM(K) is the projective limit of the family $\{QM(B) : B \text{ hereditary } C^*\text{-subalgebra of } K\}$ with respect to the mappings $\{p_{BB}, : B \subseteq B' \text{ hereditary } C^*\text{-subalgebras}\}$.

3. A representation theorem for QM(K). Consider A as a nondegenerate C^* -algebra of operators on a Hilbert space H. As usual, let K denote Pedersen's ideal of A. For a set D of operators on H, the linear span of the set $\{d\xi: d\in D, \xi\in H\}$ will be denoted by [DH]. The nondegeneracy of A is equivalent to [AH]=H. The inner product on H is denoted by $\langle \cdot, \cdot \rangle$.

Lemma 3.1. The span [KH] is precisely the set $\{a\xi : a \in K, \xi \in H\}$.

This follows easily from the factorization theorem found in Lazar and Taylor [1, Lemma 3.1]. We use H' to represent the span [KH].

Lemma 3.2. For each $M \in QM(K)$ define the mapping \hat{M} on $H' \times H'$ into ${\bf C}$ by

$$\hat{M}(b\xi, a^*\eta) = \langle M(a, b)\xi, \eta \rangle$$

for $b\xi$, $a^*\eta \in H'$. Then \hat{M} is a well-defined sesqui-linear form on H'.

Proof. Let $M \in QM(K)$. Suppose that $a^*\eta$, $b\xi$, $b'\xi' \in H'$ where $b\xi = b'\xi'$. Let B be the hereditary C^* -subalgebra generated by a, b and b'. We can assume B acts on the closed subspace [BH] of H. Since $p_b(M)$ is in QM(B), Proposition 3.12.3 of Pedersen [5] shows that there exists a unique operator m_B in the weak closure of B in the bounded operators on [BH] such that $M(c,d) = cm_B d$ for all $c,d \in B$. Then we have

$$\langle M(a,b)\xi,\eta\rangle = \langle am_Bb\xi,\eta\rangle = \langle am_Bb'\xi',\eta\rangle$$
$$= \langle M(a,b')\xi',\eta\rangle.$$

Similarly, $\hat{M}(b\xi, a^*\eta)$ is independent of the particular representation of $a^*\eta$. Hence, it follows that \hat{M} is well-defined.

Sesqui-linearity of \hat{M} is a result of an application of the now familiar factorization lemma [1, Lemma 3.1].

Let μ be a sesqui-linear form on H' and $a,b \in K$. Define ${}_a\mu_b$ to be the sesqui-linear form on H given by ${}_a\mu_b$ $(\xi,\eta)=\mu(b\xi,a^*\eta)$ for every $\xi,\eta\in H$. When ${}_a\mu_b$ is continuous, we write $\overset{\vee}{\mu}(a,b)$ for that operator guaranteed by the Riesz representation theorem, such that

$$_{a}\mu_{b}\left(\xi,\eta\right) =\langle \overset{\vee}{\mu}(a,b)\xi,\eta\rangle$$

for all $\xi, \eta \in H$. We denote by SQ(H') the set of all sesqui-linear forms on H' such that ${}_a\mu_b$ is continuous for every $a, b \in K$.

For $\mu \in SQ(H')$ define $\mu^*(b\xi, a^*\eta) = \overline{\mu(a^*\xi, b\eta)}$ for all $a^*\eta, b\xi \in H'$. Then this definition of * makes SQ(H') into an involutive vector space. For $a, b \in K$, define the seminorm $\hat{\rho}_{ab}$ on SQ(H') by

$$\hat{\rho}_{ab}(\mu) = \sup\{|\mu(b\xi, a^*\eta)| : \xi, \eta \in H, ||\xi|| \le 1, ||\eta|| \le 1\}.$$

This family of seminorms defines a topology, denoted $\omega \hat{\kappa}$, on SQ(H').

Theorem 3.3. (Representation Theorem) Let A be a C^* -algebra of operators on a Hilbert space H such that [AH] = H. Let H' = [KH]. Then the map \wedge provides a *-isomorphism of involutive vector spaces QM(K) onto SQ(H'), under the $\omega \kappa$ and $\omega \hat{\kappa}$ topologies, respectively, whose inverse is given by the map v.

Proof. Let $M \in QM(K)$. For $a, b \in K$, we have

$$_{a}(\hat{M})_{b}(\xi,\eta) = \langle M(a,b)\xi,\eta\rangle$$

for all $\xi, \eta \in H$. By the Riesz representation theorem, M(a, b) is the unique bounded operator on H that makes the above equality true. Hence, we obtain that $\hat{M} \in SQ(H')$ and $(\hat{M})^{\vee} = M$.

On the other hand, take $\mu \in SQ(H')$. For $a, b, c, d \in K$, we have

$$\langle \overset{\vee}{\mu}(ab,cd)\xi,\eta\rangle = \mu(cd\xi,b^*a^*\eta) = \langle \overset{\vee}{\mu}(b,c)d\xi,a^*\eta\rangle = \langle a\overset{\vee}{\mu}(b,c)\,d\xi,\eta\rangle$$

for all $\xi, \eta \in H$. Thus, by uniqueness, we obtain $\overset{\vee}{\mu}(ab,cd)=a\overset{\vee}{\mu}(b,c)d$. The bilinearity of $\overset{\vee}{\mu}$ follows easily from the definition. Thus, $\overset{\vee}{\mu}\in QM(K)$ and $(\overset{\vee}{\mu})^{\wedge}=\mu$. Hence \wedge is onto and is obviously linear. A calculation similar to that above shows that \wedge preserves the *-operation.

Continuity of \wedge and \vee is clear from the definitions of the $\omega \kappa$ and $\omega \hat{\kappa}$ -topologies. \square

4. Examples. It is clear that the double multiplier algebra $\Gamma(K)$ of Lazar and Taylor is contained in QM(K). The last example will show how different these two spaces can be.

Example 4.1. If A is an abelian C^* -algebra, then QM(K) can be identified with the set $C(\hat{A})$ of all continuous functions on the spectrum \hat{A} . The demonstration of this is similar to the argument in Lazar and Taylor [1] identifying $\Gamma(K)$ with $C(\hat{A})$.

Example 4.2. Let A be the C^* -algebra $B_0(H)$ of compact operators on a Hilbert space H, with Pedersen's ideal $B_{00}(H)$, the operators of

finite rank. Then QM(K) is represented by the set of all sesqui-linear forms on H. This easily follows from two facts. First, that [KH] equals H. Second, if, for any sesqui-linear form μ on H, we define

$$M(t_{\xi\eta}, t_{\xi'\eta'}) = \mu(\xi', \xi) t_{\eta'\eta}$$

for $\xi, \xi', \eta, \eta' \in H$, (where $t_{\xi\mu}(\zeta) = \langle \zeta, \mu \rangle \xi$ for all $\xi, \mu, \zeta \in H$), then linearly extending M to all of K, we obtain a quasi-multiplier M such that $\hat{M} = \mu$.

Contrast the above result with the fact that the multiplier algebra $\Gamma(K)$ is the set of all bounded operators on H; as Lazar and Taylor show.

REFERENCES

- 1. A.J. Lazar and D.C. Taylor, *Multipliers of Pedersen's ideal*, Mem. Amer. Math. Soc. 169 (1976).
- **2.** ——, Double centralizers of Pedersen's ideal of a C^* -algebra, Bull. Amer. Math. Soc. **78** (1972), 992–997.
- ${\bf 3.}$ K. McKennon, ${\it Quasi-multipliers},$ Trans. Amer. Math. Soc. ${\bf 233}$ (1977), $105{-}123.$
- 4. G.K. Pedersen, Measure theory for C^* -algebras, Math. Scand. 19 (1966), 131–145.
- 5. $\frac{}{}$, C^* -algebras and their automorphism groups, Academic Press, New York, 1979.
 - 6. H.H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.

Department of Mathematics, University of North Dakota, Grand Forks, ND 58202