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CLASSIFYING GENERIC ALGEBRAS
TH. DANA-PICARD AND M. SCHAPS

ABSTRACT. This paper proposes a program for the induc-
tive classification of the generic unitary associative algebras of
dimension n, based on previous work in the field and on two
new results pertaining to different aspects of the problem. The
first is a diagonalization theorem, showing that the nonnilpo-
tent sections of an idempotent-creating deformation can be
chosen from within the direct sum of the local rings at the
newly created idempotents. The second gives sufficient condi-
tions for a “loopless” basis graph with a specified radical flag
structure to determine a unique component of the structure-
constant scheme Alg,,. The procedure for classifying generic
algebras is then described and illustrated by determining the
generic algebras of dimension six.

1. Introduction. The classical problem of classifying n-dimensional
algebras suffers from being too easy. Once the ground rules are
explained, a competent algebraist with time and patience can sit down
and generate multiplication tables for associative algebras, but the
activity becomes unilluminating around dimension six and has not been
carried much further. Such calculations flourished for a while at the
end of the last century [12] but more or less died out in the face of more
general structure theorems, particularly the Wedderburn theorems.

The subject became more interesting when it was broadened to
include determining not only the algebras themselves but also the
partial ordering of the algebras by the relation of specialization. Of
particular interest from this point of view are the generic algebras, the
maximal algebras or families of algebras with regard to this partial
ordering.

An n-dimensional algebra is generally defined by fixing a K-basis
V1, .. ,U, and giving the multiplication structure

(1) Vv = Zaf’jvk.
k
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The coefficients {afj} are called the structure constants. We can
define an algebraic scheme Alg, in affine n3-space by requiring the
multiplication structure to be associative and unitary. This scheme
will be called the structure constant scheme. Since it is an algebraic
scheme it has a finite number of irreducible components.

Basis change gives an algebraic group action on Alg,,. If an algebra
or family A lies in the closure of the orbit of a different algebra or
family A’, then we will say that A is a specialization of A’ or that A’
is a deformation of A.

Definition. We will call an algebra structure, perhaps depending on
continuous parameters, generic, if the orbits under basis change of the
algebras with this structure form an open dense subset of an irreducible
component of the structure constant scheme Alg,,.

The particular subject of this paper is a procedure for determining
all the generic algebras of a given dimension. We will build on two
essentially independent lines of research: that of M. Gerstenhaber [4]
and F. Flanigan [1,2] on formal deformations, and that of P. Gabriel
[3] and the European representation theorists on classifying algebras.
Our long-range aim, part of which is being implemented in the first
author’s Ph.D. thesis, is to try to carry out the classification at least
up to dimension eight, in such a way that the results will be graspable
and will highlight examples of mathematical interest. In order to do
so, at least at first, we will abandon the requirement of completeness.
The goal of our program is to find all irreducible components, most
algebras, and some of the deformations among them. Our efforts will be
concentrated on clearing away those algebras and deformations which
can be determined inductively from algebras and deformations of lower
dimensions, in order to spotlight the essentially new phenomena which
first arise in the new dimension.

In a first paper on the subject [8], the second author gave a computer-
implemented algorithm which included a calculation of the cohomology
module which determines that an algebra is rigid, i.e., that its orbit
under the action of the group of basis changes is dense in an irreducible
component of Alg,. It can also be used to determine that a family of
algebras is semirigid, i.e., that the union of the orbits of the algebras
in this family is dense in an irreducible component of Alg,. Thus the
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problem of finding all generic algebras is basically a problem of finding a
complete and not unnecessarily unwieldy list of candidates to propose.

In Section 2 we define an interleaving to be a set of generators
for the radical elements created by the collapse of idempotents and
show that in many common cases these can be diagonalized. We
then give two applications for such interleavings. Omne is to show
that certain candidates for local generic algebras are not in fact rigid,
by constructing an interleaving which gives an idempotent-splitting
deformation of the algebra. The second, more useful for nonlocal
algebras, is a sufficiency condition for the existence of a certain kind
of standard deformation for an algebra which is a fiber product with a
truncated polynomial algebra. This considerably reduces the number
of candidates for nonlocal generic algebras.

In low dimensions, most rigid algebras are built on a loopless basis
graph weighted by the dimensions of the Peirce components of the
radical flag, and we give a thorough treatment of such algebras in
Section 3. After a certain amount of computer experimentation, we
were able to reduce the determination of the loopless rigid algebras in

dimension < 10 to a combinatorial problem which can easily be solved
by hand.

In Section 4 we give two improvements to the computer algorithm.
Finally, in Section 5 we describe the procedure for classifying generic
algebras and give the results up through dimension six.

2. Idempotent splitting deformations. Following Happel [5] we
denote by E(m) the m + 1-dimensional truncated polynomial algebra,
isomorphic to K[Z]/Z™*!. The most elementary deformation splitting
one idempotent into two is the deformation of E(m+n+1) to E(m) x
E(n). What we show in this section is that many idempotent-splitting
deformations are built in a similar way. However, we first establish
some notational conventions and, in particular, fix the definition of a
deformation. In what follows K denotes an algebraically-closed field.

For following all of the examples and most of the exposition in this
paper, it suffices to consider the case of deformations over the affine line
C, whose closed points ¢ are in one-to-one correspondence with elements
of K. We actually consider the pair (C,t;), where ¢, is a distinguished
point of C' which can usually, but not always, be taken to be the point
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corresponding to the zero element of K. Let R be the polynomial ring
K|[T] in one variable. A deformation B of a K-algebra By over (C,ty)
is then an R-algebra whose structure constants are polynomials in 7T,
such that substituting the value of the distinguished point for T' gives
the structure constants of By.

Substituting the value corresponding to a point ¢ in place of the
variable T then gives the fiber B;. An element z of B can be thought
of as determining a mapping of C into the family By, sending each ¢ to
the evaluation z(t) € B;. For this reason an element z of B will often
be referred to as a section of the deformation, since it represents a sort
of cross-section of the fibration of B over C.

Unfortunately, for theoretical reasons, we cannot restrict ourselves
solely to deformations over rational curves, so it is necessary to con-
sider more general deformations. To avoid cluttering the body of the
text with technicalities, we have placed the exact definitions of such
terms as algebraic family, deformation, restriction, evaluation, etale
neighborhood, and sober idempotent in an appendix at the end of this
section.

Definition. Let B be a deformation over a curve (C,tp) and let J
be the unique two-sided ideal of B whose fiber J; is equal to the radical
of B; in almost every fiber [9, Lemma 1]. A set of elements of B which,
together with a complete idempotent set, generate B;/.J; for each fiber
in an open neighborhood of ¢y will be called an interleaving. If each
element of the interleaving can be diagonalized so that it is contained
in the direct sum of the local algebras at each idempotent, then the
interleaving will be called a diagonal interleaving.

Remark . In the range of dimensions up to five for which the complete
deformation chart is known, every idempotent-splitting deformation of
a sober algebra factors through a diagonal interleaving.

Before proving the main theorem of this section, we will first give
one simple example, the specialization of two truncated polynomial
algebras E(n) and E(m) into a single truncated polynomial algebra
E(n+m+1).
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Example 1. Let B be a family over U = C — {to} with two sober
idempotents e’ and e” whose sum is the identity, and suppose that B
is decomposable into the direct sum of two local blocks

¢ Be' ~ K[uw']/(w')" 1,

(2) "o " myr' 41
e'Be" ~ K[w"]/(w")" ™.

Let b be any element of the maximal ideal po defining tg. Let s’ be any
element of R, and let s =1 — s’. Set

(3) z="0bs'e —bs"e" +w +w'.

Let e =€’ + ¢, and let r = 7' + 7" + 1. Then, as we will prove below,
e,z,2%,...,2" are independent over U and z satisfies a homogeneous
equation of degree r 4+ 1 in b and z given by

(4) flz)=(2— bS'e)TlH(z + bs”e)””Jr1 =0.

Thus, we can identify B with restriction to U of the R-algebra B =
R[Z]/f(Z), which is well defined also at to. At to, the element b
vanishes, and if we let zo represent z(tp), this equation becomes

(5) Ztt =0.

Thus, B represents a deformation of the truncated polynomial algebra
E(r) to a direct product E(r') x E(r").

With this example as motivation, we now prove the main theorem of
this section:

The Diagonalization Theorem. Let B be a deformation of sober
K -algebras over an algebraic curve (C,ty), with K an algebraically-
closed field. Let J be the flat family of two-sided ideals such that J
equals the radical in the general fiber. Passing to an etale neighborhood
of (C,toy) as necessary, we assume that every idempotent of the special
fiber By lifts to an idempotent section e which splits completely into
primitive orthogonal idempotent sections fi1,..., fq over every closed
point t of C not equal to tg. Then, for each idempotent section e
such that e(B/J)e is a truncated polynomial ring, we can choose the
idempotent sections f; in such a way that there is a section z such that

(6) zlu = Bb; fi + Xw;, w; € fi(Jlv)fi,
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and powers of z are a diagonal interleaving for e(B/J)e. Thus, if B/J
is a product of truncated polynomial rings, B/J has a basis consisting
of elements which are generically diagonal with respect to a set of
orthogonal idempotent sections.

Proof. By Corollary 1.1 of [9], for each e for which the special fiber
at e is a truncated polynomial ring of dimension d, we may choose a
section z lifting this radical generator and lying in eBe. The sections
e, 2,2%,...,2¢71 form a basis for e(B/J)e at the special fiber and,
thus, at almost every fiber over C. Modulo the ideal J, which is unique
by Lemma 1 of [9], we have a commutative deformation splitting the
identity of the algebra K[Z]/Z¢ into d distinct idempotents. If we let uo
be the maximal ideal of R at ¢y, we then know that such a deformation
must have the form

R[Z]/f(2),
f(Z2)=(Z =b1)---(Z —ba),

with b; € ug and all b; distinct in the fiber over a closed point ¢ different
from ty. Each linear factor Z — b; vanishes on one of the d distinct
points in Spec(K[Z]/f(Z)), and we may presume that we have chosen
the numbering so that Z — b; vanishes on the point corresponding to
the idempotent f;. Since Z is the image of z under the homomorphism
sending eBe to R[Z]/f(Z), we conclude that z is congruent to b;f;
modulo the ideal generated by eJe and the remaining idempotents f;,
so z must be of the form

(7)

(8) Z|U =Xb;fi +v, vEJ

Furthermore, the b; belong to pg and are distinct over each point of U,
so b; — b; is invertible over U.

We now proceed to diagonalize the section z by induction on the
depth m of v in the radical flag, that is to say, on the highest power of
J containing v. We apply the following lemma with A = B|y.

Lemma 1. Let A be a finite rank algebra over an affine ring S, such
that A has a complete set of sober orthogonal idempotents f1,..., fq.
Let z be an element of A of the form Xb; f; + v, where v is an element
of the radical J of A, and the b; — b; are invertible. Then there is a
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unit section u in A such that z is diagonal with respect to the set of
idempotents obtained from fy,..., fq by conjugation by u.

Proof. Since we can replace u by u™!, the conclusion of the lemma
will hold if we can find a u such that uzu ! is diagonal with respect
to the original set of idempotents, that is to say, such that uzu=! lies
entirely in the direct sum of the Peirce blocks fiAf1,..., faAfq. Let J
be the radical of A. Since it is nilpotent, we can proceed by induction,
assuming that z has already been diagonalized modulo J™. Write

(9) 2z = Ebifi + ijk

with wj, € J N fjAfi. By hypothesis, each b; — b, is nonzero. We
assume that w;j, lies in J* whenever j and £ are distinct. Then if we
set

(10) u=1+%(bj — bx) " (wjr — wiy),

with the sum taken over all pairs of distinct j and &, a straightforward
computation shows that uzu~! is diagonal modulo J™*!. ]

Adjusting the idempotents as required by the lemma, we now have
z in the proper form, and its powers give the desired basis for eBe,
thereby demonstrating the theorem. ]

Remark . The quotient B/J will always be a product of truncated
polynomial rings if d = 1 or 2 at every idempotent or if B has
a distributive ideal lattice, two cases which are quite important in
practice.

As a first application of the theory of diagonal interleavings, we con-
sider a situation which arises frequently in the classification of generic
local algebras. In testing a family of local algebras to see if it is generic,
the computer output indicates that the algebra has infinitesimal idem-
potent splitting deformations. This is a strong indication that the
algebra is not generic but does not constitute proof, since the algebra
might correspond to the closed point in a nonreduced component.

From the computer output and the structure of the given algebra By,
it is possible to deduce roughly the structure of one of the deformed
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algebras, and usually it can be chosen to have two idempotents. To
verify that there is an actual algebraic deformation B, with this general
fiber, one has to propose an interleaving z and show that its products
with the remaining elements of J give the structure constants of the
special algebra By at the distinguished point to. We now consider in
more detail this common case of a deformation which collapses a single
pair of idempotents ¢’ and e” into their sum e.

In the case of two idempotents collapsing, the quotient B/.J will be
the product of copies of the field K with a two-dimensional K-algebra,
generated by the idempotent e and an interleaving z. Since z lies in
the radical of the fiber over the closed point tg, the trace of z in the left
multiplication representation is zero over t,. Thus, we may replace z
by z — (Tr(2)/Tr(e)), and it will still generate the radical in the special
fiber.

Suppose that z has the form b'e’ + b"¢e" + w' + w", with w' € €'Je’
and w'' € e"Je". Set

(11) s' = Tr(e")/Tr(e)
s =Tr(e')/Tr(e)
(12) b=1b'/s".

Since 0 = (Tr(z)/Tr(e)) = b's” + b"s’, we conclude that b can also be
represented as —b"'/s”, and thus z may be rewritten as

(13) z=0bs'e —bs"e" +w +w'.

Let r' be the highest power of w’ which is nonzero, and let " be the
highest power of w” which is nonzero. Consider the set of polynomials
in z,

(14) 9ij(2) = (2 — bs'e)' (2 + bs"e)?,
for0<i:<r'+landfor0<j<r’+1.

These polynomials have two uses. One use, which we will need in the
proof of Proposition 1 below, is to express the powers of w’ and w” as
functions of z. In general we have

gij(2) = (z — bs'e)(z + bs"e)?
(15) = (—be" +w' +w")(be +w' +w")’
— (bel + w/)jwli + (—be” + w/l)iw//j‘
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Wheni =r'+1,j=1,...,r", the w part vanishes, and the coefficients
of the powers of w” form an upper triangular matrix which can be
solved for different powers of w’. Similarly, the g;; for j = r"” + 1 can
be solved for the powers of w’, as required.

The other use is to determine products of z with sections of the ideal
J by considering products of elements of J with

g01(2) = (z + bs"e) = be' +w' +w"

16
( ) gw(z) _ (Z . bs'e) =be" +uw + .

Thus, for example, if ¢ is a section of J which lies generically in e’ Be/,
we can multiply by g10(z) and conclude that

(17) 20q(to) = w'q(to)-

Such calculations are crucial to the construction of interleavings which
show that algebras are not rigid.

For a second application of interleavings, we prove a sufficient condi-
tion for the existence of deformations. This will allow us to eliminate
many algebras as possible candidates for being generic and gives us au-
tomatically many deformations on a deformation chart of n-dimensional
algebras. This theorem applies to algebras, one of whose local rings e Be
is a fiber product with a truncated polynomial algebra. This situation
arises most frequently in the case of nonlocal connected algebras with
nontrivial local Peirce components.

Definition. Let B be a deformation of a K-algebra By over a
scheme (C,tg), with C' = Spec(R), and let N be the maximal ideal
at a sober idempotent e. Let A be a local K-algebra with radical J.
An attachment of a local K-algebra A to B along e is a flat R-algebra
B whose underlying R-module is the direct sum of B with J ® R such
that

(i) the internal multiplication within each factor is just the induced
multiplication;

(ii) the idempotent section e multiplies J® R like an identity section;
and

(iii) right or left multiplication by an element of J ® R maps N into
itself.
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The special case R = K, which is just a fiber product of A with B,
will also be called an attachment.

Proposition 1. Let B be a deformation of a K-algebra By over
a curve (C,ty), let v’ and r" be natural numbers, and let B be the
attachment of E(r') to B along a sober idempotent section €. Then
there is an idempotent-splitting deformation of By Xy E(r' +r" + 1)
whose general fiber is isomorphic to the general fiber of B x E(r"),
where the R-module structure is induced from the first factor.

Proof. Let w' be the section of B which generates the radical of E(r’),
let w”” be the generator of the radical of E(r") and let €’ be the identity
in E(r"). Let A be a generator of the maximal ideal at ¢o. Set

(18) z="bs'e —bs"e" +w +w’,

where s’ and s are defined as in (11) above, and let e = €' + €”.
We can recover the powers of w’ and w” from the polynomials g;;(z)
fori = +1orj =r"+1. Thus, ez,...,2" " 1 are linearly
independent. The left or right product of z with any element of N
is well defined at ¢, and is equal to zero, as is 2"t 2. Thus, by
combining the powers of z given above with a basis of N, we get a
multiplication structure which extends to the special fiber and gives
the desired algebra By X E(r' + r” 4+ 1) as the fiber over ty. O

We illustrate both the construction of an interleaving and the use of
the special functions g;; with examples of diagonal interleavings. We
will actually give three examples with the same general fiber, of which
the first two can be obtained as in Proposition 1 above and the third
cannot. The third example is a generalization of the “most interesting”
deformation in dimension five, the deformation of a noncommutative
algebra to a semirigid family in such a way that the orbit of the special
fiber in the structure-constant scheme has the same dimension as the
orbit of each of the general fibers, yet the special fiber is not a natural
member of the family. In Happel’s list [5] this is the specialization of
F!x K to D%, and in Mazzola’s paper [7] it is the specialization of the
family 13(7) to (24), which is discussed there in some length.
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Example 2. (Interleavings). Let R = K[s] be a polynomial ring in
one indeterminate. Let A” be R[w"]/w"?, and let

(19) A, = K[s(z,y)/ (2,9, zy — syz).

Set

(20) LmEEY
w=x—y.

If we let 0 = (1 —s)/(1+ s), then these new basis elements satisfy the
equations

w? = —u?,
(21) uw = ou?,
wu = —ou’.

Let C be the affine line Spec(R), R = K[s|, and let ¢y be the point
s = 1, with maximal ideal (s —1)R. Let U = C —{to}, and let B be the
family over U whose closed fiber is A, x A”. Let €’ be the idempotent
in the first factor and e¢” the idempotent in the second. Then if J is
the radical of A’,, the attachment B of K[w"]/w"? to A’ will have

(22) Afw"]/ (", w" )

as its closed fiber. This is the five-dimensional family denoted by BS in
Happel’s list [5]. We now consider three different deformations whose
restriction to U has closed fiber A, x A”.

Example 2.1. (A trivial interleaving). Let b = s — 1, and set
(23) zZ=(b/3)e' — (2b/3)e".

Any element of the radical I of B can be written in the form v = g+cw”,
with ¢ € J and ¢ € R. Letting ¥ = v|y, we see that

(24) 5% = (b/3)q — c(2b/3)u".

This is a well-defined element of B and it is equal to 0 in the fiber over
to. Similarly, 20 determines a well-defined element of B which vanishes
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in the fiber over ty. We conclude that the closed fiber is isomorphic to

the algebra obtained from A} by attaching two trivial radical elements
n

w, and zo.

Example 2.2. (An attachment). This time, instead of an interleav-
ing which is independent of the radicals in the two components of the
general fiber, we will give an interleaving involving the radical of A”.
As before, we let b =s — 1. We set

(25) zZ=(b/3)e' — (2b/3)e” +w",
which satisfies the equation
(26) g12(2) = (2~ (b/3)) (2 + (2b/3))* = 0,

and since this is an equation homogeneous in Z and b, we get z5 = 0
when we extend it to ty. An analysis similar to that in Example 2.1
shows that zyp multiplies every other radical element trivially, showing
that the closed fiber By is the fiber product of A} with E(3).

Example 2.3. (A nontrivial interleaving). The final example is the
one toward which we have been working, in which the radicals of the
two components of the general fibers are integrally combined in the
special fiber. We must first remove from the affine line C' the point at
which s = —1. We now define

s)/(1+s)=0c

b=(1-
27
(27) w =b"1u

and set

(28) zZ=(b/3)e' +w' — (2b/3)e" +w".
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‘We now calculate

922(2) = (2 — (b/3))* (2 + (20/3))?
— w'2(b+ wl)2

— b2w/2

(29) (Z—(b/3)w = (w' —be" +w")w

w(Z — (b/3)) = —u?.
We already knew that
(30) w® = 0.

Taken together, equations (29-30) give a set of defining equations
for a six-dimensional algebra B with basis 1, z, 22, 23, 2%, and w. It
is associative and unitary because Bly =~ B. Suppressing the zero
subscripts to shorten the formulae, we find that in the fiber over ty the
ideal is given by

(31) (2% 4+ w?, 2w + w?, wz — w?, w?).

The ideal contains z° as a combination of the generators. Note that,
unlike the Examples 2.1 and 2.2, in this case the special fiber is
not obtained from A} by an attachment, and we cannot obtain this
deformation by applying Proposition 1. This example is actually used
below in the classification of the generic algebras in dimension six.

APPENDIX

Definitions Involving Algebraic Geometry

Definition. Let C be an affine algebraic scheme over an algebraically
closed field, K, i.e., C = Spec(R), with R a finitely generated K-
algebra. An R-algebra B which is flat as an R-module is called a flat
family of K-algebras. An ideal J in B which is flat as an R-module is
called a flat family of ideals.
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Remark . Since C' is Noetherian, the flatness of B implies that B
is locally free over C, and for any t we can always choose an open
neighborhood of ¢ in C' over which B is a free R-module.

Definition. Let R be a finitely-generated K-algebra, and let to be
a closed point of C' = Spec(R) corresponding to a maximal ideal pg
in R. Let By be a finite dimensional K-algebra. A deformation B of
By over (C,tp) is an algebraic family B over C together with a fixed
isomorphism

(32) By ~ B®r R/ .
If ¢ is the closed point of R corresponding to a maximal ideal y, then
(33) B, ~B®grR/u

is called the fiber over t.

Definition. Let V be an n-dimensional vector space over K with
basis v1,...,v,. If B is a free R-module, we identify each element of
B with a section of C into C' x V. If z € B and t is a closed point
of C, then the evaluation z(t) of z at t will denote the closed point
in the fiber B; obtained by reducing the coefficients of the v; modulo
the maximal ideal p corresponding to t. An idempotent e of B will be
called an idempotent section and will satisfy e(t)? = e(t) in each closed
fiber.

Definition. An idempotent e in an algebra A over an affine ring R
is called sober if there is a two-sided ideal N in A such that A/N ~ R
and 1 —e € N. An algebra A over an algebraically closed field K is
called sober if A/Rad(A) is a product of copies of K.

Definition. Let B be a deformation of By over (C,tp). Let
U = C — {tp}. We denote the restriction of the algebraic family B
to U by B|U.

Definition. An etale neighborhood of a pair (C,to) is a pair (C', t;)
such that C' = Spec(R') and t;, € C’, together with an etale morphism
of schemes p : C' — C such that p(ty) = to.
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Definition. If C' is a nonsingular curve, then the maximal ideal pg
can be generated by a single element 7. Let S be the multiplicatively
closed set consisting of the powers of 7. Since R is a domain, there
is a canonical injection of R into the ring S~'R. We will say that an
element of ST R is well-defined at ty if it lies in the image of R.

3. Loopless basis graphs. In an earlier work [9] the second au-
thor considered the following directed graph associated to any finite
dimensional algebra: The number of vertices is the number of idem-
potents in a set of primitive orthogonal idempotents. Choose such a
complete primitive set eq,... ,e, of idempotents and label each vertex
by one idempotent. For ¢ different from j, the number of arrows from
ej to e; is the number dimy e;Aej. The number of loops from e; to
e; is (dimge;Ae;) — 1. (The —1 occurs because the element e; of a
basis for e;Ae; is already represented by the vertex.) To distinguish
this graph from the quiver, which includes arrows only for elements of
A/Rad(A)?, we call this a basis graph. If Rad(A)? = 0, and A/Rad(A)
is a product of fields, then the basis graph corresponds to the ordinary
quiver. The radical-squared zero algebra associated with a given basis
graph will be called its basis graph algebra.

We showed in [9] that to every irreducible component, and thus to
every generic algebra, we can associate a unique generic basis graph,
and for most irreducible components this basis graph is loopless, i.e.,
has no arrows which begin and end at the same vertex. The main result
of this section is, in dimensions < 10, to reduce the problem of finding
all generic algebras with given loopless basis graph to a combinatorial
problem.

We can always choose a basis for the algebra which respects the Peirce
decomposition of A into a direct sum of vector subspaces A;; = e; Ae;.
We may also assume that this basis contains bases for the various
powers of the radical J. In [9] we defined the weighted basis graph
associated with an algebra A to be the basis graph of A with the arrows
weighted by natural numbers or infinity according to the positions of
the basis elements in the chain of ideals formed by powers of the radical.
Let J be the radical of A. The number of arrows from j to ¢ with weight
k is given by

(34) HE = dime;(J*/T*)e;.
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We proved that this is an upper semicontinuous function whenever
we have a deformation of finite dimensional algebras in which the
basis graph and the radical dimension remain fixed over the entire
deformation.

o—>>——0

FIGURE 1

The weight of an arrow is represented by the number of “barbs” drawn
on the arrow. Matrix units have a weight of infinity and are represented
by a solid triangular barb. For example, the first weighted basis graph
in Figure 1 represents the 3 x 3 matrices. The second represents the
upper triangular 3 x 3 matrices. We define a partial ordering on these
weightings.

Definition. Suppose ® and ®' are two weightings on the same basis
graph Q. Then ® < &’ if, for each pair 7, j and for each k, the number
of arrows from ¢ to j of weight less than or equal to k in ® is greater
than or equal to the corresponding number of arrows in @'.

Definition. An arrow z will be called reducible if there are two
arrows, not including x, forming a path from the initial point of =
to its end point. Other arrows will be called irreducible. An arrow
through which a reducible arrow can factor will be called reducing.

Remark . Only reducible arrows can have more than a single barb,
since the radical squared is generated by compositions of arrows. This
is a special case of Proposition 2 below.
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Definition. A complete lexicographically-oriented graph on n ver-
tices is a graph with vertices vy,...,v, and an edge oriented from v;
to v; for each pair 4, j with 7 < j.

Proposition 2. Let Q be a basis graph without loops. If it contains
no complete, lexicographically-oriented subgraph of order k, then for
any algebra A with @ as basis graph, we have

(35) Rad(A)*~!' = 0.

Proof. Let us denote Rad(A) by J. Assume that we begin with a
basis for A which respects the Peirce decomposition by the idempotents
corresponding to the vertices of Q. J*~! is generated by products
Tp_1ZTk—2+-x1 of the basis elements. We will assume that some
such product is nonzero and show that we get a contradiction to our
assumption.

Since the total product is nonzero, the set of arrows must form a
path: z; from vy to v, a2 from vy to ws, and so forth. Our first
claim is that all the vertices vy,... ,vx must be distinct. If not, there
would be a subproduct x;_; - - - z; which would form a cycle, that is to
say, it would lie in some Peirce factor eAe, where e is the idempotent
corresponding to v;. However, by assumption @ has no loops, which
means that (eAe) N J is zero. Since a product of radical elements must
lie in the radical, the given subproduct must be zero and thus the entire
product. @ thus contains k distinct vertices vy, ... ,vg.

For each pair 7, j with ¢ < j, we consider the subproduct z;_;---z;.
It must be nonzero since the entire product is nonzero. Thus, there
must be at least one arrow from v; to v;. We have thus found a
complete, lexicographically oriented subgraph of @, in contradiction
to our assumption. O

The following result was obtained independently by C. Cibils using
homological methods.

Corollary 2.1. A loopless basis graph algebra whose basis graph
contains no reducible arrows and no cycles consisting of two arrows is
rigid.
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Proof. We are assuming that our basis graph is loopless and, thus, as
mentioned above, could only deform to an algebra with the same basis
graph but with different weights. Since we have excluded two-arrow
cycles, we have excluded the possibility of the creation of matrix units
which always come paired in two-arrow cycles. Since we have excluded
reducible arrows, J?2 is zero and the only possible deformation is the
basis graph algebra itself. o

We are trying to determine all possible deformations of a loopless
basis graph algebra. Since one possibility is that a portion of the graph
deforms into a matrix block we must first answer the following question:
What are the conditions on a basis graph algebra which allow it to
deform into an algebra with matrix units?

Lemma 2. A set of n vertices in a basis graph algebra Ag can be
deformed to a matriz block if and only if they are connected, they are
completely symmetric with regard to all permutations, and the number
of loops at each vertez is one less than the number of arrows from each
point to another.

Proof. That these conditions are necessary is obvious since the matrix
units determine K-vector space isomorphisms among the blocks e; Ae;.
The problem is to show that they are sufficient. From the elements
in the radical represented by the arrows in the double complete graph
which must exist among the points, we choose pairs e;; and ej; of
elements which we want to deform into matrix units. If there are m —1
loops at each of the n vertices, then the set of n vertices and arrows
among them is the quiver of the matrix algebra M,,(R), where R is the
basis graph algebra of the graph consisting of a point and m — 1 loops.
For each arrow « from the internal vertex v; to an external vertex w
we choose n —1 symmetrical arrows and label them ae;;. Similarly, for
each arrow (8 from an external vertex w to the internal vertex vy, we
choose n— 1 symmetrical arrows and label them e;; 5. The deformation
is then completely determined by the standard deformation of matrix
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units to their corresponding basis graph algebra:

€ii€ii = €iis
(36) eijejk = teik,
2
€ij€ji = te;;. O

Definition. If x; is a basis element in A;;, we indicate that its left
idempotent is e; by writing I(¢) = j and that its right idempotent is
e; by writing r(t) = 7. A sequence of indices (s,t,u,...,v) will be
called admissible if r(s) = I(t),7(t) = l(u), etc. Such a sequence will
be called compatible with an index p if it is admissible, I(s) = I(p) and
r(v) = r(p). A product of basis elements can only be nonzero if the
sequence of indices is admissible, and only compatible indices can occur
in the product.

We now have the information required to prove the main result of
this section.

Proposition 3. Let Q be a loopless basis graph which has no
complete, lexicographically-oriented subgraphs of order 4 and no matriz
block configurations. Then there is a one-to-one correspondence between
irreducible components containing the basis graph algebra Ag of Q and
the mazimal weightings of Q.

Proof. Alg,,, the structure-constant scheme, is an algebraic scheme,
and thus has a finite number of irreducible components. We consider
those irreducible components which contain the basis graph algebra of
Q.

In [9, Prop. 3], we proved that if one algebra A is a deformation over
a curve of another, B, then the basis graph of B is obtained from the
basis graph of A by coalescing vertices or equals it. Here it is always
understood that whenever n points coalesce into one, n — 1 loops are
created, so that the total number of vertices and arrows remains fixed
at the common dimension n of A and B. Since @ contained no matrix
block configurations, and was loopless, every deformation of the basis
graph algebra Ag must be basic and have @ as its underlying basis
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graph. We take a particular irreducible component. From [9, Prop.
2 and 11] the generic algebra in this component has a fixed weighted
basis graph Q)’. For any algebra with this weighted basis graph we can
choose a basis which respects the Peirce decomposition and also gives
bases for powers of the radical J.

Since there are no complete, lexicographically-oriented subgraphs of
order 4, we know by Proposition 2 that for any deformation B’ of the
basis graph algebra Ag, we have J® = 0. Let us choose basis elements
corresponding to the vertices and arrows in the weighted basis graph Q’,
numbered so that z1, ... ,z, are idempotents, z,11,... ,2s correspond
to arrows with one barb, and the remaining basis elements zs11,... ,
correspond to arrows with two barbs. For each triple 4, j,¢ for which
t>s,r+1<14,j<s,and the sequence (i, 7) is compatible with ¢, we
choose an indeterminate afj. We define a generic algebra multiplication:

(37) ziz; = Yaj;x,

all other products of radical basis elements being zero. We claim that
this multiplication is associative. Any nonzero product of two elements
is a combination of elements z; for which ¢ > s, and thus any triple
product is zero. Therefore, the associativity relations

(38) (zizj)zy = i(zjar)

are trivially fulfilled. Thus, we have a monomorphism from the affine
space on these indeterminates into the scheme of structure constants,
with image W.

Every algebra with weighted basis graph @’ is isomorphic to one of
the algebras whose set of structure constants lies in W. Since W is
isomorphic to an affine space and is therefore irreducible, it must lie
completely within some irreducible component of Alg,. We claim that
this is the unique irreducible component with weighted basis graph
Q'. The closure of an irreducible component is a union of orbits,
since each component contains an open dense set which is a union
of orbits, and, thus, its closure is invariant under the group action.
Thus, any orbit which intersects W must be completely contained in
the given irreducible component. This includes all orbits of algebras
with weighted basis graph Q.
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Conversely, suppose we have an algebra whose weighted basis graph is
maximally weighted, so that by the upper semicontinuity result brought
above from [9], it has no deformations with a basis graph of higher
weight. It must be contained in some irreducible component, so this
irreducible component must have the same weighted basis graph. Thus,
by the previous paragraph, this is the unique irreducible component
with this weighted basis graph. O

Example 3. Let @ be the following basis graph:

€T
e — 0

o

FIGURE 2

The basis graph algebra for this basis graph is not rigid. In fact, the
parameter space to its versal deformation space is two-dimensional. If
we let the parameters be p; and po, then the generic deformation is
given by the following multiplication of the radical elements:

y.x:#lv

W+ 2 = lV.

(39)

In all cases except when both parameters are zero, the weighted basis
graph has two barbs on v. When both parameters are nonzero, we get
a rigid algebra whose orbit is an open subvariety of Alg.

The two special cases when only one of the parameters is nonzero
give two other algebras, making four orbits altogether represented as
deformations of this basis graph algebra.

4. The computer algorithms. The final ingredient in facilitating
the search for generic algebras is the use of computer algorithms to
verify rigidity or to locate deformations.

In [8] the second author described a computer algorithm for calculat-
ing the tangent space to the deformation space of a finite dimensional
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algebra. This object is better known to algebraists as H%(A, A), the
second Hochschild cohomology group of the algebra. If this cohomology
group is zero, then the algebra has no deformations, except the trivial
deformations induced by deformations of the identity automorphism.
If, for a family of nonisomorphic algebras depending on continuous pa-
rameter, the dimension of H?(A, A) at a fiber is equal to the number
of parameters, then the fiber is generic and the family is semirigid.

We need not actually be dependent on the accuracy of the computer
program. The results in Section 3 allow us to determine the rigidity of
most generic algebras on purely theoretical grounds, and the remaining
cases (in dimension six there are only eight) can be checked by hand,
once the computer has helped us find them. Thus, the program can be
regarded as an aid for the search, not an integral part of the proof of
the classification.

As we describe below, to show that the remaining algebras are not
generic requires classifying them into strata and displaying a nontrivial
deformation (usually an interleaving) for the generic element in each
stratum. The computer produces the multiplication table of the generic
deformation of each algebra, from which it is easy to choose a fairly
simple deformation.

Two refinements have been made in the algorithm since the original
version given in [8]. One, described in [10], calculates the dimension
of the group of automorphisms of the algebra and the dimension of the
orbit of the algebra which is useful information to have when trying to
calculate parts of the deformation chart of Alg,,. The second, which we
prove as Lemma 3 below, is simply an improvement in the efficiency of
the program and the readability of the results based on the theorems
in [9].

In [9, Prop. 1] it was proven that any deformation is equivalent,
via some deformation of the identity automorphism, to a deformation
in which the trivial sections of the basis elements preserve the good
properties of these elements. In particular, idempotents remain idem-
potents, and factors in the Peirce decomposition determined by a com-
plete orthogonal set of idempotents are also fixed.

Lemma 3. In order to determine all first order deformations of A,
modulo equivalence by deformations of the identity automorphism, it
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suffices to consider all deformations with fixed idempotents and Peirce
decomposition, modulo all deformations of the identity automorphism
which preserve the factors in the Peirce decomposition.

Proof. Given any other first-order deformation, its equivalence class
contains a deformation with the required properties, and we can replace
it by the good deformation. If two good deformations are equivalent,
then the automorphism connecting them converts each trivial section of
a basis element to a section lying entirely within the same Peirce factor
ejAey, and leaves each idempotent fixed. The first order automorphism
is of the form I + eM, and thus M must map each basis element z;
to a linear combination of basis elements from the same Peirce factor,
for only in that way will (I + eM)z; be stable under left and right
multiplication by the idempotents defining the Peirce factor containing
Z;. O

Application of this lemma to the algorithm for computing the tangent
space has considerably increased its efficiency in the case of algebras
with several idempotents. An associativity equation

(40) (zizj)oy = zi(Tja))

gives new information about the tangent space only when (4, j, k) is an
admissible sequence, and only for a compatible index p. Furthermore,
the product is known to belong to the Peirce factor defined by the left
idempotent of z; and the right idempotent of ;. This considerably
reduces the number of equations which must be checked. We also have
fewer equations when dividing out by the action of the matrices I +&M.
Finally, if our deformed multiplication is given by

(41) T = E(afj + 6bfj)acp
then we may assume that all the variables bfj are zero unless (i,7)

is admissible and compatible with p. This is a vast reduction in the
number of variables under consideration.

5. The inductive classification procedure. We now describe
an inductive procedure for determining the generic algebras of a given
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dimension n, based on the theoretical results of the preceding sections.
In order to give a clearer idea of the amount of work involved, we
describe the classification in dimension six. Detailed proofs of various
claims will appear in the first author’s Ph.D. thesis. The classification
of all six-dimensional algebras was carried out by Voghera [12] 80 years
ago, and our results verify the accuracy of his parameterization of the
continuous families.

As stated in the introduction, the explicit goal of this program is
to find all of the generic algebras, most of the algebras, and some of
the deformations between them. We have not found an exhaustive
search for deformations feasible for the large number of algebras under
discussion. Nor, for an algebra with a complicated internal structure,
will it always be feasible to determine its precise isomorphism class.
However, we try to divide up Alg,, into a finite collection of irreducible,
locally closed subsets which we will call strata, to assign each algebra
to its proper stratum, and to show that each stratum is either in the
closure of another stratum or else is itself dense in some irreducible
component of Alg,,.

The method we will use is a variation of Mazzola’s “method of
quivers,” modified by the Iarrobino-Briancon method of patterns. The
basic invariant of our underlying classification of algebras is the basis
graph. The basis graphs can be categorized into three main groups,
and in each group the nature of the work is different. The three groups
are loopless, mixed, and loop-only.

Definition. A loopless basis graph contains no loops. A mized basis
graph contains both loops and nonlooped arrows. A loop-only basis
graph has loops but no nonlooped arrows.

Every basis graph falls into exactly one of these categories, and
every algebra has a unique basis graph, so we can treat each category
separately. For each category we will describe the method used to
find all generic algebras and give numerical results on the number of
such algebras at least up to dimension six. We then summarize all the
generic algebras in a single table.

5.1. Loopless generic algebras. The theoretical foundation for the
search for generic algebras with loopless basis graph was laid in Section
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3. For each loopless basis graph there is at least one generic algebra
with that basis graph, and most generic algebras are of this type. The
basic result is Proposition 3 above, which says that if the basis graph
contains no complete lexicographically-ordered graphs on four vertices
and no matrix block configurations, the generic algebras are in one-to-
one correspondence with the maximal weightings of the basis graph.
In dimensions less than or equal to eight there are no complete four-
graphs, and, up to duality, only two matrix block configurations. Thus,
the classification is purely combinatorial. There are 21 generic loopless
algebras, which are drawn in Figure 3 at the end of the paper. They are
listed according to the dimension of the automorphism group, starting
from K°®, which has no automorphisms, down through the Kronecker
algebra, for which the automorphism group has dimension 20.

5.2 Generic algebras with mized basis graph. In contrast to the
situation in the loopless case, in which every loopless basis graph
produced at least one generic algebra, in the mixed case there are many
more basis graphs than in either the loopless or loop-only cases, and
hardly any of them correspond to generic algebras. Therefore, our chief
concern in this section is to find theoretical results which will eliminate
almost all graphs as expeditiously as possible.

In Section 3 we defined an arrow (which may or may not be a loop)
to be reducible if it was the composition of two other arrows. We called
it reducing if it is one of the factors in such a composition. If a loop is
neither reducible nor reducing, then its product with every other basis
element must be zero, and it must have weight 1, in any algebra on
that basis graph. Therefore, any such algebra is obtained by a trivial
interleaving (as in Proposition 1) from the product of a copy of the field
with an n — 1 dimensional algebra and is therefore not generic. This
eliminates most mixed graphs immediately.

In dimension six, the small number of mixed basis graphs which
remain can each be easily shown, by using Proposition 1, to be the
result of an interleaving, except in two cases. The first case is the dual
pair of graphs with two idempotents connected by an arrow and three
loops on one idempotent. If the three loops are designated x,y, and z,
with z = zy = syx, then we get an algebra with only infinitesimal
deformations, which will be shown elsewhere to give a nonreduced
component of Algg [11]. The second case again has two idempotents,
this time connected by two arrows x and y in one direction, one arrow
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z in the other direction and one loop. If zz (or, dually, zz) is nonzero,
then we get an algebra with no deformations. Thus, the total number
of generic algebras with mixed basis graph is four.

5.3 Generic algebras with loop-only basis graphs. In an algebra whose
basis graph has no nonlooped arrow, each idempotent corresponds to a
different connected component. Assuming that we know all the generic
algebras in lower dimensions, this means that we need only find the
generic local algebras of dimension n.

All local algebras have the same basis graph, consisting of one point
and n — 1 loops, which represent elements of a basis of the radical
J. Thus, in order to get any sort of useful classification, we must
consider more delicate discrete invariants of the algebra. As our coarse
invariant we will take the weighting of the basis graph, which depends
on the dimensions of the vector spaces J*/J1. As a finer invariant
we will adapt Iarrobino’s concept of a pattern to our noncommutative
situation.

In Section 3 for loopless algebras we used the fact that if J3 = 0,
all associativity relations are automatically satisfied. This is equally
true in our local situation, and, therefore, we obtain a large but simply
understood class of algebras.

Definition. Following Mazzola, we will call local algebras with
radical-cubed zero Scorza algebras. If c is the dimension of J/J? and d
is the dimension of J2, then the multiplication is completely determined
by a bilinear form mapping J/J? onto J?2, just as in Section 3.

Definition. The subset of Alg, parameterizing all such algebras,
for given ¢ and d, will be denoted by Scorza(c, d). Its closure will be
denoted by Scorza(c, d) .

We claim that the family Scorza(c, d) ™ is irreducible. Each Scorza(c, d)
algebra structure on a vector space V' determines a flag of vector spaces
V O J D J?, which are parameterized by points on a flag manifold.
Then for each point in the c?d-dimensional space of bilinear mappings
from J/J? x J/J? into J? we get an algebra in Scorza(c,d) . A vector
bundle over a flag manifold is an irreducible variety. Thus, every alge-
bra in Scorza(c, d) is a specialization of the general Scorza(c, d) algebra,
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and it is therefore sufficient to check the general algebra for rigidity or
semirigidity. The general family is given by fixing a radical flag and
taking d arbitrary ¢ x ¢ matrices which determine the bilinear form.
In the case of dimension six, there are three possible Scorza families
corresponding to the pairs of integers (4,1), (3,2) and (2,3).

Of these, the computer output shows that the first two give generic
families. For Scorza(4,1), the set of orbits are parameterized by two
parameters, and one can easily locate algebras for which the space of
infinitesimal algebras is exactly two. A typical generic algebra is given
by

zy = s(yz) = zw = t(wz)

with all other products of z,y, z, w equal to zero.

Similarly, for Scorza(3,2), there is a six-parameter family of orbits,
and one can easily find elements of this family which have a six-
parameter family of infinitesimal deformations, indicating that the
family is semirigid and gives a generic family.

The remaining Scorza family, Scorza(2,3) can be given by taking
z2, 2y and yz linearly independent and letting y* be a one-parameter
combination of these elements. The computer output indicates that
there are many first order idempotent-splitting deformations, and we
successfully computed one of them as a function of the parameter,
proving that the algebra was not rigid.

Having disposed of the Scorza algebras (which numerically form the
bulk of the local algebras) we are left considering weightings in which
the radical cubed is nonzero. Let s be the length of the radical, the
number such that J* is not zero, but J*+! is zero and divide into cases
according to s. For each s, there may be several different weights to
consider. Then for a fixed s and a fixed weighting, we divide further
according to the following:

Definition. A pattern of a local algebra is a basis of monomials
filtered by the radical such that each basis element of degree d > 1 is
the product of a basis element of degree d — 1 by a basis element of
degree 1.

Definition. A pattern is called normal if there is some ordering of
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the degree 1 monomials such that in each degree d > 1 the pattern
monomials, modulo commutativity, map onto an initial segment of the
sequence of commutative degree d monomials in lexicographical order.

For example, we would consider all of the patterns

17'1.7 y7 m27wy
1,z,y,2% yz

1,2,y zy, yx

to be normal, since in each case the degree 2 monomials, modulo com-
mutativity, map onto the initial segment (z2,zy) of the lexicographi-
cally ordered set (2, zy,y?) of second degree commutative monomials.

On the other hand, the following pattern is not normal because the
initial monomial of degree three is z3 rather than z2y:

1,2,y 2%, zy, z°y.

Since the weightings of the graphs are semicontinuous, there are a finite
number of general algebras for each weighting, and the general algebras
can usually be shown to have a normal pattern. (For characteristic zero
and a quiver with two loops; this is a theorem of Iarrobino [6]).

In dimension six, each weighting of the basis graph for a local algebra
has a single general algebra which has a normal pattern. The following
patterns for six-dimensional local non-Scorza algebras are normal when
the degree one terms are ordered alphabetically:

a
b
c
d

2 .3 .4 .5

1,I,CL',I,$,£E,
2 .3 .4

17%?/753,337307

2 .3
1axayazax y Ly

~ ~—

—~ Y~~~
~

2 3
].,I,y,I y LY, T

~—

The first, (a), is the pattern of the commutative truncated polynomial
algebra and deforms to the product of six copies of the field. The
second two, (b) and (c), give noncommutative families which are not
semirigid but rather deform, via an interleaving, to the product of two
copies of the field times the family Scorza(2,1). An interleaving for
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the unique family of algebras with pattern (b) is given in Example 2.3
above. The last, (d), gives an irreducible family which has infinitesimal
deformations but which is not generic. Details are given in the first
author’s thesis.

We now summarize the enumeration of generic algebras for dimension
six. As one can see, the proportion of generic algebras with loopless
basis graph remains high, though no longer as high as it was in
dimension five.

Enumeration of generic algebras to dimension six:

Properties
Dimension | Total | Loopless | Mixed | Looped
2 1 1
3 2 2
4 5 4 1
5 10 9
6 26 21 2 3

We now list the generic six-dimensional algebras, together with some
of their discrete invariants: The number of idempotents, the number
of parameters, the depth s, and the dimension of the automorphism
group of the algebra. For the loopless algebras, numbered 1 to 21, the
algebras are defined to be the unique algebras with the weighted basis
graphs given in Figure 3. Except for algebra 8, the upper triangular
matrices, these are all radical-squared zero algebras.

The mixed algebras both have two idempotents, labeled e; and es.
They are described by giving generators and relations products. Of the
loop-only algebras, all are derived from Scorza algebras.
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No. of | No. of Dimension
Algebra Idem- | Param- | Depth of the
potents | eters Aut. Group
Mized
22. z,y € e1Aea)
z € e2 Aer)
yz=zx =2y =20 2 0 2 7
23. Dual to 22 2 0 2 7
Loop-Only
24. Scorza(2,1) x K2 3
25. Scorza(4,1) 1 2 2 7
26. Scorza(3, 2) 1 6 2 7
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