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OF CERTAIN ELLIPTIC CURVES
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1. Introduction. Let k be an algebraic number field. For any
elements a, b, c,d of k with abc(d® — 27abc) # 0, define an irreducible
nonsingular cubic curve (over the field of complex numbers) by

F:aX®+0bY3+cZ°=dXYZ.

Whenever the set of k-rational points F'(k) (points P in the projective
plane with P = (z,y, z) for some integers z,y, z of k) is not empty, F
is an elliptic curve over k and F(k) is an abelian group. We consider
the problem of finding the torsion subgroup of F(k). We also give an
infinite family of elliptic curves over the rational numbers Q with rank
at least two.

The rank of these curves has been very well studied, see [1, 2, 3,
6, 12, 13, 14, 16]. Yet previously the only general result about
the torsion subgroup of F(k), denoted here by tor (F(k)), were the
theorems of Hurwitz [8] and Mordell [10,11]. These authors did not
use the modern language of elliptic curves, but their results may be
written as follows

Theorem 1.1. (Hurwitz-Mordell) Let a,b and ¢ be squarefree
nonzero rational integers, relatively prime in pairs. Let d be an integer
such that d® # 27abc. Suppose that F(Q) is not empty, and make F
an elliptic curve over k by choosing any element of F(Q) as the origin
of F.

(i) If at most one of a,b,c is +1, then the only torsion point is the
origin and the rank of F(Q) is positive.

(ii) Ifa=b=1, c# %1, then F(Q) has one or three torsion points.
F(Q) has three torsion points if and only if d =c£2 or 4c £ 1.

(i) fa=b=c=1 and d # —1,5, then F(Q) has three torsion
points.
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94 C. CALDWELL

(iv)] Ifa=b=c=1and d = —1,5, then F(Q) has siz torsion
points.

The result (iv) is due to Mordell, the others are due to Hurwitz.

Hurwitz’s proof uses a function H mapping F(Q) to the rational
integers defined as follows. For each rational point P on F', choose
relatively prime integers X,Y and Z with X nonnegative, such that
P = (X,Y,Z). Set H(P) = XY Z. Hurwitz showed that for every P
in F(Q), either H(P) =0, or H(P) divides H(—2P). This divisibility
property was the basis of his proof.

We generalize Hurwitz’s function by defining a function Ay r from
F(k) into the ideals of k as follows. Let [z, ... , %] denote the ideal of
k generated by the integers z1,... ,z, of k. For each point P in F(k)
choose integers X,Y, Z of k such that P = (X,Y, Z), and define

[abc][ XY Z]3
h XY 7)== ————— .
In section two we show hy r is a well-defined function with divisibility
properties similar to those of Hurwitz’s function H.

In section three we show how to find the torsion points in F(Q) whose
orders are a power of two. In section four we turn our attention to the
entire torsion group and generalize theorem 1.1 as follows.

Theorem 1.2. Let k be a field which does not have a unit u such that
1—w is also a unit. Let a,b,c and d be integers of k such that [a], [b], [c]
are square free ideals, and d® # 2Tabe. If none of ab=1,bc™t, ac™! are
cubes in k, then F(k) has no torsion. If ab=' is a cube, then the number
of points with odd order is one, if bc™! is not a cube in k, and three
otherwise. The number of points of order exactly two is one plus the
number of zeros in k of

abcX?® — dX + 2.

We then find the following family of elliptic curves with rank at least
two, and explain how to construct further examples.
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Corollary 1.3. Let m and n be odd relatively prime rational integers
such that a = n(n? —2m?) is prime to seven and squarefree. Define an
elliptic curve C with origin O¢ as follows,

C:aX®*+aY?+72% = —Tm?XY Z, 0c = (1,-1,0).

Then (1,—1,m) and (1,—2,n) generate a subgroup of C(Q) with rank
two.

We conclude this section by recalling the addition formulae for the
curve F. These formulae were first formulated by Cauchy [4] and
greatly simplified by Desbones [5].

Let T3 be the set of nine inflection points of F. Letting p be a
primitive cube root of unity, these points are

(—b1/3,a1/3,0), (—01/3,0,a1/3), (0, _Cl/S’bl/S)
(1) (_b1/37a1/3p70)’ (—01/3,0,a1/3p), (0,—61/3,b1/3p)

(—b1/3,a1/3p2,0), (_61/3707011/3)02)7 (0,_61/371)1/3}02).
For these points, we find

(2)
(z,y,2) + (=b3,a/3p7,0) = (p'z, p¥y, 2)

(z,y,2) + (_01/3’0’a1/3pj) _ (bZ/acl/szjy,a1/302/3pjz,a2/3b1/33:)
(z,y,2) + (0, _61/3,b1/3pj) _ (b1/302/3pjz,a2/301/3p2jx,a1/3b2/3y).

Let P; = (x4,9i,2;) (1 =1,2,3) and P; = —P; — P,. If at most one
of Py, Py is in T3, then
(3)

T3 = Tiyozs — TIY121, Y3 = YiloZo — Ys1Z1, 23 = ZoTols — ZaL1Y1-
The formula for multiplying by —2 on the curve F' is

(4)  —2(z,y,2) = (x(by® — c2®), y(cz® —azx®), z(az® —by?)).
If (b'/3, —a'/3,0) is the origin of F, then

(5) —(z,y,2) = (b*y,a* >z, (ab)'/32).
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Finally, notice that the set of inflection points 75 may alternately be
characterized by each of the following:

(i) T5 is the set of points (z,y,z) on F for which zyz = 0.
(ii) T3 is the set of points P on F' for which P = —2P.

(iii) If (b3, —al/3,0) is the origin of F, then Ty is the set of points
whose orders divide three.

2. A height function. Let k be any number field containing the
coefficients of our curve F. Define a function h; r mapping the k-
rational points of F' into the ideals of k& by

where z,y, 2z are any integers of k such that P = (z,y,2). The key
properties of hy r are listed in the following theorem.

Theorem 2.1. Let hi g be as above. Then, for all points P, P’ in
F(k)

(1) hg,r(P) is a well-defined integral ideal.
(ii) hg,r(P)=[0] if and only if P is an element of T3(k).
(i) GCD(hg r(P),hi,r(P")) divides hy p(—P — P’).
When (a/b)'/? is an element of k and the origin of F is chosen to be
(b'/3,—al/3,0), then we have
(iv) hgr(P) = b p(—P).
(v) Let m be an integer, hy p(P) divides hy p(mP).

(vi) Let P have order n. If m is an integer prime to n, then
thF(P) = hk7p(mP).

(vil) hgr(P+ Q) = hi,r(P) for all points Q in T5(k).

Proof. If L is any finite extension of the rationals containing the field
k and R is the ring of integers of L, then for all points P in F (k) we
have

hL7F(P):hk7F(P)-R, hk7F(P):hL7F(P)ﬂk.
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The statements in this theorem involve only the divisibility or equality
of ideals, so it is sufficient to prove the theorem for L = k(p,a'/3 /3,
01/3). Hence, we assume k contains a'/3,b'/3, ¢/3 and p.

Define a new curve B, and a birational map 7 mapping F to B as
follows. Let D = (abc) /3d,

B:X*+Y*+ 2 =DXYZ  m(x,yz) = (a"Pe,b' /e ).

Let g be a fixed prime ideal of k. For integers z; of k, let ord (z1, ... ,zn)
be the order at g of the ideal generated by zi,... ,z,. Notice that if
m(z,y,2) = (X,Y, Z) with z,y,2,X,Y, Z in k, then

3(ord (XY Z) — ord (X?,Y?, Z%))
= ord (abc) + 3ord (zyz) — 3ord (az®, by®, c2*).

That is, ord (hg,B(X,Y, Z)) = ord (hk,r(2,y,2)). This is true for all
prime ideals p of k, so the two heights are equal. Thus, it is sufficient
to prove the theorem for the curve function hy,g.

The function hy, p is a perfect cube, so we prove this theorem for the
function on B given by the cube root of h, p:

h(2,9,2)) = %

Claim (i) of the theorem is now obvious. Claim (ii) is true because
T3 is the set of points (z,y, z) with zyz = 0. Claims (iv) and (vii) are
clear by the addition formulas (5) and (2), respectively.

We next show that claims (v) and (vi) follow from claim (iii). Assume
(iii) holds for h. This implies h(P) divides h(—P — P) = h(£2P) (by
(iv)). So again by claim (iii), h(P) divides h(—P —2P) = h(£3P). We
can continue this process and prove claim (v) by induction. To see (vi)
let P have order n and let m be a rational integer prime to n. There
exists a rational integer m’ for which the product m'm is congruent to
one modulo n, so by claim (v) we know h(P) divides h(mP) and also
h(mP) divides h(m'mP) = h(P). This proves claim (vi).

To complete the proof, we must show h satisfies claim (iii). Equiva-
lently, we must show that if —P; — P, = Py for points P; of B(k), then
for each prime p of k

(7) min{ord (h(Py)), ord (h(P2))} < ord (h(Ps)).
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The proof of this relation is purely computational and is left until
section five.

Example 2.2. The curve C : 423 + 2y + 23 = —3zyz has exactly
three points defined over Q:

(1,-1,1),  (1,-1,-2),  (1,2,-2).

At each of these points hq,c is equal to [8]. Let 8 b any cube root of
two and choose 0¢c = (—1,3,0) as the origin of C. The curve C has
nine points defined over k£ = Q(8):

P=(1,-1,1) 2P = (—1,5% -23) 3P =(0,-1,5)
4P ]-a27 _2) 5P = (/87 17 _/82) 6P = (_170752)
7P:(1a7152) 8P (7l’ﬂ2aﬁ) 9P:(717650):UC
hq(s),c takes on the value [8] at P,2P,4P,5P,7P and 8P; and the
value [0] at 3P,6P and 9P.

= (
= (

Remark 2.3. It is possible to make the functions hy r independent of
the field k by setting

hF(fU,yvz) = [NormL/Q(hL,F(x,y,z))]l/[L=Q]

where L is any number field containing k over which (z,y, z) is defined.
This is well defined but not necessarily an integer. We do not use hp in
this work because the divisibility properties for which hy r was defined
are much less apparent.

3. Points with order a power of two. Define an elliptic curve A
over k by
A: X*+Y? +abeZ® =dXY Z.
Sylvester [15] defined a rational map p : F(k) — A(k) by
K (m,y,z) — (X,Y,Z)

where

X = ab®z3y® + bc?y3 25 + a?ez2® — 3abea®y®2?

Y = a?bz®y® + b%cy®2® + ac?2%23 — 3abeadyd 2

dZ = a®z® + b3y° + ¢32° — 3abea®y® 23,
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A rational map between abelian varieties is a homomorphism plus a
translation. Thus, x4 will be a homomorphism if we choose p (0F) to be
the origin of A. p has degree nine so the kernel of y is the points of order
three. Thus, to determine the subgroup of torsion points with orders
prime to three in F'(k), it is sufficient to find in A(k) the (isomorphic)
subgroup of torsion points with orders prime to three.

Every choice of origin for A(k) yields an isomorphic group structure,
so we choose (—1,1,0) as the origin of A(k). Let P = (z,y,z) be a
point on A with order two. Recall zyz is zero if and only if (z,y, 2) is a
point with order three; thus, zyz # 0 and we may assume x = 1. Now
—2(1,y,2) = (—1,1,0) with (4) yields

y(cz® —1) = h, y® —cz® = —h, 2(1—y3) =0

for some constant of proportionality h in k. These equalities show that
y = 1. Solving for z in the equation defining A, we find

Lemma 3.1. Let 04 = (—1,1,0) be the origin of A. The points of A
with order dividing two are the origin 04, and the three points (1,1, Z;)
where Z1, Zs, Z3 are the zeros of

(8) abeZ® —dZ +2 = 0.

If F is an elliptic curve over k, then the number of points with order
two in F(k) is one plus the number of zeros in k of (8).

The integer two is prime in the Euclidean domain Q(p), allowing us
to easily find the following.

Example 3.2. Suppose that £ = Q(p), a,b,c,d are integers of k,
and abc is squarefree. F' has a point of order two if and only if

abe = p'd+2, or dabc=p'd+1

with i = 0,1 or 2. The points are (—1,—1,4p%), (—1,—1,42p"),
respectively.

We conclude this section with a result which gives us a way to find
all the points of order 2* on A (hence on F).
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Lemma 3.3. Let P = (r,s,t) be a point on A. If rst = 0, then
—2P = P. Ifrst # 0, then the points QQ for which —2Q) = P are given
by Q = (1,Y,Z) where Y and Z satisfy the following equations:

(9) tY + Z(rY +5) =0

(10) rY* +2sY3 +tdY? 4+ 2rY + 5 =0.

Proof. If rst = 0, then P is in the set T35 and, therefore, —2P = P.
So assume rst # 0. Let P = —2(X,Y, Z) for some complex numbers
X,Y,Z. By the addition formula (4) (and r # 0) we know X # 0. So
we may further assume X = 1. Again, using the addition formula (4)
we have

Y3 —¢cZ% = ruw, Y(cZ® - 1) = sw, Z(1-Y?) = tw
for some constant of proportionality w of k. Eliminating w we find
(rY + s)cZ® = (sY? + 1Y, —tcZ® =rZ(1 -Y?) —tY>.
Combining to eliminate ¢Z3, we find
(11) r(1-Y?)[Z(rY +s) +tY] =0.
If 1 Y3 =0, then t = 0. st # 0, so in this case (11) is just (9). We

now find (10) by using (9) and (11) to eliminate Z from the equation
for A.

4. The torsion subgroup. To simplify the statements of our next
results, we will call a nonsingular cubic F' admissible if [a], [b] and [c]
are squarefree integral ideals of k£ and d is an integer of k.

Theorem 4.1. Let F be admissible and let P = (z,y,z) be a point
Of F(k‘) hp’k(P) divides hp’k(—2P). If hFJc(P) = hpyk(—2p), then
either P is in T3, —2P is in T3, or there exists a unit u of k such that
1—u is a unit and —2(z,y,2) = (z, —uy, (v — 1)z).
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Section six is entirely devoted to the very computational proof of
this theorem. In this section we explore the theorem’s consequences
beginning with our generalization of the Hurwitz-Mordell result.

Corollary 4.2. Let F be admissible. Suppose that k does not have
a unit u such that 1 — u is also a unit. If none of ab™!,bc™1, ac™!
are cubes in k, then F(k) has no torsion. If ab~! is a cube, then the
number of torsion points with odd order is one when bc™! is not a cube
i k and three otherwise.

Proof. If ab~',ab~ ', ac™! are not cubes, then the intersection of T
and F(k) is empty. Thus, for every point P in F(k), we know by
Theorem 4.1 that hy p(P) properly divides hp j(—2P), which properly
divides hg, #(4P), which properly divides hy, »(—8P), etc. So P cannot
be a torsion point. On the other hand, if ab~—! is a cube, let 0p =
(b1/3, —a'/3,0). If P is a torsion point with odd order, then by Theorem
2.1 hi,p(P) = hy r((—2)'P), so by Theorem 4.1 P is an element of T5.
Looking at (1) we see the number of points in T3 which are k-rational
is one if bc™! is not a cube and three if bc~! is a cube.

We now find an infinite family of elliptic curves with ranks at least
two.

Corollary 4.3. Let m and n be odd relatively prime rational integers
such that a = n(n? —2m?) is prime to seven and squarefree. Define an
elliptic curve C' over Q as follows

C:aX3+aY?+72% = —Tm?XYZ, 0c = (1,-1,0).

The points (1,—1,m) and (1,—2,n) generate a subgroup of C(Q) with
rank two.

Proof. By Corollary 4.2, C(Q) has no two torsion so the points
P, = (1,-1,m) and P, = (1,—2,n) of C are points of infinite order
(thus rank (C'(Q)) > 0). Assume, for contradiction, rank (C(Q)) = 1.
Let P = (z,y,2) be a generator with z,y, z relatively prime integers.
Because a is squarefree we may assume further that x,y, z are pairwise
relatively prime, hence hq c(P) = [7a][zyz]*/[a, z]>. By Theorem 2.1
(parts v and vii) hq c(P) divides GCD(hq c(P1), hq,c(P2)) = [Ta],
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i.e., [zyz] divides [a, z] and it follows that zy = £1. The only points
satisfying this are O¢, P; and —Pj, so P = £ P;. This is a contradiction
because hq,c(P1) divides hq,c(P2). o

Remark 4.4. In this construction of an infinite family of curves with
rank two (or greater) it is not necessary to use the points (1, —1,m),
(1, —2,n); we could have picked most any integers r, s, t, u and chosen C
so that C'(Q) contains the points (r, s,m) and (¢, u,n). Thus, we could
easily construct infinitely many families of curves with ranks greater
than one.

5. The completion of the proof of Theorem 2.1. In section
two we began our proof of theorem 2.1 by proving claims (i), (ii), (iv)
and (vii). We then showed claims (iv) and (v) follow easily from claim
(iii), which in turn follows from the following inequality (7) for points
P3; = —P; — P> on the curve B.

min{ord (h(Py), ord (h(Ps))} < ord (h(P3)).

(ord (1) is the order of the ideal I at a fixed prime ideal p of k.) We
now complete the proof by showing this inequality always holds.

If h(Py)h(P2) = [0] (the zero ideal), then at least one of Py, P is a
point of order three and we are done by claim (vii) of this theorem.
Assume h(Pp)h(Pz) # [0]. The inequality (7) also clearly holds if
ord (h(Py))ord (h(Pz)) = 0, so we assume

(12) 0 < ord (h(P1)) < ord (h(P2)).

Choose x;,y;,z; in k so that P; = (z4,y;,2), ¢ = 1,2. The curve B is
homogeneous and there exists an element of the algebraic number field
k with order one at p, so we may assume ord (z;),ord (y;),ord (z;),
1 = 1,2, are nonnegative and at least one of these three orders is zero
for each point P;, i = 1, 2.

Adding a point of the set T3 to P; rearranges the coordinates of P;
(by addition formula (1)), but does not alter the value of h (by claim
(vii) of Theorem 2.1). Thus, we also assume
(1
0=ord(z;) <ord(y1) <ord(zy), 0=ord(z2)<ord(zz) < ord(yz).

~
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From the definition of the map h, we have

(14) ord (h(z,y, 2))
= ord (z)+ord (y)+ord () —3 min{ord (z), ord (y), ord (2)}

s0, with our assumptions,
(15) ord (h(Py)) = ord (z1) + ord (y1), i=1,2.

Using (7), (12) and (15) we see that to prove the theorem it is sufficient
to show the following

(16) ord(x1) + ord (y1)
< ord (z3 Hord (ys Hord (z3)-3 min{ord (z3),ord (ys3), ord (z3)}.

The remainder of this proof is divided into six cases:
(I) Py # P», ord (y1) = ord (z2) =0
(II) Py # Ps, ord (y1) =0, ord (z2) >0
(III) P, # Py, ord (y1) > 0, ord (z2) =0
(IV) Py # Py, ord (yy1),ord (z3) > 0
(V) Py = Py, ord(z1) >0, ord (y1) = ord (22) =0
(VI) P, =P, ord (z1,0rd (y; > 0, ord (z2) = 0.

To begin cases (I) through (IV) we use the addition formula (1) to
define elements z3,ys, 23 of k so that P; = (z3,ys, 23).
(17)

_ 2 2 _ .2 2 _ 2 2
T3 = XT1Yg21 — X2Y122, Y3 = Ta¥Y121 —T1Y222, 23 = T1Y123 —T2Y227.

Case (I). ord (y1) = ord (z2) = 0, so by (12), (13), (15) and (17) we
see ord (z3) = ord (y3) = 0. Thus, ord (z1) < ord (z3) = ord (h(Ps)) so

ord (z3) = 0 (by (17), (12) and (14)). This shows the inequality (16)
holds in case (I).

In cases (II), (III) and (IV), ord (D) < 0. To see this, note that in
each of these cases at least two of ord (z;), ord (y;), ord (z;) are nonzero
for either ¢ = 1 or ¢« = 2. If ord (D) is nonnegative, then all of
ord (z;), ord (y;), ord (z;) must be positive (by the equation of the curve)
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which contradicts our assumption that at least one is zero. So for the
proofs of (II), (III) and (IV) we assume —ord (D) = M > 0.

Case (II). ord(x3) > 0, so ord(z3 + y3 + 25) = ord(z3) =
ord (Dzays22) = 0. This shows ord (z2) + ord (y2) = M. Also,
ord(y1) = 0, so 0 < ord(z} + v§ + 2}) = ord (Dz1y121). This
shows M < ord (z;1). Using these in (17), we find ord (z3) = ord (z2),
ord (y3) = 2ord (z — 2), M < ord (z3), from which the inequality (16)
follows.

Case (III). If ord (z2) = 0 and ord(y;) > O, then, by the same
argument as in (II), we find

ord (z3) = 2ord (y1), ord (y3) = ord (y1), M < ord (z3),

and again the inequality (16) is clear.

Case (IV). If ord (y1)ord (z2) # 0, then we interchange z3 and y,
(by adding an element of 75 which does not affect the heights by claim
(vii)). As in (II), we know ord (z1) + ord (y;) = ord (yz) + ord (z2) =
M. If all four orders are equal, then the result is trivial. Because
ord (h(Py)) = ord (h(P;)), we may assume ord (y2) > ord(z1) (by
interchanging Py, P» if necessary). Thus we now have

0 < ord (z2) < ord (y1) < ord (z1) < ord (ya).
Using this, we find
ord (z3) = 2o0rd (y1) + ord (22), ord (y3) = ord (y1), ord (z3) = ord (y2)

and again the inequality (16) follows easily.

Finally, we treat the two cases with P, = P, = (z,y,2). We may
assume 0 = ord(z) < ord(y) < ord(z) and ord(xz) > 0. Using the
addition formula (4), we define z3,ys, 23 by

3 3)

Ty = x(y?’ — 23) ys =y(z° —z 23 = z(:L'3 — y3).

Case (V). If ord (y) = 0, then ord (y3) = ord (z3) = 0, and ord (z3) =
ord (z), showing the inequality (16) holds.

Case (VI). ord (y) > 0, so we find

ord (z) = ord (z3), ord (y) = ord (ys), ord (z)) < 3ord (ys),
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from which the inequality (16) is clear. This completes the proof of
Theorem 2.1.

6. The proof of Theorem 4.1. This section is devoted to the
proof of Theorem 4.1. Let P = (z,y,z) with z,y, z integers of k.
If T3 contains P or —2P, then the result of the theorem is obvious,
so we assume 73 contains neither of P, —2P. Recall the formula for
multiplication by —2 on F is

—2(z,y,2) = (2(by® — c2®), y(cz® —az®), z(az® —by?)).

Let [z1, 2, ... ,z,] denote the ideal generated by the elements z; of k,
and for any ideals I and J of k, let I + J denote the greatest common
denominator of I and J. Define ideals I, I», I3, J1, J2, J3 of k by:

I = [cz* — by?), I = [az® — ¢z, I3 = [az® — by

Ji = [az?], Jo = [by’], Jy = [c2°].
These ideals are nonzero by part (ii) of Theorem 2.1. Using the
definition (6) of hy r and our hypothesis that hy g(P) = hg r#(—2P),
we see
(18) LILI(J + o+ J3) = (LI + JoI3 + J313).
By adding the generators of I, I3, we see
(19) I | I + I.
(That is, I; divides I + I3.)

Lemma 6.1. If J;, i = 1,2,3, are defined as above, then

(20) Ji | Ja + Js, Ja | 1+ T, Js | J1 + Jo.

The proof uses the special form of F' and is delayed until the end of
this section.
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Define new ideals I,J,I/,J!, i = 1,2,3 by I = I + Iz + I3, J =

Ji+Jo+ Js, I; = I'T and J; = J/J, i = 1,2,3. Now (18), (19) and
(20) become

(21) LT, = Ji I3 + JHI3 + JLI83
(22) M=L+I=1I+1I,
(23) M =J)+Js=J, +J5=J, + J5.

In particular, (21) shows that I divides J,I53 + J5 I3, so (22) implies I}
divides J{ + J3; and finally, (23) implies I is [1]. Thus, by symmetry,

This shows that there exist units u; and us of k£ for which
(24) cz® —by® = uy H(c2® — ax®) = uy P (az® — byP).

Eliminating z,
(u1 +ug — 1)(cz® — by®) = 0.

Assume for contradiction that w; + us # 0, then cz® = by® and

3az® = 3by® = 3cz® = dabc. Thus, (z,y,2) = (a=V/3,b71/3,c"1/3),
d® = 27abc, and F has genus zero. This is a contradiction because
F is nonsingular, hence u; + us = 1. Finally, (4) and (24) imply
—2(z,y,2) = (—z,u1y,uzz), completing the proof of this theorem.
O

Proof of Lemma 6.1. We assume for proof by contradiction that
J2 + J3 does not divide J;. So there is at least one prime p of & such
that

(25) min{ord (J3), ord(J3)} > ord (Jy)

where ord (I) denotes the order of the ideal I of k at the prime .

By (25) and the equation defining the curve F, we know ord (J;) =
ord ([dzyz]). This may be written

(26)  ord (a) —ord (d) = (ord (y) — ord (z)) + (ord (z) — ord (z)).
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Notice the left side of this equality is less than ord (a), which (because
F is admissible) is at most one.

Using the definitions of J;, i = 1,2, 3, the restrictions on the ideals
[a], [b], and (25), we see
2 > ord (b) — ord (a)
2> ord(c) — ord (a)

[ord () — ord (y)]

(27) [ord (z) — ord (2)].

>3
>3
This shows that ord (z) < ord(y) and ord (z) < ord (z). By (26) at
least one of these must be an equality, say ord (z) = ord (y), then, by
(27), ord (b) = 1 and ord (a) = 0. Finally, ord (a) = 0 in (26) implies
ord (z) = ord (y) = ord (z), and ord (¢) = ord (b) = 1.

Using the definition (6) of the function h we see that

ord (hg r(z,y,2)) =2 and ord (hyp(—2(z,y,2))) >4,

giving the desired contradiction. o
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