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EXAMPLES OF CYLINDRICAL SHOCK WAVE
CONVERSION BY FOCUSING

CALVIN H. WILCOX

1. Introduction. Cylindrical waves are solutions of the wave
equation in two space dimensions:

(11) Utt - U;,;m - Uyy = 0

Cylindrical shock waves are discontinuous solutions of (1.1). The theory
of shock waves was initiated by B. Riemann in the nineteenth century
and developed by H. Hugoniot and J. Hadamard [9, 10]. A simple and
general framework in which to develop a theory of shock waves became
available in 1950-1951 with the appearance of L. Schwartz’s theory of
distributions [16].

The purpose of this expository article is to present examples of
cylindrical shock waves and their conversion into new shock waves by
the process of focusing. The construction of the examples is based
directly on the concepts and results of the Schwartz theory. All the
examples are rotationally symmetric cylindrical waves; that is, waves
of the special form

(1.2) U(z,y,t) =u(r,t), where r=+/22+y>%

Examples are constructed of waves (1.2) that are piecewise analytic for
t < 0 with finite jump discontinuities on the backward wave cone

(1.3) I ={(z,y,¢) | t+7=0and t <0}

in three-dimensional space-time. Physically, the sections of I'_ by the
planes ¢t = t; < 0 correspond to a family of contracting concentric
circular wave fronts that converge to a focus at the origin at time t = 0.
It is shown below that, after passing through the focus at time ¢ = 0,
the wave function u(r,t) tends to infinity logarithmically at every point
of the forward wave cone

(1.4) Iy ={(z,y,t) |t —r=0and t > 0}.
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Physically, the sections of I'; by the planes ¢ = ¢{; > 0 correspond
to a family of expanding concentric circular wave fronts that bear
a logarithmically infinite shock wave. Note that in space-time the
singularities on I'y are a barrier to continuing u(r,t) into the interior
of I' ;. Elementary methods provide no way to pass this barrier. The
power of Schwartz’s theory will be demonstrated by showing that it
provides a unique continuation of u(r,t) to all of space-time.

Another effect of focusing is a reduction in the degree of differentia-
bility of u(r, t) at the focus. It is shown below that if u(r,0) € C*[0, c0)
and wu(r,0) = 0, then u(0,t) € C*~1/2[0,00). Here use is made of the
theory of fractional derivatives [3] and k£ may be any real number such
that k£ > 2.5.

2. The Cauchy problem for cylindrical waves. Cylindrical
shock waves are constructed below by solving the Cauchy problem for
the wave equation (1.1) with discontinuous Cauchy data,

(2'1) U(a:,y,()) - F(may)v Ut(wayao) - G(xay) V(l’,y) € R

A solution of (1.1), (2.1) is interpreted as a Schwartz distribution
U € D'(R?) that satisfies

(2.2) Uyt —Upe —Uyy =F®5 +G®5 inD'(R?),
and
(2.3) suppU C R? x [0, 00),

where the derivatives in (2.2) are understood in the distribution-
theoretic sense. The fundamental theorem for the problem (2.2), (2.3)
is

Theorem 1. The Cauchy problem (2.2),(2.3) has a unique solution
U € D'(R?) for every pair F,G € D'(R?).

This result has been known since the early days of distribution theory.
An elementary proof of the theorem, and references to the literature,
are contained in a recent paper by the author [18]. Theorem 1 is
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used below to construct shock waves and to characterize their unique
continuations beyond the singularities that are produced by focusing.

If the distributions F, G in (2.2) are generated by locally integrable
functions, then equation (2.2) is equivalent to the identity

(24) U(®y — By — @)

= /700 /jO {-F(z,y)®(z,y,0) + G(z,y)®(z,y,0)} de dy

where ® € D(R3) = C§°(R?) is an arbitrary Schwartz testing function.
In particular, if U € C?(R? x [0, 0)), then (2.2), (2.3) are equivalent to
the classical wave equation (1.1) and the initial conditions (2.1). The
proof is by integration by parts.

3. The focusing of shock waves. The purpose of this section is to
construct a rotationally symmetric solution of the wave equation that
has a finite jump discontinuity on the backward wave cone I'_. Note
that (1.2) implies that

1 27

(3.1) u(r,t) = — U(rcosf,rsiné,t)db.
2 0

Moreover, the right hand side of (3.1) is meaningful for all » € R and
defines an even function of r. Hence, if U(z,y,t) is defined for all
(z,y,t) € R? x (t1,t2), then u(r,t) is defined for all (r,t) € R x (¢, t2).
In addition, (3.1) implies that

(3.2) U(z,y,t) € CF(R? x (t1,t2))
— uec CFR x (t1,t2)) Vk=0,1,2,....
Finally, the usual representation of the Laplace operator in polar

coordinates implies that if U satisfies the wave equation (1.1), then
u satisfies

1
(33) Utt — Upyr — ;’U,T =0.

Equation (3.3) is sometimes called Darboux’s equation. It is simply
the wave equation for a rotationally symmetric function u(r,t).
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The principal example of this article is a solution of (3.3) that has
finite jump discontinuities at the points of the backward wave cone
I'_ and vanishes in its interior. The search for such a solution is
complicated by the fact that equation (3.3) has no pure progressing
wave solutions. Hence, a generalized progressing wave, of the type
emphasized by F.G. Friedlander [5, p. 63], will be sought. The
characteristic cone I'_ has the equation ¢t + r = 0. Thus, Friedlander’s
expansions suggest the Ansatz

(3.4) u(r,t) = H(r +t) i An(r)(E+r)", Vit <0,

n=0
where H(z) denotes Heaviside’s function:
(3.5) H(z)=0 V<0, and H(z)=1 Vz>0.

Equation (3.4) implies that the jump in w(r,t) across the wave front
I'_is

(3.6) [u](r) = u(r,—r + 0) — u(r,—r — 0) = Ao(r) Vr > 0.

Moreover, Friedlander’s transport equation [5, p. 51], specialized to
circular wave fronts, gives [u](r) = ao/r'/?. Hence, one has

(3.7) Ay(r) = ag/r'/2.

Next, substituting (3.4) into (3.3) gives, after some algebra, the recur-
sion relation

1 1
(3.8) A’,{+;A’n+(n+1) <2A;Jrl + ;An+1> =0 VvYn=0,1,2,...,

where the primes denote r-derivatives. Combining this equation with
n = 0 and equation (3.7) yields a solution A;(r) = a1 /r3/2. Proceeding
in this way, one finds that (3.7), (3.8) have solutions of the form

(3.9) Ap(r) = ap/r /2 Vn=0,1,2,...,

where ap is an arbitrary constant and the remaining constants are
determined by the recursion relation

2
ap+1 1 (n+1/2
3.10 == Vn=0,1,2,....
( ) an 2<n+1 ’ n y Ly “y
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It is easy to verify that the solution of (3.10) is

(3.11) o = 11/2)(3/2)(5/2) - ((2n — 1)/2)]? < 1 ) -

" (n!)2

277,

On taking a9 = 1/2'/? in (3.11) and substituting (3.11) and (3.9) in
(3.4), one finds that

(3.12)

w(ryt) = H(r+1)— 3 [(1/2)(3/2)(5/2) -+ ((2n—1)/2)] <t+,.> |

(2r)1/2 (n!)2 2r

n=0

Up to this point, the calculation of u(r,t) has been purely formal.
However, on comparing the series in (3.12) with the hypergeometric
series

(3.13)
a(a+1)---(a+n—1)bb+1)---(b+n—-1) ,

F(a,b,c,z)zz cc+1)---(c+n—1)n! o

n=0
one finds that

H(r+1)

(3.14) u(r,t) = W

F(1/2,1/2,1,(t +r)/(2r)).

Solutions of the wave equation of this type were first mentioned to
the author by Dr. R.N. Buchal. Recall that the hypergeometric series,
when it does not terminate, converges in the unit disk |z| < 1 in the
complex plane. It follows that the function F(1/2,1/2,1, (¢t +r)/(2r))
is defined and analytic for —3r <t < r, r > 0. Hence, equation (3.14)
defines a function u(r,t) in the space-time domain ¢ < r with boundary
I'y. Moreover, u(r,t) is piecewise analytic there, with finite jump
discontinuity [u](r) = 1/(2r)'/? on the backward wave cone I'_ and
satisfies the wave equation except on I'_. The last statement follows
from the derivation and can also be verified by direct differentiation.
An independent verification that (3.14) defines a distribution solution
of the wave equation in the domain ¢ < r, r > 0, is given in Section 6
below.

The function u(r,t) defined by (3.14) is the principal example of a
converging cylindrical wave that will be studied here. The converging
wave fronts r +¢ = 0, t < 0, have a focus at the origin at ¢t =0 and a
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singularity may be expected there. In fact, if (r,t) approaches the origin
along the straight line (¢ +r)/2r =k, 0 < k < 1, then ¢ = (2k — 1)r,
and hence one has

1

(3.15) u(r,(2k — 1)r) = @2

F(1/2,1/2,1,k) = oo when r — 0.

Thus, u(r,t) does indeed have an unbounded singularity at the focus.
It is surprising that it also has an unbounded singularity at every
point of the forward wave cone I'}! It is clear that if (r,t) — (ro,70),
ro > 0, then in (3.14) one has (¢t + r)/2r — 1, a point on the circle of
convergence of the hypergeometric series, and hence one may expect
that u(r,t) — co. To make a more precise statement, the identity [4,
p. 318]

2
(3.16) F(1/2,1/2,1,k*) = ;K(k), vkl <1,

may be used. Here K(k) is the complete elliptic integral of the first
kind, defined by

1
(3.17) K(k) :/ dz . Ykl <1
o V/(1-2%)(1 - k22?)
It is known that [4]
(3.18) logd < K(k) + logy/1 — k2 < g

Combining this with (3.14) and (3.16) gives, after some simplification,

—log(r —t)

(3.19)  wu(r,t) = r2n)iE

+0(1), forr—t—0+, t>1t >0.

In particular, u(r,t) — 400 at every point of T'.

The singularities of u(r,¢) on I'y are a barrier to its continuation, by
elementary methods, into the interior of I'". Nevertheless, a unique
continuation of u(r,t) to all of space-time, as a Schwartz distribution,
is guaranteed by Theorem 1 above. To see this, one need only note that
the Cauchy data u(r,tg), us(r,to) are piecewise analytic, and hence in
D'(R?), for any tq < 0. The Cauchy problem with rotational symmetry
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is solved in the next section. The results are used in Section 6 to derive
an explicit representation of u(r,t) in the interior of T'; .

4. The Cauchy problem with rotationally symmetric smooth
data. An explicit solution of the Cauchy problem for the wave equation
(1.1) is constructed in this section for the case of rotationally symmetric
Cauchy data (2.1):

(4.1) F(z,y) = f(r), G(z,y)=g(r) wherer=+/22+ y2.

Of course, the classical Parseval formula provides a representation of
the solution as a double integral [18]. However, instead of evaluating
this integral it will be more expedient to use another method that makes
use of the symmetry of the data.

To begin, the case of smooth data F, G € C*°(R?) and corresponding
classical solution U(z,y,t) € C°°(R? x [0,00)) is considered. Note that
(4.1) implies

(4.2) Ul(z,y,t) = u(r,t).

To see this, note that (4.1) implies that U(r cos(6 + «), rsin(f + ), t)
is a solution of the Cauchy problem with data (4.1) for every fixed
value of a. It follows from the uniqueness of classical solutions [18]
that U(z,y,t) = U(zcosa — ysina,zsina + ycosa,t) for every a.
Choosing o = —0 gives U(z,y,t) = U(r,0,t) which is equivalent to
(4.2).

The preceding remarks imply that the solution u(r,t) corresponding
to smooth symmetric data (4.1) is characterized by the properties

(4.3) u(r,t) € C°(R x [0,00)) and u(—r,t) = u(r,t),
(4.4) Ut — Upp — %ur =0 Y(r,t) € R x [0, 00),

(4.5) u(r,0) = f(r), ut(r,0) = g(r) Vr € R.

Of course, the limiting form of the equation (4.4) holds at r = 0.
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The solution method makes use of the linear integral operator L
defined by

*orf(r)
0o VsZ—r2

A second representation of F which is useful below is obtained by
making the change of variable r = sz in (4.6). The result is

' af(sz)
0o Vv 1- 1‘2
The operator L was used extensively in the classical literature to

integrate Darboux’s equation (4.4); see, e.g., [2, p. 700]. Its utility
is based on

(4.6) F(s) = L{f}(s) = dr.

(4.7) F(s) = dz.

Theorem 2. The operator L has the following properties:
(4.8) feCFR)= FecC*R) VO<Ek< oo,

(4.9) f even = F odd,

(4.10) L {f”(r) + %f’(r) =F" Vf € C*(R),

s =1y = (2) 10 [

— S

—

" () s o

while f(0) = F'(0).

Proof. Properties (4.8), (4.9) are clear from the representation (4.7).
To verify (4.10) note that by (4.7) one has

(4 12)
! af(so) Latf(sa)
o Vi Ty m

/
= :Uf—sx)da:—i—s/ f(s2) da:—s/ f'(sz)V1—z2dx.
0
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On integrating by parts in the last integral, one finds, after simplifica-
tion,

1 4
f'(sz)
4.13 F'(s) = f(0) + == dx.
(4.13) (=10 +s [ T da
A second differentiation then gives
f” ! mf”(sw) d

(414 m o V122

' L (sx) ! m(f’(sa:)/sm) i

o Vi Vi

which is equivalent to (4.10).

Finally, the verification of (4.11) is based on the theory of fractional
integration. The Riemann-Liouville fractional integral of order « is
defined by

(4.15) FHa) = ﬁ /0 f@)@—t*1dt  VYa>o0.

The operator has the property [3]

(4.16) (IO =rhs  Va,B>0.

This may be applied to the operator L by making the changes of
variable r? = p, s> = ¢ in (4.6). On has

am A =1 % ap = VX (F(/))7al0)

since I'(1/2) = \/w. Applying the operator ( )1/2 to (4.17) and using
property (4.16) gives

W18) (PN = G U0 =Y [ v

Hence, one has

(419) 109 = = (55 ) FVaN 0
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and, therefore,

(4.20) f(r) = <7r> 71«57- \/Sf(f)sds Vr > 0.

Note that the limiting value of f(r) for r — 0 may be inferred from
equation (4.13): It is f(0) = F'(0). This completes the proof of (4.11).
]

Theorem 2 will be used to construct the solution u(r,t) € C®°(R? x
[0,00)) of the Cauchy problem (4.3)—(4.5) with data that satisfy
(4.21)

f(r),g(r) € C*(R) and f(-r)=f(r), g(-r) =g(r) VreR.
The notation

ru(r,t) L zu(se, t)

\/ﬁ 0o Vi-a?

will be used. It follows from Theorem 2 that v(s,t) has the properties

(4.22) wv(s,t) = L{u(r,t)} dz

(4.23) v(s,t) € C°(R x [0,00)) and v(—s,t) = —v(s,t),
(424) Vit — Vgs = 0 V(S,t) €R x [0, OO),

(4.25) v(s,0) = F(s), v:(s,0) = G(s) Vs € R,

where F = L{f} and G = L{g} are in C*°(R) and are odd functions.
Properties (4.23)—(4.25) imply that v(s,t) is given by d’Alembert’s
formula

s+t

(4.26)  w(s,t) = %(]’(s )+ F(s— 1)+ / G(z) dx>.

s—t

Inverting the L-transform by means of Theorem 2, equation (4.11) gives

(210 [T su(st)
(427) U('f‘, t) = (;) ;E o \/ﬁds Vr # 0,
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and
(4.28) u(0,t) = v,(0,¢).

Note that for data f(r),g(r) that satisfy (4.21), the function v(s,t)
is defined by (4.26) for all real s and t and v(s,t) € C°>°(R?). This
implies

Theorem 3. For all f(\/22 +y2),9(\/22 +y2) € C®(R?), equa-
tions (4.27),(4.28) define a function u(r,t) € C*°(R?) which satisfies
the wave equation everywhere in three-dimensional space-time and has
the desired initial values (4.5).

The proof is a direct verification, based on Theorem 2. The wave
equation (4.4) follows on calculating us; from (4.27), by differentiating
under the integral sign and then using (4.24) and (4.10). The initial
values (4.5) follow from (4.11) applied to u(r,0) and u.(r,0).

5. The Cauchy problem with rotationally symmetric data in
Ly, p > 1. The solution formulas (4.26), (4.27) have been established
for smooth data only. The purpose of this section is to extend their
validity to a class of data that includes the focusing shock wave (3.14)
of Section 3. If Q is a domain in R"™ it will be convenient to use
the notation L},OC(Q) to denote the set of all measurable functions
f :Q — R that are in L,(K N Q) for all compact sets K C R™.
Note that the Cauchy data for the soluton (3.14) at t = 0 are

1 c
G1) w0 =£) = GrEFA/21/21,1/2) = 575,
(5.2)

Cl

ur(r,0) = g(r) = ﬁfﬂ(l/z 1/2,1,1/2) = 73/2°

where ¢ and ¢ are finite constants. It follows that f(y/z% + y?) €
Lyc(R?) for 1 < p < 4 and g(y/x? +y?) € Lp°(R?) for 1 < p < 4/3.
For the study of shock waves it might seem simplest to work with
p = 1. However, for a technical reason, which will appear below, it will
be expedient to choose a value p > 1.
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The first goal of this section is to show that if

(5.3) f(Va?+y2),9(vVa?+y?) € L(R?, dedy) for some p > 1,

then the equation

r sv(s t) >
5.4 .y {f 20 ds, for t > 0,

for t <0,

defines a function in L;*°(R?,dr dt). Note that to verify this it will
suffice to show that

(5.5) / / (r,t)|P drdt < oo VR > 1.

The general case then follows because w(r,t) is even in r and vanishes
for ¢ < 0. After (5.5) has been verified it will be shown that

(5.6) u(r,t) = <W> ! 6“’;: 24

r

where the differentiation is interpreted in a distribution-theoretic sense,
defines the distribution solution of the Cauchy problem for all data that
satisfy (5.3).

The starting point for the analysis of F, G, v(s,t) and w(r,t) is the
observation that, for any p > 1, one has

f(V/z?2+y?) € LLOC(R2) <~ f(r) € L;OC(R+,7“dr)
= f(Vp) € Ly (Ry),

where Ry = [0,00). Recall that G(y/o) is a fractional integral of
(v/7/2)g(y/p), by (4.17). Moreover, in the definition (4.15) of the frac-
tional integral, z®~!/T'(a) € L*°(R). Hence, g € L*°(R,) implies

+ € L*°(R.) by Fubini’s theorem. (This fact is the familiar property
that L;(R) is closed under convolution.) Thus, if g(y/p) € LY°(R4),
then one has G(y/o) € LY*°(R; ), and hence G(s) € LY°(R, sds), or,
equivalently, sG' € L'*°(R,). But in the definition (4.26) of v(s,t) one
must have G(s) € LI°°(R) and not just sG' € L!°*°(R, ). The required
property will be obtained from the following classical

(5.7)
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Theorem of Hardy and Littlewood [11]. For all p > 1 and all
a > 0 there ezists a constant K = K (p, ) > 0 such that

(5.8) Kﬁhﬁ%ﬁ@ﬂﬂxéKAwV@Wﬂw

Moreover, for all R > 0 one has

R R
5.9 “ef(z)Pd K Pdr.
5.9 | e r@r s <x [ p@rds
In particular, f(z) € Li°(Ry) = £ (z) € Li*°(Ry).

Note that (5.9) may be obtained from (5.8) by setting f(z) = 0 for
z > R, since the values f (z) for 0 < z < R depend on the values f(x)
for 0 < z < R only. Hardy and Littlewood showed by an example that
their result is false for p = 1. It is this fact that necessitates the choice
of p > 1 below.

The theorem of Hardy and Littlewood will be used to prove the
following theorem which is the key to the extension of the solution
formulas (4.26), (4.27) to the case of Cauchy data in Li°.

Theorem 4. If the data f,g satisfy (5.3) so that f(\/p), 9(\/p) €
LyY°(Ry), then

(5.10) F(s),G(s) € Ly (Ry,ds) N Ly (Ry, s ds),
5.11 v(s,t) € LI°°(R2, sdsdt

(5.11) (s,t) € Ly, , ;

and

(5.12) w(r,t) € LY°(R?, dr dt).

Moreover, for all R > 1, there exists a constant K = K (R, p) such that

(5.13) lwllpr < K(|f]lp2r +[19]lp,2r);

where

(5.14) meR—(ARAﬂwmewa){
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and

(5.15) Il = ( le(r)l”rdr>p

Proof. Throughout the proof the symbol K = K(p,R) denotes a
generic constant, i.e., one whose numerical value may vary from one
inequality to the next. The notation o = s2, p = r? will also be used.
To verify (5.10) note that (4.17) and the Hardy-Littlewood theorem
imply that for all R > 1 one has

R R
Gy [ e R <K [ If/DPdp,
0 0
or, equivalently,
R R
(5.17) / F(o)Ps'Pds < K / \F(r)|Pr dr.
0 0

Moreover, since p > 1, one has s’ P < R'"P for all 0 < s < R, and
hence (5.17) implies

R R
(5.18) /0 |F(s)Pds < K/o | £ (r)|Prdr.

In particular, F € L;OC(R+,ds). To complete the proof of (5.10) note
that the inequality x7*? < R™“ for 0 < z <R and (5.9) imply

R R
. + Pd K Pd
(5.19) / @) de < / F@)P da,
whence by (4.17) one has
R R
(5.20) / FaPde <K [ 1£(/p)Pdo
0 0

and, therefore,

R R
(5.21) /0 |F(s)[Psds < K |f(r)[Prdr.
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In particular, 7 € L°(R, s ds). This completes the proof of (5.10).

For the proof of (5.11) it will be convenient to write

(5:22) v =v(5g) = V(5,0) + V0,9) = U(7.0) T V700 F Ubg) T Yi0g)

where

(5.23) Wi = <%> F(s+t),
(5.24) Vog =+ (%) H(s +1),
and

(5.25) H(s) = /0 " G(2) de

The definition of v(+f 0) implies that
(5.26)

R R
””(+f,0)||§,RE/ / Iv{}O (s, t)|Ps ds dt

Next, the change of variables s’ = s + ¢, ' = s — ¢ will be made in
the last integral. On noting that the square 0 < s <R, 0 <t <Ris
contained in the square 0 < s’ < 2R, —R < ' <R, one has

2R
oty g < K / / )P ds’ d’
2R 2R
—K/ |pds<K/ r)|Prdr,

by (5.18). In particular, v?} 0) € Ly<(R? sds). A similar calculation

gives
2R
Z <K / r)|Prdr,

(5.27)

(5.28) 19770
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and v} € Ly¢(R?, sds). Finally, v(s,t)(0,4 € C(R?) and, hence,
V(0,9) € Li8(R?, 5ds). Property (5.11) now follows from (5.27), (5.28)
and the triangle inequality for the L,-norm (Minkowski’s inequality).

To prove (5.12) it will be convenient to write
(5.29) W= W(f,9) = W(10) T W(0,9);
in analogy with (5.22). Then

VZd

(5.30) w(r0) = ~5 (010 (V)11 (p),

and, hence,
R R

(5.31) / w0 (r, O dr < K / o s.0) (5 8) Ps ds
0 0

see the proof of (5.18). Integrating over 0 <t < R then gives

(5.32) Hwiro)llpr < Kllvirollpr < K| f]

p,2R

by (5.27), (5.28) and the triangle inequality. To estimate the term
w(o,9) one can apply the Holder inequality to

(5.33) e / Gla

to obtain
(5.34)

st s+t 1/p
|v(0,9) (5, 8)] < / |G(x)|dz < K(/ G ()P dw)
s—t s—t

< K(/f |G(I)de>1/p < K</02R |G(x)|de>1/p,

where at the last step the fact that G is an odd function has been used.
Integrating over 0 < s <R, 0 <t < R then gives

DO | =

2R 2R
(5.35) V(0,9 HpR_K/ |pds<K/ r)|Pr dr,
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by (5.21). This last result implies

(5.36) lw(,9)/lp.R < Kllv(0,9)]

in analogy with (5.32). Finally, (5.29), (5.32) and (5.36) imply (5.13)
by the triangle inequality. This completes the proof of Theorem 4.
O

pR < K[[gllp 2R,

The construction of the solution u(r,t) of the Cauchy Problem with
rotationally symmetric data in L}DOC, p > 1, will be completed by in-
terpreting the r-derivative in (5.6) in a distribution-theoretic sense.
Note that w(+/z2 + y2,t) € L*°(R?). This follows easily from Theo-
rem 4 and Holder’s inequality. It follows that, for all testing functions
#(x,y,t) € D(R?), one has

[e's) [eS) 27 B
w(gp) = / / w(r, t)( ¢(rcosf,rsinb,t) d0>r dr dt = w(¢),
o Jo 0

where )
. 1 ™
o(ryt) = — ¢(rcosb,rsind,t)df.
271' 0
The alternative formula
. 1 2m
o(r,t) = o d(zcosy) — ysin, xsiny + ycos ), t) dy
T Jo

shows that ¢ € D(R?) = ¢ € D(R?) and ¢,, — 0 in D(R?) = ¢,, — 0
in D(R?). Thus, if u € D(R?) is any distribution, then @(¢) = u(¢)
defines another distribution on R3. A distribution u € D(R?) will
be said to have circular symmetry < @ = wu. Such a distribution
satisfies u(¢) = @(¢) = u(¢) and, hence, is determined by its values
on the circularly symmetric testing functions. It was shown that
d(\/z% + y2,t) € D(R?) & ¢(r,t) has a unique extension to a function
in

D.(R*) =D(R*) N {¢ | ¢(-r,t) = ¢(r,t)}.

The following lemma will be needed.

Lemma. If ¢(r,t) € C>*(R?) and ¢(0,t) = 0, then (¢(r,t))/r €
C>(R?). In particular, if ¢ € D.(R?), then (1/r)d¢(r,t)/Or €
D.(R?).
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The Lemma is a consequence of Taylor’s theorem. The simple proof
will be omitted. Note that if U € D’'(R?) is any distribution then the

lemma implies that
B 19¢(r,t)
Vie)=-U <r or )

defines a circularly symmetric distribution V' € D’'(R3). The notation

10U
V=-—F
r Or
will be used. This is motivated by the observation that if U =
f(y/z2 +y2,t) € CY(R?) and f(0,t) = 0, then V = (1/r)0f/0r €
C1(R?).
Theorem 4 and the Lemma above imply that (5.6) defines a distri-

bution u € D'(R?). The principal result of this section may now be
formulated as follows.

Theorem 5. Let p > 1. Then for all f(1/z2 +y2),g(1/2% +y2) €
L;,OC(RZ,dx dy), the distribution

(5:6) u(r,) = <2> 19ur,t)

a)r or
where w(r,t) is defined as in Theorem 4, is the unique solution of the

Cauchy problem (2.2), (2.3) with data F(z,y) = f(1/z? + y?),G(z,y) =

9(Va? +y?).

Proof. Tt is clear from (5.6) and the definition of w(r,t) that suppu C
R? x [0,00) and u has circular symmetry. Hence, to prove Theorem 5
it will suffice to verify the differential equation (2.2), in the form (2.4),
with ®(z,y,t) = ¢(v/22 + y2,t) and ¢ € D.(R?). Equation (2.4), with
U replaced by the distribution u of (5.6) and ® replaced by ¢ € D.(R?),

can be written

[ o (0%¢ 109 0%¢
(5.37) /0 A w(r, t)g <W + Tar W) drdt

=2 [T{-025 2 4 g0 f rav
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In deriving (5.37) from (2.4), the distributional definition of the -
derivative in (5.6) was used to move the derivative to the testing
function. Notice that, for any locally integrable functions w, f,g,
the two sides of equation (5.37) are finite and define circularly sym-
metric distributions. The proof of Theorem 5 will be completed by
showing that these distributions coincide when w is related to f,g as
in Theorem 4. To show this, note that (5.37) holds and is equiva-
lent to the classical wave equation (1.1) and Cauchy data (2.1), when
F(Vx2 +y2),9(\/22 + y2) € C*(R?) and u(r,t) and w(r,t) are the
corresponding functions in C°°(R?) of Theorem 3. Moreover, it is
well known that, for any fixed p > 1, the set D(R,) is dense in
L,(Ry,rdr): see, for example, [12, p. 3]. To apply this result to
the proof of (5.37), let ¢ € D.(R?) be given and choose R > 0 such
that supp é(r,t) C {(r,t) | 7% +t> < R?}. Let f,,gn be sequences in
D(R.) such that f, — f and g, — g in L,(0,2R). If w,(r,t) is the
classical solution of the Cauchy problem with data f,, g,, then

o oo o (8% 106 0%
(5.38) /0 /0 wn(r,t)5<w+;5—w> dr dt
5 [ {0025 01000

Moreover, inequality (5.13) of Theorem 4, written for w—w,, f—f, and
g — gn, implies that w, — w in L,({(r,t) | r* +t* < R?}) when n — co.
Passage to the limit n — oo in (5.38) now gives (5.37), by Holder’s
inequality, becasue the coefficient of w, in the left-hand integral of
(5.38) is continuous and, hence, is in L, ({(r,t) | 72 +t* < R?}) where
1/p+1/q = 1. Similar remarks apply to the integrals containing f,
and g,. This completes the proof of Theorem 5. ]

6. Applications to the focusing of shock waves. Two applica-
tions of Theorem 5 to the analysis of shock wave conversion by focusing
are given in this section. The first is a calculation of the unique con-
tinuation to the interior of the forward wave cone I'; of the converging
finite jump shock wave of Section 3. The second application is an anal-
ysis of the reduction in differentiability of the solution, due to focusing,
along the focal line r = 0, ¢ > 0 in space-time.

The converging shock wave u(r,t) of Section 3 has the representation
(3.14) in the space-time domain ¢ < 7, » > 0. At each point of
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Iy, which is the boundary of this domain, u(r,t) has the logarithmic
singularity described by (3.19). The unique continuation of u(r,t) to
the interior of I'y will now be calculated by applying the solution
formula (5.6) of Theorem 5 to the Cauchy data for wu(r,t) which
are given by (5.1), (5.2). Recall that both f(r) and g(r) are in
L;,OC(R+,rdr) for 1 < p < 4/3, and hence Theorem 5 is applicable
to the data (5.1), (5.2).

The constants ¢, ¢’ in (5.1), (5.2) are known to have the values [15,
pp. 40-41]

_ _ I(1/2)
c=F(1/2,1/2,1,1/2) = BEDR
o _ (/2
(6.1) ¢ =F'(1/2,1/2,1,1/2) = TG/

To construct the wave function u(r,t) for these data, one needs the
L-transforms F(s),G(s). These may be found by means of their
relation to fractional integrals, equation (4.17), and a table of fractional
integrals [3]. The surprisingly simple result is

1
(6.2) F(s) = s'/?, G(s) = -s71/2 Vs > 0.

Moreover, F(s) and G(s) are odd functions, by Theorem 2. It follows
that the function v(s,t), defined by (4.26), can be written

(6.3)  v(st) = %{}'(s FO) 4 F(s— )+ H(s+ 1) — H(s — 1)},

where

(6.4) F(s) = H(s) = OS G(z)dw =s? Vs >0,
while

(6.5) F(s)is odd and H(s) is even.

Note that these properties imply that

V/ iz <
(6.6) v(s,t):{ t+s t—s, for s <t
Vit+ s, for s > t.
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Recall that the wave function w(r,t) is defined by (5.4). In particular,
for t > 0, one has

sv(s,t) L ou(ro,t)
\/r2—32 0o V1—o02

w(r,t) will be calculated first for points of the set {(r,t) | 0 < r < t}
interior to I'y. Note that in this case only the top line of the definition
of v(s,t) enters into the integration in (6.7) and one has

w(r, 1) _/OT s(vVt+s—+t—s) d

2

(6.7) (r,t) do.

(6.8)

r2 — 52

Simple changes of variable give the alternative representations

(6.9) w(r,t) = — ' s =-r 1 zvi_re dz.

—r — 82 -1 V 1-— :EZ
It is clear from the last integral that, in the interior of I'y, w(r,t) is an
analytic function of r and ¢. Moreover, the derivative w,(r,t) can be
calculated by differentiating under the integral sign. The result is

! T\t — 1T

(6.10)  wy(r,t) = — i dz + / mm

or, after simplification,
1 ! z(2t — 3rz) .
1/ (t—rz)(1 —22)
This last integral is an elliptic integral. It can be reduced by simple, but
lengthy, algebraic procedures to standard elliptic integrals; see [1,4].

The result of this reduction can be written
(6.12)

(6.11) wy(r,t) =

2r
ith & = :
\/r—i-t/ \/1_332 — k22?)’ b t+r
The integral in (6.12) is the complete elliptic integral K (k) of (3.17).
Note that 0 < k% < 1 when (r,t) is in the interior of I, and hence K (k)
is finite. Finally, the relation (3.16) implies the alternative description

wy(r, t)

wy(r,t) = F(1/2,1/2,1,k%).

e T
2Vr+t
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Combining this with equation (5.6) gives the result
(6.13)

u(r,t)= <z> %wr(r, t)= \/:_HF(I/Q, 1/2,1,2r/(t+r)) VO<r<t.

™

This representation implies that the shock wave u(r,t) is analytic in
the interior of I' ;. In particular, one has

u(0,t) = t=Y% for t > 0.
Moreover, the estimates (3.18) imply that

_ —log(t —)

u(r,t) = ORIV +0(1), fort—r—04, t>1ty>0.

Thus, u(r,t) has the same logarithmic singularity on both sides of T';.

It is interesting to evaluate the integral in (6.7) for ¢t < r, r > 0.
For —r < t < r one gets an elliptic integral which reduces to the
representation (3.14). Of course, it is clear from the uniqueness
statement of Theorem 1 that this must happen. For ¢t < —r the integral
(6.7) reduces to 0. This calculation verifies that the function wu(r,t)
defined by (3.14) is indeed a solution of the wave equation (1.1), in the
distribution-theoretic sense, in the domain ¢t < r, r > 0.

The calculation of u(r,t) was carried out in the open sets r < ¢t and
r > t only. Hence, there is the possibility that the distribution w(r,t)
might contain singular terms, such as delta functions, localized on ', .
However, it is easy to verify from (6.6), (6.7) that w(r,t) is continuous
at the points of I';. It follows that u(r,t), defined by (5.6), is the
piecewise analytic function constructed abaove. A proof may be based
on integration by parts in the definition of the distributional derivative
in (5.6).

To exhibit the reduction in differentiability along the focal line r = 0,
t > 0, Cauchy data f(r) € C?[0,00), g(r) = 0 will be considered.
For such data the representation (5.6) of Theorem 5 implies that
u(r,t) € C% for r > 0 so that no differentiability is lost at points
other than the focus r = 0. At the focus, one has the special relation
u(0,t) = vs(0,t); see (4.28). Thus

610 w00 =0 = Thp0  T=f
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where, by (4.10),
(615) Ay = () + (), V0.

For a given function h(r) € L°°(R,), this equation has a unique
solution f(r) such that f(r) € C'[0,00) and f(0) = 0, f'(0) = 0.
It is given by

(6.16) )= [ o (ln %) h(p) dp.

If a function h(r) € C[0,00) is selected that has no (fractional)
derivatives on [0,00), then (6.16) defines Cauchy data (f(r),0) such
that f(r) € C?[0,00) and f(r) ¢ C™[0,00) for m > 2. It then
follows from (6.14) that u(0,t) € C'5[0,00) but u(0,t) ¢ C™[0,00)
for m > 1.5. This shows clearly that focusing reduces the degree of
differentiability of the solution by exactly 0.5. Alternatively, (6.14)
implies that, for all k& > 2, Cauchy data f(r),0) generate a solution
U(z,y,t) = u(r,t) € C*(R?) if and only if f(r) € C¥*+%5]0, c0).

7. Related literature. In recent years the theory of the prop-
agation of singularities of distribution solutions of hyperbolic partial
differential equations has been an active field of research, beginning
with the work of Hérmander on wave front sets in 1971 [13, 14]. This
research has led to a new branch of analysis called microlocal analysis;
see [6,7] for recent surveys of the field and many references to the jour-
nal literature. The results presented in this article can undoubtedly be
derived by the techniques of microlocal analysis. However, in order to
follow such a treatment, a reader would have to make a large excursion
into a complex and difficult area of modern analysis. The goal of this
article is to present a simple and rigorous discussion, within the con-
text of classical analysis, of some typical examples of the conversion by
focusing of cylindrical shock waves.

The converging shock wave (3.14) was derived above by means of F.G.
Friedlander’s generalized progressive wave formalism. An alternative
method to obtain it may be based on the Lie theory of families of self-
similar solutions of the Darboux equation (3.3) [17]. One such family
is defined by
(7.1) u=r*F(E), £= t;f.
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The function u defined by (7.1) is a solution of (3.3) if and only if F'(£)
satisfies the hypergeometric equation

72 e-9r @+ ((5-) - a-2w¢) F - 2F© =0

which has the hypergeometric function
(7.3) F(6)=F(-k,k1/2 k&)

as a solution. The parameter k must have the value k = —1/2 to match
to the zero solution inside the cone I'_; see (3.7). This gives

1 t+r

<1

which is precisely the solution (3.14) in the space-time domain ¢t < r
with boundary I';.

The continuation of the shock wave (3.14) to the interior of I'y is
defined by (6.14) which may be written

1 _1 _1

(75) U= (27_)1/2 (6) ZF(1/27]-/27L£ )a £
An alternative approach to shock wave continuation that is found in
the literature is analytic continuation [8]. The hypergeometric function
in (7.4) has a logarithmic singularity at £ = 1 and is analytic in the cut
¢-plane with branch cut along the real axis from £ =1 to £ = 400 [1,
Eq. 15.3.1]. The analytic continuation of F(1/2,1/2,1,¢) to & > 1 may
be obtained from [1, Eq. 15.3.13] which implies that, for real z > 1,
one has

_t+r

> 1.
2r

(7.6) F(1/2,1/2,1, z, +i0)

(oo}

+2 _1/2 -1 . 1 1 —
=q— F(1/2,1/2,1 Inz+ — "
{ﬂ_z (1/2,1/2,1,277) ¢ (Inz m)qiﬂ_z2§ Yz ",
n=0
where the «,, are real. In particular, one has

(7.7) %{F(l/?, 1/2,1, 2 +0) + F(1/2,1/2,1, = — i0)}
=2 Y2R(1/2,1/2,1,270).
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Thus, if the solution (7.4) is continued analytically in the parameter
¢ from the interval —1 < £ < 1 to the two sides of the branch cut
&€ > 1, then the mean value of the two continuations is real-valued and
coincides with the physical continuation (7.5) provided by distribution
theory.

8. Concluding remarks. Schwartz’s existence and uniqueness
theorem for the Cauchy problem for the wave equation (Theorem 1
above) implies that any distributional solution of the wave equation in
a half-space {(z,y,t) | t < to} has a unique continuation to the whole
three-dimensional space-time. This result played a fundamental role
above in continuing the shock wave across the shock front I' ;. Indeed,
if the distributional wave equation is relaxed at even one space-time
point, then the uniqueness of the continuation is lost. It is for this
reason that so much care was taken to verify that the wave function
(5.6) of Theorem 5 satisfies the distributional wave equation (2.2) of
Theorem 1.

To verify the assertion of the preceding paragraph, recall that the
fundamental solution of the wave equaton is the distribution defined
by the locally integrable function

(8.1) Glr) = 5

cf. [18]. The distribution derivatives

8n
(n) -~
(8.2) G (r,t) 5 G(r,t)

are uniquely characterized by the properties

3(r)ot ()

1
8.3 G gl — Zgtm =
( ) tt T r T 271.,,.

)

and supp G = I'y. The support of the right hand side of equation (8.3)
is the space-time origin. Thus, if the wave equation (2.2) is relaxed at
this one point then G(™ may be added to any solution of the shock
continuation problem to obtain another different solution, and hence,
uniqueness is lost.
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