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PULLBACKS OF BANACH BUNDLES
J.W. KITCHEN AND D.A. ROBBINS

ABSTRACT. Let S and T be compact Hausdorff spaces,
a : S — T a continuous map, and p : F — T a Banach
bundle. The bundle 7 : E — S which is the pullback to S of p
via a, has fibers given by Ej, = F () for p € S. The present
paper investigates some properties, such as norm continuity
and Hausdorfness, which the bundle 7 inherits from p via
the map a. The main result presents a relation between the
section spaces I'(p) and I'(w) via inductive tensor products.

This paper continues the study of Banach bundles which has been
pursued by the authors in previous papers [2, 3, 4, 5, 6], to which the
reader is referred for notations, definitions, and general information.
This time the focus is upon pullback bundles. If 7 : FF — T is a bundle
of Banach spaces, and if o : S — T is a continuous map, then there is
a bundle of Banach spaces 7 : E — S, called the pullback of the given
bundle by «, with the following properties

1) if p € S, then E, = © }({p}), the stalk in the pullback bundle
over p, is an isomorphic copy of Fy ) = p~t{alp)});

2) If o is any section in I'(p), then its pullback by «, namely
a*(o) =coa:S — E is asection in I'(7). (See Kitchen and Robbins
[3] for a discussion of pullbacks.)

Our results are basically of three sorts. First, we investigate proper-
ties which the pullback bundle inherits from the given bundle. (If, for
instance, the bundle p : F — T is norm continuous, is the pullback bun-
dle 7 : E — S also norm continuous, is the pullback bundle 7 : E — S
also norm continuous?) The main result (Theorem 5) presents a re-
lation between the section spaces I'(p) and I'(7) via inductive tensor
products. The substance of the theorem is summarized by the equation

C(S)®c ) T(p) 2 T(x),
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whose exact meaning (together with necessary hypotheses) is explained
later. This formula for I'(w), the pullback section space, is then
exploited in the final theorem, which says that each element w in
Homr(T'(p),C(T)), the internal dual of the section space I'(p), can
be pulled back by a in a natural way to yield an element o*(w)
in Homg(T'(7), C(S)), the internal dual for the section space of the
pullback bundle.

For some of the results, compactness of the base spaces S and T is
essential. As a matter of convenience, we shall assume throughout that
S and T are compact Hausdorff spaces, even though these hypotheses
are sometimes excessively strong. We begin, then, by making the
following standing assumptions which will remain in force throughout
the entire paper

1) S and T are compact Hausdorff spaces;
2) p: F — T is a bundle of Banach spaces;

3) a: S — T is a continuous map. (Sometimes it will be further
assumed that the map is surjective or open.)

4) m: E — S is the pullback of the bundle p: F — T by «.

We shall also continue to use the notation introduced two paragraphs
earlier for pullbacks. If o € I'(p), then a*(c) = o o « is its pullback
by a; a*(o) then belongs to the space I'(w). Similarly, if g € C(T'), we
define a*(g) to be goa, the pullback of g by «; clearly, a*(g) belongs to
C(S). The space I'(p) is a C(T')-module, while I'(7) is a C(S)-module.
Additionally, the space I'(7) is a C(T')-module by pullback, the module
multiplication being defined by the equation

g-o0=(goa)c (pointwise product)
a

*

g9)o,

for all g € C(T) and o € T'(r). When I'(p) and I'(7) are viewed as
C(T)-modules, then the pullback map o* : I'(p) — I'(m) is a module
homomorphism, that is, it is a contractive (of norm one or less) linear
map which is C(T)-linear (a*(go) = g - a*(o) for all g € C(T") and
o€l (p)). f a:S — T is surjective, the map o* : I'(p) — I'(w) is an
isometry, and, while the map is rarely surjective, {a*(c) : o € T'(p)}
is a full set of sections of the pullback bundle. (Proof. Let x be any

vector in the stalk E, = F,). Then there exists a section o € I'(p)



PULLBACKS OF BANACH BUNDLES 655

such that o(a(p)) = . Then {a*(0)}(p) = o(a(p)) = z. Thus, every
element of the fiber space F lies on a section of the form a*(a). So, by
definition, {a*(0) : ¢ € I'(p)} is a full set of sections for the pullback
bundle.) The space C(S) can also be viewed as a C(T')-module, where

g-f=a"(9)f =(gea)f
for all g € C(T) and f € C(S5).

All of the assertions in the previous paragraph are easily verified and
well-known.

In addition to the given bundle p : F — T and its pullback bundle
m : E — S, a third bundle will enter our discussions, namely, the
canonical bundle for I'(m) as a C(T)-module. We shall denote this
bundle by £ : G — T. We begin with a description of this canonical
bundle and the associated Gelfand morphism A : I'(7) — I'(§). As a
preliminary, we observe that the map a : S — T yields a partition
of § into closed subsets. For each ¢ € T, we define S, to be the set
a~1({q}). To assure that the sets S, are all nonempty, we assume that
the map o : S — T is surjective. Then, for each g € T', S is a closed
(and compact) subset of S, and {S, : ¢ € T'} is a partition of S.

Proposition 1. Assume that the map o : S — T is not only
continuous but surjective. Then, for each q € T, the stalk G, =
¢1({q}) is isometrically isomorphic to C(S,, F,), the space of all
continuous maps from S, to F,. If o € T(w), then its Gelfand
representation o is described by

o"(q) = 0|Sq = the restriction of o to Sq,

for all ¢ € T (where we use the natural identification of G4 with
C(Sq,Fy)). The Gelfand morphism A : T'(m) — T'(§) is a C(T)-linear
isometric isomorphism.

Proof. 1t is easily checked that I'(w) is a C'(T')-locally convex C(T')-
module, and thus A : I'(w) — I'(¢) is an isometric isomorphism.

We now verify that G, = C(S,, Fy;). Note that, in doing so, we will
also show that the restriction of the pullback bundle 7 : E — S to sets
of the form a!({q}) (¢ € T) is trivial, with fibers F,.
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Fix ¢ € T. Given 7 € I'(m), set ¢(1) = 7|Sq. If p € S, then
7(p) € E, = Fy(p) = Fy. Thus, ¢(7) is a continuous map from S, to
Fy, that is,

¢(r) € C(Sg, Fy)-

Clearly, |l¢(7)|| < ||7||. Thus, ¢ : I'(r) — C(Sq, Fy) is a norm-
decreasing map. If f € C(Sg, F,), then, according to the Tietze
extension theorem for sections (see Kitchen and Robbins [2]) the local
section f : S; — E can be extended without increase of norm to
a section ¢ : § — E in I'(m). Then ¢(0) = o|S; = f. Thus,
¢ : T'(m) — C(S4,F,) is a surjective quotient map. It follows that
¢ induces an isometric isomorphism ¢ : T'(7)/ ker ¢ — C(Sy, F,). Now
ker ¢ consists of those sections in I'(w) which vanish on S,;. More
importantly, ker¢ = I, - I'(w), where I, = {f € C(T) : f(¢) = 0}
is the maximal ideal in C(T") corresponding to ¢ and I, - I'(w) is the
closed linear span of the set {g-o0:q € I;,0 € T'(m)}.

The inclusion I - I'(r) C ker¢ is trivial. (Since ker ¢ is a closed
subspace, it suffices to show that ker ¢ contains g - o, if g € I; and
o € (). For all p € S,, however, a(p) = ¢, so

(9-0)(p) ={(goa)a}(p) = g(a(p))o(p) =0 o(p) = 0.

Thus, g- o vanishes on S,, which means that g-o € ker ¢). To establish
the reverse inclusion, we use approximate identities for I;. For each
open neighborhood V' of g, we select a continuous function gy in I,
such that gy maps T into the interval [0,1] and gy = 1 off V. If
o € ker ¢, then the net

{gv - o : V is a neighborhood of ¢}

converges (in the norm topology of I'(7)) to o, thereby showing that
o € I, -T'(m). (Proof. Let € > 0 be given. The set

U={pesS:lopll <e}

is open (since ||o(-)|| : S — R is upper semicontinuous) and contains
Sq. Thus, S\ U is closed and compact. The set a(S \ U) is therefore
compact, and ¢ ¢ «(S\U). Thus, T'\ (S \U) is an open neighborhood
of g. If V is an open neighborhood of ¢ which is contained in T\ a(S\U),
then [|(gy - 0)(p) — o(p)|| < € for every p € S. For, if p € U, then

[(gv -o)(®) — o)l = (1 —gv(p)llo(p)| <1-e=¢,
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while, if p ¢ U, then a(p) ¢ V, so

(gv - 0)(p) = o(p) = gv(a(p))o(p) — o(p) = o(p) — o(p) = 0.

Thus, ||gy - 0 — ]| < e. This proves that the net {gy - o} converges to
g.)

Now, by definition, G, =T'(7)/I, - I'(r) = I'(w)/ ker ¢, and
o =0o+1,-I(n).

Hence, ¢ : G, — C(S,, F,) is an isometric isomorphism, and under this
natural identification of G, with C(Sy, Fy), 0" (q) = 0|Sy, by which we
really mean

#(c"(q)) = QE(U +ker ¢) = ¢(0) = 0|5, |

Corollary 2. Suppose that a: S — T is surjective. If we view C(S)
as a C(T)-module, then for each point ¢ € T the stalk above q in the
canonical bundle for C(S) can be identified with the space S, in such a
way that

" (a) = f18,-

Proof. We can view C(S) as the section space of the canonical bundle
p:SxC — S, where S x C has the product topology and p is a
projection onto the first coordinate. O

We first consider the Hausdorff condition.

Proposition 3. If the given bundle p : F — T is Hausdorff, then
the pullback bundle 7 : E — S is also Hausdorff. If p: F — T is
Hausdorff, and if the map a : S — T is surjective and open, then the
canonical bundle € : G — T is also Hausdorff.

Proof. If p : F — T is Hausdorff, then, by definition, the fiber space
F' is Hausdorff. Hence, F' x S, with the product topology, is Hausdorff.
Now, E can be regarded as a subset of F' X S, namely,

E={(z,p) € F x S:w(z) =a(p)},
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and thus F is Hausdorff.

Let us now suppose that the bundles p: F — T and 7 : E — S are
Hausdorff and that the map o« : S — T is both open and surjective.
To show that £ : G — T is Hausdorff, it suffices to show that the
nonzero vectors in the fiber space G form an open set. (See Gierz [1,
Proposition 16.4].) Consider a nonzero element of G, say

o"(q) = o|Sq #0,

where o € I'(w) and ¢ € T. Thus, o(p) # 0 for some p € S,. Because
the bundle 7 : E — S is Hausdorff, there is a neighborhood of o(p),
say

U={z € E:n(z) e V,|z—o(r(z))| < e}

where V is a neighborhood of p, such that ¢/ consists entirely of nonzero
vectors in E. Since « is open, a(V) is a neighborhood of ¢ = «a(p).
Consider, now, the following neighborhood of ¢”(¢) in G:

V={yeG:&y) calV),|y—o"(Ew)l <e}

It suffices to show that V does not contain a zero vector. Suppose,
to the contrary, that V contains the zero vector in stalk G, where
q¢" € a(V). Then, since the zero vector is assumed to belong to V,
lo"(¢")|| < e, which means that ||o(p)|| < € for all p € S,. In
particular, |lo(p)|] < € holds for all p € S, N V. But this means
that U/ contains the zero vector in each stalk F, where p € S;y NV, and
this is a contradiction. o

We next consider norm continuity.

Proposition 4. Suppose that the given bundle p : F — T is norm
continuous. Then the pullback bundle m : E — S is norm continuous.
If, in addition, the map « : S — T is open and surjective, then the
canonical bundle £ : G — T is also norm continuous.

Proof. Consider a point xg in the fiber space E. We must show that
the norm function || - || : £ — R is continuous at xy. Let ¢ > 0 be
given. Set po = m(wg). Then o € Ep, = Fy(p,). Choose a section
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o € I'(p) such that o(a(pg)) = xp. Since ||o()|| is continuous at a(py),
there is a neighborhood V' of a(py) such that

lo@ll  llo(ao)ll| <

whenever ¢ € V. Since « is continuous, there is a neighborhood U of
po such that
p€e U implies a(p)eV.

Consider the following neighborhood of zg:
U={z e E:n(z)el,|z—{a" (o)} m(x))] <e/2.

Suppose that x € U. Setting p = w(z), it follows that p € U, so
a(p) € V. Also,

lz = o(ap)l = [lz = {a" (o)} (2))]| < %

and .
lo(a@))ll = llo(alpo)ll] < 5-
Thus,
!l = llzolll < [zl = llo (DIl + o ((p)) ]| = llzoll|
< lz = o (@)l + lllo ()| = [lo(alpo))l
e €
< 5 + 5 =E€.
This proves that the norm function || - || : E — R is continuous at zg.

Let us assume now that the map a : S — T is open and surjective.
To show that the canonical bundle £ : G — T is norm continuous, it
suffices to show that || (-)|| is a continuous function on T for each o
in I'(w). Set f(p) = ||lo(p)|| for each p € S. Since the pullback bundle
is norm continuous, f belongs to C(S). Also, for all ¢ € T,

lo™ (@)l = llo1Sqll = sup{llo(p)|| : p € Sq}
= sup{|f(p)| : p € S} = If1Sqll = 1" (D)],

where we view C(S) as a C(T)-module. Now the canonical bundle for
C(S) as a C(T)-module is norm continuous (see Seda [8] and Kitchen
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and Robbins [3]). Thus, [lc”(q)|| = ||f"(¢)|| varies continuously with
q, and this completes the proof. ]

We turn now to the formula for I'(7) as an inductive tensor product
of the spaces I'(p), C(S), and C(T).

Theorem 5. R
[(m) = C(S)®c(m)L(p)-

By this we mean that there 1is an isometric isomorphism
¢ : (C(S)®(p))/K — T(w), where K is the closed linear span in
C(S)&T(p) of elements of the form

(9-f)®o—f®(g0),

where g € C(T), f € C(S), and o € T'(p). Moreover,

(f@o+K)=fa*(o)

forall f € C(S) and o € T(p).

Proof. The notation C(S)®c(r)['(p) comes from an analogous sit-
uation involving projective tensor products. If M and N are Banach
modules over a Banach algebra A, then M ®4 N is defined to be the
quotient space of M®N modulo the closed linear span of elements of
the form

(az) @y — = ® (ay),
where a € A, x € M, and y € N.

To show the existence of the isomorphism ¢, we begin by observing
that C(S) can be regarded as the section space of the trivial bundle
v:8 xC — S, where S x C has the product topology and -~ is co-

ordinate projection. Consequently, the space C(S)®I'(p) = T'(y)&T(p)
is isometrically isomorphic to I'(y®p), and the natural isomorphism

0: C(S)é)l"(p) — T'(y®p) assigns to any product f ® o the pointwise
tensor product f ® o given by

(foo)p,q9) = flp)®o(q)
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forallp € S and g € T. (See Kitchen and Robbins [2].) Now f(p)®0c(q)

belongs to the stalk ’y_l({p})éFq = C®F,. The latter product is
naturally isomorphic to F,, with a tensor product A ® y corresponding

to the scalar multiple Ay. Consequently, in the product bundle y&p
the stalk above the point (p,¢) in S x T can be regarded as being F,,

and, so regarded, our isometric isomorphism 6 : C(S)é)l"(p) —T'(y®p)
is characterized by the equation

{6(f ®@ o) }p,a) = f(p)o(a)
forall f € C(S),c€l'(p),pe S,and geT.

We consider next the map w which assigns to each section 7 in T'(y&p)
its restriction to the set

Go ={(p,a(p)) :p € S},

the graph of a. The set G, is a closed subset of S xT" and the restriction
map w is then a quotient map, which means that it induces an isometry

@ on the quotient space ['(y®p)/L, where L is the kernel of w. (The
fact that w is a quotient map can best be argued by the application of
the Tietze extension theorem for sections.) Obviously, the kernel of w

is the set of all sections in I'(y®p) which vanish on G,. We will show
a bit later that L is also the image of K under the map 6.

Note that the composed map w o  carries a tensor product f ® o
(with f € C(S) and o € I'(p)) onto the section 7 given by

7(p, a(p)) = f(p)o(alp)) = {fa” (o)} (p).

Thus, 7 is a section of the pullback bundle, only, instead of writing
7(p, a(p)), we now write 7(p), and we have

(Wob)(f@o)=T1=fa*(o).

The maps which we have considered can be exhibited in the following
commutative diagram:

C(S)&T (p) —L— T(7ép) —— I'(v&p)/L

wof Jw w
()
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Now, sections of the form (wo 8)(f ® o) = fa*(o) are full in the
pullback bundle 7 : E — S, and their closed linear span, call it W, is
clearly a C(S)-submodule of I'(7). By the Stone-Weierstrass theorem
for bundles (see Gierz [1]), W = I'(w), which means that the range of
w o @ is dense in I'(7). Clearly, the functions w o 6, w, and & all have
the same range. Since, however, w is an isometry, it follows that the
common range of wo 6, w, and & must be all of I'(r). In other words,
the maps w o 8, w, and @ are surjective.

Since w0 @ : C(S)®'(p) — I[(7) is a surjective quotient map, it
induces an isometric isomorphism

6 (C(S)®T(p))/ ker(w o ) — I'(r).

Clearly, ker(w o ) = 6=!(L), so to complete the proof, we must show
that 6=1(L) = K, or equivalently that L = §(K).

Since 6 is a linear isometry, §(K) is the closed linear span in I‘(”/é)p)
of sections of the form

T=(9-f)©0-f0O(g0)

where g € C(T), f € C(S), and 0 € I'(p). Note that the section 7
vanishes on G, since

7(p,a(p)) = (9- f)(p) © o(alp)) — f(p) © (90)(a(p))
= g(a(p))f(p)o(alp)) — f(p)g(a(p))o(a(p)) =0

for all p € S. Hence, §(K) C L.

It now suffices to show that §(K) is dense in L, and we do so with
the Stone-Weierstrass theorem for bundles.

Clearly, L is a closed C(S x T)-locally convex submodule of T'(y&p).
Hence, L is isometrically isomorphic to I'(3), where 8 : H — S x T is
the canonical bundle for L. It is easily argued that the stalks of the
canonical bundle are described (to within isomorphism) by

H [0, ifg=alp)
®9) = F,, otherwise

A

and for each o € L the Gelfand representation o” is given by

" (p,q) = o(p,q)
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for all (p,q) in S x T.

As for 0(K), we can first verify that it is a C(S x T')-submodule. This
requires a linearity and density argument. We know that finite sums of
functions of the form f © g, where f € C(S) and g € C(T), are dense
in C(S x T). Since 0(K) is a closed subspace, it suffices to show that
0(K) contains all section of the form

7= (fOg{(h-k) ©0—k© (ho)}

where f and k belong to C'(S), g and h belong to C(T'), and o belongs
to I'(p). When 7 is evaluated at a point (p,q) in S x T, the following
results

F(p)g(9)h(e(p))k(p)o(a) — f(p)9(q)k(p)h(9)o(q),

which is equal to the section

(h- k) © (90) — (fk) © ((gh)o)

evaluated at (p,q). Clearly, §(K) contains 7.

To verify that 0(K) = L, it suffices, according to the bundle version
of the Stone-Weierstrass theorem, to show that 6(K) is stalkwise dense
in the canonical bundle 8 : H — S x T for L. Let (p,q) € S x T. If
q = a(p), then the stalk H(, ;) is zero-dimensional, so there is nothing
to prove. Suppose that ¢ # a(p). Let o(q) be an arbitrary element in
Hp.q) = Fy, where o € T'(p). Let f € C(S) have the constant value 1,
and let g € C(T) be such that g(a(p)) =1 and g(¢) = 0. Then

{lg-Hloo—fo(go)}p,q)
= g(a(p)) f(p)o(q) — f(p)g(q)a(q) = a(q)-

This proves that #(K) is stalkwise dense in the canonical bundle for
L. Hence, by the bundle version of the Stone-Weierstrass theorem,
0(K) = L.

Finally, we observe that our isometric isomorphism behaves in the
manner advertised:

¢(f@®o+K)=(wob)(f@o)= fa™(o)
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for all f in C(S) and o in I'(p). O

There is an addendum to the Theorem which further justifies the
notation

C($)demT(p) = T(m).

If M and N are Banach modules over a Banach algebra A, then, as we
observed at the beginning of the proof, M ® 4 N is the space M&N/W,
where W is the closed linear span of elements of the form

(az) @y — 2 @ (ay)

where a € A, x € M, and y € N. An important feature of the Banach
space M ® 4 N is that there is a natural way in which it is an A-module:
if we denote by x ® 4 y the coset z ® y + W, as is customary, then the
action of A on M ® 4 N is characterized by the identity

a(z®4y) = (ax) 4y =z ®4 (ay).

See, for example, [7].

Proposition 6. (Addendum to Theorem 5) Given the data of
Theorem 5, let us denote by f @1 o the coset f @ o + K for f € C(S)

and o € T'(p). Then there is a unique way in which C(S)&c T (p)
can be made into a C(T")-module so that the identity

(*) g-(f®ro)=(g-f)®ro=f&r(go)

holds for all f € C(S), g € C(T), and o € T(p). Moreover,
with  this module multiplication, the isometric isomorphism
¢ : C(S)&c(mI(p) — L(m) is C(T)-linear. (Also, ¢ is characterized
by the equation ¢(f @1 o) = fa*(o).)

Proof. Because of the definition of K it is clear that (g f) ®r o =
(g-f)®c+ K = f®(go) + K = f ®7 (go). Moreover, if there is a
module multiplication on C(S)®¢(r)I'(p) for which (x) holds, it must

be unique since C'(S )®C(T)F(p) is the closed linear span of elements of
the form f ®r o.
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To show the existence of the module multiplication on C(S)é)c(T)F(p),
we simply transplant the C'(T)-module multiplication from I'(7) by the

isomorphism ¢: if g € C(T) and if ¢ € C(S)®c(1)['(p) we define
g:¢=0""(g- ()

This immediately makes C(S )éC(T)F(p) a C(T)-module, and it makes
¢ C(T)-linear. Moreover, (x) is satisfied, since

g-(fero)=9¢"Yg-o(f®r o)) =9 '(g-(fa’(a)))
¢~ Ha"(9)fa"(0) = ¢~ (fa*(90))
o

Y(o(f ©r (90))) = f @1 (90),

for all g € C(T), f € C(S), and o € ['(p). o

We shall now exploit Theorem 5 to show that there is a natural way
of embedding the “internal dual” of the given bundle in the internal
dual of the pullback bundle.

Theorem 7. There is a natural norm-decreasing map
a” : Homr(I'(p), C(T)) — Homg(T'(7), C(S))
such that
a*(w)(fa’ (o)) = fa*(w(o))

for all w € Homy(I'(p),C(T)), | € O(S), and o € T(p). If o :
S — T is surjective, then the pullback map a* : Homy(I'(p), C(T)) —
Homg(T'(7), C(S)) above is an isometry.

Proof. Let w € Homy(I'(p), C(T)). We define a map w' : C(S5) x
D(p) = C(S) by ,
w'(f,0) = fa*(w(0)).
It is easily verified that w’ is bilinear. Hence, we get an induced map
w':C(S)®T(p) = C(S) such that

W' (f®0) = fo"(w(0)).
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Now, the algebraic tensor product C(S) ® I'(p) is a dense subspace
of C(S)&T(p). To show that ' can be extended to a bounded linear

map on C(S)®L'(p) it suffices for w’ to be bounded on C(S) ® I'(p)
with respect to the inductive tensor product norm || | ». Consider an

arbitrary element of C(S) ® I'(p), say LI, f; ® 0;. Then

' (i fi @ o) | = |2 fia™ (w(o))]
= sup{|ZiL, fi(p){w(oi) }(a(p))| : p € S}
< sup{|ZiLy fi(p){w (o)} 9| : (p,g) € S x T}
= [[Esfi 0 wlo)ll = X fi @ w(oi) | o
< w5 fi @ aill 2,

since || ||~ is a uniform cross-norm. Hence, w’ can be uniquely
A

extended to a bounded linear map w' : C(S)é)l"(p) — C(S); moreover,
Jw!|l < flew]-

We observe that K C kerw’. Since kerw’ is a closed subspace, it
suffices to show that ker w’ contains all elements of the form

(g-f)®o—f®(go),

where g € C(T), f € C(S), and ¢ € I'(p). But
w'((g-f)®o) —f®(90) = (g fla*(w(0)) - fa*( (90))
a*(g)fa*(w(0)) — fa*(gw(0))

(smce w is C(T)- hnear)

=a*(g)fa*(w(o)) — fa™(g)a*(w(o)) = 0.

Since K C kerw’, there is a unique linear map
@ : C(S)&T(p)/K — C(S) such that

&(f ®r o) = fa*(w(o)).

Moreover, ||@| = ||w'|] < ||w]. The above displayed equation closely
resembles the equation

o(f @1 o) = fa*(0)
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which characterized the natural isometric isomorphism

6 : C(S)cmD(p) = C(S)EL(p) /K — T(m).

We now define a*(w) : T'(r) — C(S) by a*(w) = @ o ¢~1. Then
le*(w)]] = ||@|| < ||w||; moreover, for all f € C(S) and o € T'(p),

{o*(W)}fa™(0)) = (@0 ¢~ ) (d(f @1 0))
=&(f ®@r o) = fa*(w(0)).
From the latter equation, it follows that a*(w) is C(S)-linear. Thus,
a*(w) belongs to Homg(I'(7), C(S)).

Finally, if the map a : S — T is surjective, we observe that

o (W) = sup{[la*(w)(o)|| : o € [(7), [lo]| = 1}
= sup{[le”(w)(a*(7))[| : 7 € T(p), |I7]| = 1}
(recall that a* : T'(p) — T'(7) is an isometry
since a: § — T is surjective)
= sup{[|a”(w(7))[ : 7 € L(p), [|I7|| = 1}
= sup{||w(7)[| : 7 € T(p), [I7]| = 1}
= [lwl.

Thus, ||a*(w)|] = ||w|| and the proof is complete. o

For the sake of completeness, we give an example to show that the
hypothesis in Propositions 3 and 4 that the map « be open is necessary,
and that the map a* of Theorem 7 need not be surjective.

Example 8. Let S =[0,1],let T = {z € C : |z| = 1} be the unit
circle in the complex plane, and define a : S — T by a(p) = exp(2wip).
Then « is evidently a continuous, but not open, surjection. If p : FF — T
is the trivial bundle, then I'(p) = C(T'). The pullback 7 : E — S is also
the trivial bundle, and I'(7) = C(S). The canonical bundle £ : G — T
of I'(w) = C(S) as a C(T)-module has fibers

_[C, ifg#1
Gq_{CZ, ifg=1.
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Then ¢ is not Hausdorff (because the function dim : T — R, given
by dim (¢) = dimension of Gy, is not lower semicontinuous; see Gierz
[1, Theorem 18.3]) and hence not norm continuous, even though, of
course, p satisfies both of these conditions.

We also have Homg(I'(7),C(S)) = C(S) and Homr(I'(p), C(T)) =
C(T). It can be verified that the map o* : Homr(I'(p), C(T)) —
Homg(I'm), C(S)) of Theorem 7 is the ordinary isometric embedding
of C(T) into C(S) via a. In particular, o*(f)(0) = a*(f)(1) for each
f € C(T), so that a* is not surjective.
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