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TOPOLOGICAL TYPES OF SEVEN CLASSES
OF ISOLATED SINGULARITIES WITH C*-ACTION

YIJING XU AND STEPHEN S.-T. YAU

1. Introduction. In 1982, Mather and the second author [11]
proved that two germs of complex analytic hypersurfaces of the same
dimension with isolated singularities are biholomorphically equivalent
if and only if their moduli algebras are isomorphic. It is a natural
question to ask for a necessary and sufficient condition for two germs
of complex analytic hypersurfaces with isolated singularities (Vy,p1)
and (Va,p2) of the same dimension to have the same topological type.
We say that (V1,p1) and (Va,ps2) in C™*! have the same topological
type if (C™"*1, Vi, p;) is homeomorphic to (C""1Vy, p3). Even forn = 1,
the case is not trivial. It took more than 40 years to get a complete
solution. In 1928, Brauner [2] proved that the topological type of plane
irreducible curve singularity is determined by its Puiseux pairs. In
1932, Burau [3] discovered (and also independently by Zariski [28])
that for plane irreducible curves the Puiseux exponents are invariant
of topological type. Finally, Lejeune [9] and Zariski [26] proved that
the topological type of plane curve singularity is determined by the
topological type of all its irreducible components and all the pairs
of intersection multiplicity of those components. This together with
the theorem of J. Reeve [17], which asserts that the intersection
multiplicity of two plane curves is the same as the linking number of
the corresponding knots, gives a complete answer to our question for
n=1.

A polynomial h(zg, ..., z,) is weighted homogeneous of type (wo, . .. ,
wp,), where (wy,...,w,) are fixed positive rational numbers, if it can
be expressed as a linear combination of monomials 2% ... zi» for which
(to/wo) + -+ -+ (in/wpn) = 1. (wp,...w,) is called the weights of h.

Orlik and Wagreich [15] and Arnold [1] showed that if h(zg, 21, 22) is
a weighted homogeneous polynomial in C3 and V = {h(z) = o} has an
isolated singularity at origin, then V' can be deformed into one of the
following seven classes below while keeping the link Ky differentiably
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constant.

Class 1. V(ag,a1,a2;1) = {z5° + 2{* + 252 = 0}

Class 2. V(ag,a1,a2;2) = {z5° + 2{* + 21252 =0}, a1 > 1

Class 3. V(ag,a1,a2;3) = {25°+21 20+21252 =0}, a1 > 1, a2 > 1

Class 4. V(ao, a1,a2;4) = {z5° + 2] 22 + 20252 =0}, ap > 1

Class 5. V(ao,a1,a2;5) = {z5%21 + 21" 22 + 20292 = 0}

Class 6. V(ag,a1,a2;6) = {20° 4 2028 + 2029% + 251252 = 0},
(ap — 1)(a1be + agzb1) = apaias

Class 7. V(ao,a1,a2;7) = {2°21 + 2027 + 20292 + 2?232 = 0},

(ao — 1)(a1b2 + azbl) = ag(aoal — 1)

The purpose of this paper is to give precise conditions when two
classes of singularities above have the same topological type. These
conditions are stated but without proof in [21, Theorem 4.1] which were
used to prove the Zariski multiplicity conjecture for quasi-homogeneous
surface singularities in [21]. In Orlik’s paper, “Weighted homogeneous
polynomials and fundamental groups” (Topology 9 (1970) 267-272)
he asserted that, for weighted homogeneous polynomials f and g, if
the links Ky and K, are not lens spaces and m;(Ky) is isomorphic
to m1(Ky), then f and g have the same weights. If this assertion
were true, then it would not make the results of our paper easier to
obtain. However, the above assertion of Orlik is not true. For example,
z2 +y” + z'* and 2% + y* + 2!2 have homeomorphic links which are
not lens spaces; however, they have distinct weights. Since there is a
desire for detailed proofs of those results stated in [2, Theorem 4.1], we
decided to publish them for the convenience of readers. The original
proofs of these results depend only on the deep theorems of Neumann
[14] and Varchenko [20]; however, the proofs are very long. Here we
shall, in addition, use a result of Yoshinaga [24] and the result of Milnor
and Orlik [13] to obtain simpler proofs of these results.

In Section 2 we recall the definitions of zeta function and characteris-
tic polynomials of isolated hypersurface singularity. Varchenko’s result
is used to compute the zeta function of the above seven classes weighted
homogeneous singularities explicitly. We also recall the result of Orlik
and Wagreich [15] on description of resolution in terms of weights for
weighted homogeneous singularities.
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After the completion of this manuscript, we received a paper by O.
Saeki (“Topological invariance of weights for weighted homogeneous
isolated singularities in C3,” Proc. Amer. Math. Soc. 103 (1988),
905-908). In his paper, O. Saeki stated that the topological type of a
quasi-homogeneous isolated surface singularity in C? is determined by
its weights. However, the proof presented in his paper is incomplete.
He uses the following unknown fact that the knot type of (S°, K) is
determined by S® — K. On the other hand, it is well known that, at
least for nonalgebraic knot (S®, K), the complement S® — K does not
determine the knot type of (S5, K).

Notation and convention. In the rest of this paper we shall assume
that the weights of the weighted homogeneous polynomial are greater
than or equal to two without loss of generality by [18] (notice that the
weights we adopt here are reciprocal of those used by Saito). If a; and
ay are integers and a; divides ag, we shall write a1 /as.

2. Zeta function and resolution for weighted homogeneous
singularity. We shall first recall a deep result due to Varchenko [20].
Let f: (C"*10) — (C,0) be an analytic function. Let ¢, § be positive
numbers 0 < § < € < 1. We define

T={teC:|t <}, B={z€C"" |22+ -+ |znq1| < e},

X=BnfYT), X@{t)=Bnf ).
Milnor proved that f : X\X(0) — T\{0} is a locally trivial smooth
fiber bundle. If f has an isolated singularity at the origin, the fiber
X(t) of this fiber bundle has the homotopy type of a bouquet of
n-spheres. The generator of m1(7\{0}) (represented by a counter-

clockwise oriented circle around the origin), induces the monodromy
automorphism h : H*(X (t),C) — H*(X(t),C).

Definition. The zeta-function of the monodromy at the origin is the
function

(2.1) Cr(z) = Myso{det [Id — zh; HI(X (t), C)]} V",

If f has an isolated singularity at the origin, then H?(X (¢),C) =0
for ¢ # 0,n. In this case the characteristic polynomial Ay(z) of the
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monodromy h : H"(X (t),C) — H™(X(t), C) is expressed by means of
(¢ (2) according to the formula

22) a=+(Z) e (D]

where 1 = dim H" (X (0), C) is the Milnor number.

Let N C R, be the set of all nonnegative integers and of all
nonnegative real numbers. Let f = 3" apz®, ar, € C, k € N**! be an
element in C{zy,...,z,} and supp f be the set {k € N**!: q; # 0}.
We denote by T'4(f) the convex hull of the set Upesupp f(k + RT)
in R:L_H. The polyhedron I'(f) which is the union of all compact
facets of I';(f) will be called Newton’s diagram of the power series
f. The polynomial Zker(f) arz® will be called the main part of the

power series f. Let v be a closed facet of I'(f). Let us denote the
polynomial Zkey arz® by fy- The main part of the power series
f will be called nondegenerate if for any closed facet v € I'(f) the
polynomials (zo(0fy/0x0)),... ,(zn(0fy/xn)) have no common zero
in {z €e C"!:zy...2, #0}.

We shall define the notions of zeta-function (- associated with the
Newton’s diagram I'(f). Let

(2:3) Gr(z) = I ()

where (! is a polynomial defined as below. (! is defined by the (I — 1)
dimensional facets of the intersections of I'(f) with all possible I-
dimensional coordinate planes.

Let L be an I-dimensional affine subspace of R"*! such that LNZ"+!
is [-dimensional lattice. By definition, let the /-dimensional volume of
the cube (spanned by any basis of L N Z*) be equal to one.

Now we shall define ¢'. Let I C {0,1,...,n} and |I| = [, where |I| is
the number of the elements of I. Let us consider the pair Ly, Ly NT(f),
where Ly = {k € R"™! : k; = 0,Vi # I}. Let I'y(I),...,;n(I)
be all (I — 1)-dimensional facets of L; N I'(f) and Li,...,Lj) be the
(I — 1)-dimensional affine subspaces, containing them respectively. Let
> ieralki = mj(I) be the equation of L; in L; where a,m;(I) € N
and the greatest common divisor of the numbers ag , 1 €1, 1is equal to
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one. The numbers af ,mj(I) are defined by these conditions uniquely.
The numbers m;(I) will take part in the definition of ¢!. Another
definition of m;([I) is the following. Consider the quotient of the lattice
Z"t1 N L; by the subgroup generated by vectors of Z* N L;. This is
a cyclic group of order m;(I). Let V(I';(I)) be the [ — 1-dimensional
volume of I';(I) in L;. Let

(2.4) ¢M(z) = I IEY) (1 — 20DV T ),

It was observed by Varchenko [20] that m;(I)({—1)!'V(I';(I)) is equal
to {! multiplied by the [-dimensional volume of the cone over I';(I)
with vertex at origin. According to this remark deg(! contains the
following geometric sense. Let I'_(f) be the cone over T'(f) with vertex
at the origin. Then deg (' is the sum of I-dimensional volumes of the
intersections of I'_ (f) with all possible [-dimensional coordinate planes,
multiplied by {! The following theorem plays an important role in the
proof of our theorem.

Theorem 2.1. (Varchenko) Let f belong to the square of the
mazimal ideal of C{zo,...,x,}, and let the main part of the power
series f be nondegenerate. Then the zeta-function of the monodromy
of f at the origin is equal to the zeta-function (r of the Newton diagram

L off.

Let a,b, and c be integers. We shall denote (a,b,c) to be the greatest
common divisor of a,b, and c.

Proposition 2.2. (i) Class 1. The function f(zo,21,22) = 25° +
21t + 252 is nondegenerate. Its zeta function is given by

Cr(2) = (1= 2) (1 — 2%1)(1 — 2%) (1 _ 2Tegan

ajas \ —(a1,a2) agay \—(ao,a2) agajag (aoar,a1az,a0a2)
(1—z(a1,a2)> (1—z(ao,a2)> (1—z(aoa1,a1a2,aoa2)>

ay ) —(ag,a1)

(ii)) Class 2. The function f(zo,21,22) = z,° + 27* + z125% is
nondegenerate. Its zeta function is

apa —(a ,a )
Crr(z) = (1 — 290)(1 — 1) (1 . z(aé’,ab) o

ajay —(a1-1,a2) agajas (aoaz,a1a2,a0(a1—1))
(1 — z(u1*1;ﬂ2)> (1 — z(aoaz,alaz,ao(ﬂlfl)))
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(i) Class 3. The function f(zo,21,22) = 25° + 21 22 + 21252 is
nondegenerate. Its zeta function is

ajaz—1 —(a1—1,a2—-1)
Crrr(z) = (1= 2%) (1 - zﬁ>

< ag(agag—1) >(a1a2—1,ag(ag—1),ao(a1—1))

1 — z(araz—1,ap(az—1),a9(a1—1))

(iv) Class 4. The function f(zo,21,22) = 25° + 2021* + 2125 is
nondegenerate. Its zeta function is

apa 7((1 ,a 71)
Crv(z) = (1—2%) (1 - z<ﬂ1’?’01*1)> o

agajag (a1az,ap0a1 —ao+1,a2(ap—1))
(l — z(alazyaoalfaoﬁ'l’az(ao*1)))

v) Class 5. The function f(z9,21,22) = 20°21 + 27 22 + 202592 18
0 1 2
nondegenerate. Its zeta function is

(v(2)

agajas+1 (araz—az+1,a0a2—ap+1,a0a1—ai+1)
— (1 — y(ajaz—az+Tagaz —ag+1,agas —ag+1) )

(vi) Class 6. The function f(20, 21, 22) = 25° +202)" +2025> + 251252,
where (ag — 1)(agb; + a1bs) = apajag, is nondegenerate for suitable
chosen by and by. Its zeta function is

— z(az,ag—1)

aga —(a1,a0—1 aga —(az2,a0—1
Ger(e) = (1= ) (1= st ) 0 (1 ity

1 — z(araz,a2(ap—1),a1(ap—1))

/

agajay )(Glaz,az(ao*1)@1(‘10*1))%

(vii) Class 7. The function f(zo,z1,22) = 2z5°21 + 202" + 20292 +
zlflzlz’2, where (a9 — 1)(azby + a1by) = (az(apar — 1) is nondegenerate
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for suitable chosen by and by. Its zeta function is

agaj —1 —(a1—1,a0—-1)
CVII(z) = (]_ — Z(al—l,a0—1)>

ag
—1

( ag(agag —1) >(az(al—1)702(110—1)7@1(@0—1)) 70

1 — z(a2(a1—1),a2(ag—1),a1(ag—1))

Proof. Easy exercise. O

Let f be a weighted homogeneous polynomial in C|zg, 21, 22]. Let
(wg, w1, ws) be weights of f. Let w; = u;/v; be the reduced fraction of
w;, i.e., u; and v; are integers with (u;,v;) = 1. Define d = (ug, uy, ug)

the least common multiple of ug,u; and ug; ¢ = (ug,ur,us) the
greatest common divisor of ug,ui,ue; ¢; = d/wi; co = (ug,u2)/c;
c1 = (ug,u2)/c; c2 = (ug,uy)/c.

Finally, we define vg,v1 and 2 by uwg = cciceyg, U1 = ccoCayi,

U2 = CCpC17Y2-

The link K; = f=(0)NS5, where S® is a sphere with center at origin,
is a Seifert fibered 3-manifold. Orlik and Wagreich [15] have calculated
the Seifert invariants of Ky,

{=b;g;n1(01, B1), n2(2, B2), n3(as, B3), na(aa, Ba) },

which are given as follows.

TABLE 1.
o ng o ny as | ny | as | ng
Il cCo 1 cey Y2 | cca 0
IT | v (cco —1)/vg V20 1 Y2 c 0
III | o | (cco—v1—w2)/v1v2 | v2Y0 1 vy | 1 0
IV | v (c—1)/n Vo 1 viye | 1 0
V| v 1 U1 1 Vg 1 0
VI | 1 (c—1)/vq Y2 | (e=1)/vg |viy2 | 1 |wayr | 1
VIL | v2 | (c—vg—v1)/vou1 Vg 1 viya | 1 |wye | 1
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TABLE 2.
wWo w1 Wa
I Qg aiy a9
a1a2
11 ag ail a1—1
a1a271 alagfl
111 ag T PP
apal apaiaz
IV Qo ag—1 apga; —ag+1
Vv apaiaz+1 apajaz+1 apajaz+1
ajaz—azx+1 apgaz—aq+1 apga; —a;+1
apay apaz
VI a() anfl anfl
aga;—1 apga;—1 az(aga;—1)
VII a;—1 ap—1 ay(ap—1)
TABLE 2. (Continued)
Ug (751 (%)
I ao ai as
11 e
0 “ (a2,01—1)
__ajas—1 _ __aias—1
11 do (a1—1,a3—1) (a1—=1,as—1
apgal agaiaz
IV ao (ag—l,al) (alag,aoal—a0+1)
V agaiaz+1 agaiaz+1 agaiasz+1
k k k
T apai agaz
v ao (ap—1,a1) (ao—1,a2)
VII aga;—1 apga;—1 az(agai—1)
(ao—1l,a1—1) | (ag—1,a1—1) | (az(agai—1),a1(ap—1))

where k = (a1a2 — a2 + 1,ap0a2 — ap + 1,a0a1 — a1 + 1)
= (aparaz + 1,a1a2 —az + 1)
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TABLE 2 (Continued).

Vo V1 v2
I 1 1 1
al
I ! ! (az,a1—-1)
1II 1 as—1 a;—1

(a1—1,az—1)

v

1 ag—1

(ap—1,a1—1)

(ag—1,a1—1)

(ag—1,a31) (a1a2,apa1—ag+1)
A4 ajaz—as+1 apaz—ap+1 agai —a1+1
k k k
VI 1 ag—1 ap—1
(ag—1,a31) (ag—1,a3)
VII a;—1 apg—1 a; (ap—1)

(a1(ag—1),a2(aga1 —1))

By the theorem of Saito [18], we may assume from now on that w; > 2
for i = 0,...,n. We have, in particular, u; > 2 for ¢ = 0,... ,n. The
following theorem which is a consequence of Milnor and Orlik [13] is
due to Yoshinaga [24].

Theorem 2.3. Let f(zo,...,2zn) (respectively, g(zo,...,Tn)) be
a weighted homogeneous polynomial with weights (ug/vo, ... ,Un/Vy)
(respectively, ug/vg, - .. ,ul,/vl,)) where u;/v; (respectively u/v}) is the
reduced fraction of w; (respectively w}). Assume that f (respectively g)
has an isolated singularity at origin. Then Af(z) = Agy(2) if and only
if the following two conditions are satisfied.

(1) {2,uo,.-. un} =1{2,up,...,u,}
(2) For any u € {2,ug,... ,un},

[ (-2%)- 10 (-3
v; v
u;=u u;:u J

where the product over an empty set is assumed to be one.

3. Classification of the topological types of seven classes of
singularities.

Lemma 3.1. Let f(29,21,22) and g(zo, 21, 22) be weighted homoge-
neous polynomials with weights (ug/vo, uy /vy, uz/v2) and (ug /vy, ul /v},
uh /v}), respectively, having isolated singularities at origin.
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(i) If ui, = u, = 2 where {io,i1,i2} = {0,1,2}, then
{(20,21,22) € C*: g(20, 21, 22) = 0}
1s btholomorphically equivalent to
{(20,21,22) € C®: 23 + 27 + 25T =0}
with k > 2.

(ii) Suppose that f and g are one of the seven types. If As(z) =
Ay(z) and uo = uy = ug = uj, > u;, = u;, = 2 where {ig,i1,92} =
{0,1,2}, then f(z0,21,22) is of type V and mi(Ky) is infinite while
m1(Ky) is finite.

Proof. (i) Observe that wj = uj /v;, = 2/v; < 2 and similarly
wj, < 2. By our convention, we conclude that w;, = wj, = 2. Therefore
(i) follows from a proposition of Saito [18].

!

(ii) From the proof of (i) above, we see that v = v =v, =1. By
Proposition 2.3, we have

1-— ui-o = (1 —ug/vo)(1 — uy/v1)(1 — ug/va).

If vo = 1, then 1 = ((1 — u1)/v1)((1 — ug)/v2). Since w; > 2 and
wy > 2, we have 1 —uy /vy < —1 and 1 — up/vy < —1. It follows
that ug/ve = 2 = wuy/v;. As uy/v; and ug /vy are reduced forms, we
conclude that u; = us = 2 and v; = vy = 1. This contradicts the
assumption that u; = uy > 2. Hence, vy cannot be one. Similarly, vy
and ve cannot be one. This implies that f(zo, 21, 22) is either of type

V or of type VII.
(a) Suppose that f is of type V, i.e.,
[ =221+ 2% 29 + 29252.
Recall that g = z&—i—z%—i—zf“, k>2and up =u; =2, us =k+1. By

Proposition 2.2,
agajas+1 ) l
]

) =(1-2
Col2) = (1= 244
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where | = (a1a2—a2+1, apaz—ap+1,a9a1—ai+1). Since (f(z) = (4()
by assumption, we have [ = 1 and (agajaz+1)/l = k+1 > 3. Note that
m1(Ky) is finite while m;(Ky) is finite only if 1/wo + 1/wq + 1/wy > 1.
We conclude that

(a0a1 + apasz + alag) - (CLO + ai + CLQ) + 3

>1
apaias + 1

which is equivalent to
agaiaz + 1 < (apa1 + apaz + a1az2) — (ag + a1 + az) + 3,

ie., (ap—1)(ag —1)(az —1) < 1. Thus 1 < a; <2 fori=0,1,2. Since
apaiaz + 1 > 3, we have only the following subcases.

(@) ap=a; =1, az =2, i.e., f = 2921 + 2122 + 2023. In this case,
we see that wy = 3 = wy, wy = 3/2, which contradicts our assumption
that w; > 2 for all 4 =0,1,2.

(B) ap=1,a; =ay =2, i.e., f = 2021+ 220+ 2023. In this case, we
have wyg = 5/3, wy = 5/2, we = 5, which contradicts our assumption
that w; > 2 for all 4 =0, 1, 2.

(7) ao = a; = az = 2. In this case
= (a1a2 —asz + 1,apa2 — ag + 1,a0a1 — a1 + ].) =3>1,

which again gives a contradiction.

(b) Suppose that f is of type VIL, i.e., f = 20°21 + 202" + 20252 +
21252 Recall that g = 22 + 22 + 251, By Proposition 2.2,

agag—1 ao—ar"l—l)(ﬁ—l,ao—l)

Cf(z) - (1 — zm) (‘107
Cg(Z) = (1 _ Zk+1)_
To have (r(z) = (4(2), we need

apayl — 1
(ao — 1,0,1 — ].)

apa2z

:k+l and ( —l>(a1—1,a0—1)—1.

Clo—].
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Thus, (ag—1,a1—1) =1, apa; —1 = k+1 and ((agaz)/(ap—1))—1 = 1.
It follows that ag = 2, as = 1 and 2a; = k + 2. From the equation
(b1 + a1b2)/(2a; — 1) = 1, we infer that b = a; — 1 and by = 1. Hence,
f =282+ 202y + 2020 + zfrlzg = (20 + zfrl)(zozl + 23) which do
not have isolated singularity at origin. So f cannot be of type VII.
O

Lemma 3.2. Let f(z9, 21,22) and g(zo, 21, 22) be weighted homoge-
neous polynomials having isolated singularities at origin with weights
(wo, w1, w2) and (wy,wi,ws), respectively. Suppose that Af(z) =
Ay(z) and m1(Ky) = m(Kg). If up = ug, then uy = ug = u, = uj
for some iy # iy with 0 < iy,ip < 2, and up = wj, where {0,1,2} =
{7:0)2'177:2}-

[})

Proof. Suppose first that wuf,u},u) are pairwise distinct. From
Theorem 2.3, we see that {2,ug,u1} = {2,uf,u},uy}. This implies
that one of the u} = 2, say uy, = 2. We have {2, ug,u1} = {2, u],u5}
with 2, u),u}, are pairwise distinct. Without loss of generality, we may
assume ug = u}, u; = uy. By Theorem 2.3 (ii) with u = 2, we see that
1—uj/vy =1, ie., up/vy = 0 which contradicts the hypothesis wj > 2.
So ug, u},us cannot be pairwise distinct. Without loss of generality we
shall assume that v} = u}.

Suppose on the contrary that u; = ug # u} = u}. Since
{27 Up, U1, u2} - {27 U/IOa ulla u,2}7

we have either (a) u} = uj = ug or (8) u} = uh =2 # uyg.

In case (8), we have {2,up,u1} = {2,u;}. Note that uy # 2 and
uy # 2 = u} = uh. Thus we must have

U = Up = up = Uy #£ Uy = uh = 2.

By Lemma 3.1, we have m;(Ky) # mi(K,), which contradicts our
assumption.

In case (a), we have either u] = u) = uj or v} = uh # uj. In
the first case, we have u) = uj = uh = ug # w1 = ugz. It follows
that uy = us = 2, which again leads to a contradiction by Lemma 3.1
because the assumption 71 (Kf) = m1(K,). In the second case, we have
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uy # uy = uy = ug. Hence up # u; = uz. By Theorem 2.3 (ii) with
u = ug, we have

(1 =y fo) (1 = /vh) = 1 — un/o.

Since w} > 2, wh > 2 and wy > 2, the left hand side is positive while
the right hand side is negative. This gives a contradiction.

Now we have shown u; = up = uj, = u;,. By Theorem 2.3 (i), we
have
{27 Uo, ul} = {27 u;o ) ’LL;I}
Hence, one of the following subcases has to be satisfied.

(1) If up = uq, then either ui = uj =wuo = uy or 2 = uj # u; =
ug = uy. In the latter case, we have ug = uy = up = uj =u} #2=
u; . This contradicts Theorem 2.3 (ii) with v = 2.

(2) Ifug # uy and ug = 2, then either w) = 2 = wug or uj = u; = u;,.
In the latter case, we have v, = u. = u. = u; = us # ug = 2. This
10 11 12

contradicts Theorem 2.3 (ii) with u = 2.

(3) If ug # uy and uy = 2, then either uj, = up or uj, =2 =u;. In
the latter case, we have u} =2 =wu; = uy = uj, = uj,. It follows that
up = 2 = uj, as well.

(4) Tf ug # w1, wo # 2 and u; # 2, then we have uj = ug
immediately.

Thus we conclude that ug = u . o

Lemma 3.3. Let f(z0,21,22) and g(zo, 21,22) be weighted homo-
geneous polynomials having isolated singularity at origin with weights
(wo, w1, ws) and (wy,w),ws), respectively. Suppose that Aj(z) =
Ag(z) and mi(Ky) = m(Ky). If ui/ug and ui < ug, then for some
indices i1,1z with iy # iz, 0 < i1, iy < 2, we have uj [u;,, u1 = u;,
uz = uj, and ug = u; where {0,1,2} = {ip, 1,2}

Proof. Let us = kuj; where k is an integer bigger than one. By
Proposition 2.3 (i), we have {2, ug,u1, ku1} = {2,ug,u], ub}. Because
the hypothesis of Lemma 3.1 is not satisfied, there are the following
three subcases.
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(1) wo,u; and kuy are pairwise distinct. By Lemma 3.2, uf, u} and
uh, must be pairwise distinct. Thus it is clear that we have ug = ug,
uy = uj, up = uf after reindexing wy, uf, ub.

(2) wp = u;. By Lemma 3.2, we may assume that uy # uy =
up = uy = u). Thus {2,u;,us = kus} = {2,u],ub}. Observe that
uz = kuy > 2 since u; > 2 and k > 1. Therefore, uj = ku; as required.

(3) wp = ug = kuy > uj;. By Lemma 4.2, we may assume that
ug = uz = uf = uhy. Thus {2,ur,u2 = kur} = {2,uf,u}. If ug # 2,
then 2, uy,us are distinct. Hence, u}{ = wu; as required. If u; = 2,
then we have {2, us = 2k} = {2,u},u, = 2k}. u) cannot be us = 2k,
otherwise v} = u) = u{ = uz = ug > uy which is exactly the hypothesis
in Lemma 3.1. Hence, u}| = 2 = u; as required. o

Lemma 3.4. Let f(zo,21,22) and g(zo,21,22) be weighted homo-
geneous polynomials in seven types. Let ag,aq,qs,as (respectively
ap, a1, a9,a3) be the orders of stabilizer subgroups of the action of
SO(2) at the link Ky (respectively Kg). If mi(Ky) = mi(Ky), then
we have {1,&p,01,a2,a3} = {l,ap,01,a2,as}. Moreover, for any
a € {1,a9, a1, a2,a3}\{1}, we have

domi= )

a; =« aj=a

where n; (respectively nj) is the number of orbits whose stabilizer
subgroup has order a; (respectively @;).

Proof. By Neumann'’s result [14], the minimal good resolution graph
of weighted homogeneous two-dimensional hypersurface singularities
are determined by the fundamental group of their links. In [15],
the weighted dual graph of minimal good resolution of (f~!(0,0)
(respectively (g71(0),0)) is star-shaped. The self-intersection numbers
of all the vertices in a branch of the weighted dual graph determine
«;/B; where (o;,B;) = 1 and f; determine the representation Z,, —
SO(2). Thus, if m1(Ky) = m1(K,), then

(*) {ai/ﬁi:ai>1}:{6¢j/5i:@j>1}

From (x), we infer that {1, ap, a1, s, a3} = {1, @, &1,a2,a3}. Note
that n; is the number of the branches in the weighted dual graph such
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that the continuous fraction formed by the self-intersection numbers is
exactly equal to a;/B3; with a; > 1. The last statement of the lemma
follows easily. O

Lemma 3.5. Let f(z9,21,22) and g(zo, 21, 22) be weighted homoge-
neous polynomials with weights (ug/vo, u1/v1, uz/v2) and (uf /v, v} /vy,
ub/vh), respectively, having isolated singularities at origin. Suppose
that f and g are one of seven types. If A¢(z) = Ag(2) and m(Ky) =
m1(Ky), then

min{ug, u1, uz} = min{ug, u}, uj}

and
max{ug, u1,us} = max{ug, ui, us}.

Proof. Let us assume without loss of generality that
up = min{ug, uy,u2} and wuy = min{ug, u}, us}.

If wy # uy, then we have either uy > 2, uj, = 2 or up = 2, uy > 2, since
{2, uo, u1, uz} = {2, uf), u}, uy } by (i) of Theorem 2.3. By symmetry, we
only need to show that the case ug > 2, uy = 2 cannot occur. Suppose
on the contrary that uwg > 2, u, = 2. Then by (ii) of Theorem 2.3, we
have

() 1=H(1u_>:11<u_>

u;=2 u’.

J
Since w’; = u}/v} > 2, i.e.,, 1 —w}; < —1, we conclude that 1 —w’ = —1
for u; = 2. Moreover from (x), we know that there exists exactly

one j which is different from zero such that uj; = 2. For the sake of
argument, let us assume that uj = 2. Then we have uj = u} = 2
and uwhy > 2. As min{ug, u1,u2} = ug > 2, we infer that vy = u; =
upy = uy > uy = uy = 2. However, we know that m(Ky) is infinite
while 71 (K) is finite by Lemma 3.1. This contradicts our hypothesis
that m1(Ky) = m1(K,). We conclude that ug = ug. It is clear that

max{ug, u1, uz} = max{ug, v}, us} by Theorem 2.3. O

Lemma 3.6. Let f(z9,21,22) and g(zo, 21, 22) be weighted homoge-
neous polynomials with weights (ug/vo, uy /vy, uz/v2) and (ug /vy, vl /vy,
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uh/vh), respectively, having isolated singularity at origin, where ug <
up < ug and uy < uj < uh. Suppose that f and g are one of the
seven types. If As(z) = Agy(2) and m(Ky) = m1(Ky), then u; = u; for
0<i<?2.

Proof. By Lemma 3.5, we know that up = u{, and uz = uj. We only
need to consider the following three subcases.

Case 1. up = uy. If uf = ), then v} = u) = up = uy. If uf # ug,
then, by Lemma 3.2, we have u} = ufy = u; = ug.

Case 2. uy = ug. If v} = uh, then v} = uy = uy = uy. If uf = uh,
then u; = ug = uj) = v} by Lemma 3.2.

Case 3. up < uj < ug. It is clear that u} = uy by (i) of Proposition
2.3. O

Now let us recall the following well-known fact. If (V,0) and (W,0)
are germs of isolated hypersurface singularities in C"*!, having the
same topological type, then m (Kv) = m1(Kw) and Ay (z) = Aw (2).

Theorem 3.7. Suppose that f = ng’ + zfll + z;lz s of type I and
g = 20" + 27 + 21252 is of type II. Then (f~1(0),0) and (g~*(0),0)
have the same topological type if and only if

a1a2
— a0 a a;—1
{ f=2" 42"+ 2, }

a a a
9=2z"+2" + 2125°

with (a1 — 1)|as.

Proof. Since u; = ay and uy = ajas/(a; — 1,a2), we see that
uy/ug. As mi(Ky) = m(Ky), the hypothesis of Lemma 3.1 cannot
be satisfied. So by Lemma 3.2 and Lemma 3.3, we may assume af /a},
a; = a} and afy = ajaz/(a1 — 1,a2). By Theorem 2.3 (i), we have
{2,a(,al,ab} = {2, ap,a,ay}. If ay # ao, then either () ay = 2 or (B)
ay = ay, or (v) ay = ab. In case (a), we have {2, a], a5} = {2, a9, 4}, ab}
and hence either ag = a} = a3 or ap = a}, = us. In both cases, we have
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ay = a%, by Lemma 3.2. Thus,

This contradicts Theorem 2.3 (ii) with v = 2. In case (8), we
have aj = a} = a1 = a} by Lemma 3.2, since aj # ap. Thus,
ap = aj = ay = a1 = ayaz/(a1 — 1, az) # ag. This contradicts Theorem
2.3 (i) with u = a{. In case (v), a similar argument as case (3) will
give a contradiction. Therefore, we see that aj, # ag is impossible, i.e.,
we must have af, = ag.

By Theorem 2.3 (ii), we have
(1 = wp)(1 —wi)(1 —wp) = (1 — wo)(L — wy)(1 — wa)

which implies

(1ab)(la’l)(la'z)z(lag)(la'l)< _>

V2

we conclude that vy = 1. Recall that vo = a; — 1/(a2,a; —1). We have
(a1 — l)/ag. )

Theorem 3.8. Suppose that f = ng’ + zfll + zgé is of type I and
g =25° + 27 20 + 21252 is of type III. Then (f~1(0),0) and (g~'(0),0)
have the same topological type if and only if

1 1
{f:zgo 4potl et }

a a a
g =2° + 21" 22 + 212"

Proof. Since u; = us = ajag—1/(a; —1,a2 — 1), we may assume that
ai = ah = u; = ug. It follows that 4{ = +4 = 1. Since the minimal
good resolution graphs for f and g are the same, by Lemma 3.4 and
Table 1, we have

{17’7(1)7’)/1 = 177& = 1} = {1770770’027701}1}'

There are two subcases.
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Case 1. 9 > 1. It follows that v; = vo =1 and v = 7§ > 1. As
vy =ag —1/(a; —l,a2 — 1) and v3 = a1 — 1/(a; — 1,a2 — 1), we see
that a; = ay and u; = us = a; + 1 = | = a),. By Proposition 2.3 (ii),
we have

(1 —wp)(L = wp)(1—wh) = (1~ wo)(1 —wi)(l— wg)

which implies that

(1 —ag)(1 —ay)(1 —ay) = (L —ao)(L — ay)(1 — al),
i.e., aj = ag. So f and g are in the form as required.

Case 2. v9 = 1. In this case, we have {7{,1} = {1,v1,v2}. Then we
have either (o) v1 = 1, v2 > 1 or (8) va =1, v1 > 1 or (y) v1 = ve.
In the case (a), we have v = 4 > 1. Hence, ng = n} which implies
(a},ab) = ¢y = ng = nj =1 (cf. Table 1). It follows that o} = a =1,
which is impossible. In case (3), the same argument above will give
a contradiction. In case (v), since v; = az — 1/(a; — 1,a3 — 1) and
v =a; —1/(a; — 1,a3 — 1), we have a; = ap and hence v; = vy = 1.
The result follows from the same argument as Case 1. O

Theorem 3.9. Suppose that f = ng’ + zfll + zgé is of type I and
g = 25° + z02{* + 21252 is of type IV. Then (f~1(0),0) and (g~'(0),0)
have the same topological type if and only if

(1o |

k+1 k t(mk+m—1
g:z0+ + zo21" +zlz2( )

Proof. By Table 2, we have ug/u; and uq/us. Therefore, we may
assume that af/a},al/ab, ap = wo = ay, u1 = a} and up = dj. By
Theorem 2.3 (ii), we have

(1 = wp)(1 = wp)(1 = wp) = (1 — wo)(1 — wy)(1 — wy)

which implies

(1-ap)a-a)a-a) = (L -ap) (1-2) (1- 2).

U1 V2
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Clearly, this is possible only if v1 = vy = 1, i.e., a9 — 1 = (ag — 1,a4)
and apa; — ag + 1 = (a1a2,a0a1 — ag + 1). We infer from Table 2
that a] = u; = apai1/(ap — 1,a1) = agai/ap — 1 and ay, = uy =
agajaz/(ayas, apa; —ag+1) = aparas/(apa; —ap+1). Let af = k+1,
ay =m(k+1) and af = tm(k+1). It follows that ag = k+1, a1 = mk
and ag = t(mk +m —1). O

Theorem 3.10. Suppose that f = z86 + zfll + zglz s of type I and
g = 25°21+ 20 22+ 20252 is of type V. Then (f1(0),0) and (g~1(0),0)
have the same topological type if and only if

{f = Ly ke z§+1}

g = z(’le + zf22 + zozéc

Proof. By Table 2, we have ug = u; = ug. It follows from Lemma 3.2
and Theorem 2.3 (ii) that aj = a}] = a}. Since vj = v =75 = 1, we
see, by Lemma 3.4 and Table 1, that vy = v; = vo = 1. It follows that
ajas — az = agaz — ag = aga; — a1 and, hence, ap = a3 = az = k. By
Proposition 2.2, we have

Cr(z) = (1 — z0)b =20t
Colz) = (1= MK,

In order to have (f(z) = (,(z), we must have aj = k + 1. O

Theorem 3.11. Suppose that f = ng + z'f,l + zglz is of type I and
g = 250 + 225" + 20257 + 221252 is of type VI Then (f~'(0),0) and
(g71(0),0) have the same topological type if and only if

g= z§+1 + zozi"k + z02*2 + len zgz

Proof. By Table 2, we see that ug/u; and wug/uz. It follows that
we may assume without loss of generality that af/a}, ag/ab, af = uo,
ai = uy, ab, = ug. By Theorem 2.3 (ii), we have

(1 = wo)(1 = wi)(1 = wg) = (1 — wp)(1 — wh)(1 — wh)
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which implies

It follows that v9 = v; = wg = 1. By Table 2, we infer that
(ap — 1)/a1 and (ag — 1)/az. Therefore, ay = ao, aj = apa1/(ao — 1)
and ajy = apaz/(ap — 1) by Table 2 again. Set ag = k + 1, a; = mk,
as = tk, then we have ay =k + 1, ay = m(k + 1), ab =t(k+1). So f
and g are in the form as required. o

Theorem 3.12. Suppose that f = ng + z'fll + z;; s of type I and
g = 25°21 + 202" + 20252 + zi’lz? is of type VII. Then (f~1(0),0) and
(g71(0),0) have the same topological type if and only if

{f = Ly Gk Z;n(kJrl) }

k k ko b1 b
g = zp21 + 2027 + 2029 + 2{' 257

Proof. By Table 2, ug = u; = aga; — 1/(ag — 1,a; — 1). We may
assume, without loss of generality, that aj, = a] = up = u; and a} = us.
By Theorem 2.3 (ii), we have

(1 —wp)(L = wi)(1 —wh) = (1 —wo)(1 — wir)(1 —ws)
which implies that

(1—ab)(1— a})(1 — a}) = (13-2) <1%> <1Z—z>

It follows that vy = v; = v, = 1. The fact that vg = v, implies ag = a;
by Table 2. Since vy = 1, it is easy to see that a; /as by Table 2 again.
If we set ag = a3 = k, then az = mk, aj = a] +k+1 and aj = m(k+1)
(see Table 2). Hence, f and g are in the form as required. O

Theorem 3.13. Suppose that f = 236 —|—sz1 + zglz z1 ts of type II and
g =20° + 21 20 + 21252 is of type III. Then (f1(0),0) and (g~1(0),0)
have the same topological type if and only if

K+l | k+l
{f:z0+ + 27t +z1z;”k}

k+1
g =25 4 by 4 2028

(1)
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or

{f = okl mhl o ok }

—1)+1
mk+1+ZT(k )+

k
g =2 29 + 2124

or

mk+1 k+1

f=280 4 ZnkamAl g okt
g =2z5° + 27 29 + 2125

or

(4) k+1

k 1 1 (mk+m+1)n
{ R }
29 + 2124

_ .mn+1 mk-+1
9="2 + 2

with (mn +1)/(m(k + 1) +1).

Proof. By Table 2, we have u; = us. It follows by Lemma 3.2 that
we have the following subcases.

(i) uy = u} = uy = uy and uhy = wy. This implies 7, = 1. By
Theorem 3.4 and Table 1, we have

A /N N B | ro_
{1aa0 =7 =101 = vy =vp, 5 = Yo}

= {1, 20 = 70, 1 = V290, 2 = V1Y0}-

Case (o). If 49 > 1, then we have v; = vy = 1 because (vj,v5) = L.
It follows from Table 2 that a; = as. Recalling that uj = v} = uy = ug,
we infer that af = af +a1+1 = as+1 by Table 2. By Theorem 2.3 (ii),
we have 1 —wg = 1 — wh, i.e., ap = ajas/(a} — 1). Thus, (a] — 1)/a}.
Set ay = a} = k+ 1. Then a1 = as =k, a4 = mk and a9 = m(k + 1).
So we are in case (1) asserted in the theorem.

Case (B). If 4o = 1, then 74 = 1 since up = uh and uj = v} = u; =
ug. This implies that w}/u}. From Table 2, we see that uf/u}. Thus,
we have uh, = v} = uj = up = u3 = ug. By Table 2, we have

ayab aras —1

! = 4 = -———— = —m—m—mmmmmmn_mm--
() %= (ah,a] —1) o (a1 —l,a2 — 1)
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By Lemma 3.4, we have {1,v5} = {1,vz,v1}. It follows that if neither
vg nor vy is one, then v; = vy = v}. Let & = v;. Then Zai:a n; =2
while > n}; = 1 by Table 1. This contradicts the second part of the
conclusion of Lemma 3.4. Therefore, we conclude that either vy = 1
or v3 = 1. We shall first assume that vy = 1. Thus vy = v} and
wy = w}h. From Table 2, we have afa}/(a}] — 1) = (a1a2 — 1)/(a1 — 1).
Observe that (%) implies a5 /(a} — 1). If we set afy = k, then we have
ap = a) = mk+1 = ag. From Table 1, the fact that vo = v} implies
(@i —1)/ay = (a1 —1)/(a1 —1,a2—1),i.e., m = (a1 —1)/(a1 —1,a2 —1).
However, (a2 —1)/(a1 —1) because v; = 1. Thus (a; —1)/(az —1) = m.
Set az = t+1. Then a; = mt+1 and (a1az—1)/(az—1) = mt+m+1 =
ap = mk+ 1. Hence, t =k — 1, i.e., a2 =k and a; = m(k — 1)+ 1. So
we are in case 2 as asserted in the theorem.

a'=a
k2

(ii) u} = uhy = u; = ug. By Lemma 3.2, we have uj = wuy, i.e.,
ay = ag. From Table 2, we have a}/(a} — 1). Since u} = u}, we have
~5 = 1. By Theorem 3.4 and Table 1, we have

{1, 0 = 70, &) = v3y0, 05 =75 =1} = {1,70, 270, 170}

Note that from Table 2, we have (vy,v9) = 1. It follows that either
vy =1or vy =1.

We first assume that v; = 1, i.e., (az —1)/(a; — 1). In this case, we
have w] = w;. Since wj = aj = a9 = wp, we infer that wh = wo
by Theorem 2.3 (ii). If we set ap = k + 1, then a3 = mk + 1,
ay = w) = w; = (apaz — 1)/(a2 — 1) = mk +m + 1. On the other
hand, djay/(a) — 1) = why = wy = (a1a2 — 1)/(a; — 1) implies that
a’, = k + 1. Hence, we are in case (3) of the theorem.

We next assume that vo = 1, i.e., (a1 — 1)/(a2 — 1). By the similar
argument as above, we have w) = ws and w| = w;. If we set
a; = k+1, then as = mk+ 1, af = w] = wy = (a1a2 — 1)/(az — 1) =
(mk + m+ 1)/m = k+ 14 (1/m). This implies that m = 1
and hence a; = k+1 = az, af = k+ 2. On the other hand,
ajay/(a] —1) = wh = we = (araz —1)/(a1 — 1) implies that af = k+ 1.
So we are in case (3) again.

(i) w( = uy = u3 = uz. By Lemma 3.2, we have v} = ug. From
Table 1, we know that u}/uy = uf. As uj = u}, we have v) =5 = 1.



TOPOLOGICAL TYPES 1169

a) If 79 =1, then Lemma 3.4 implies
( ) Yo ’ p
{Lay =1,a] =vh,ay =1} ={l,0 = 1,1 = v2, 20 = v }.

By the second part of Lemma 3.4, we have either vo =1 or v; = 1.

Let us first assume that v; = 1, i.e., (az —1)/(a; — 1). The fact
that v} = up and w3 = wy = wuj = u) imply ag = a}, a1/ap and
ag = ayay/(ah,a} — 1) = (ayaz — 1)/(ag — 1). Set ag = k + 1. Then
a1 = mk + 1 and aj = mk + m + 1. By Table 2 and Theorem 2.3 (ii),
we have

i
Uy

(1 up)(1 — ) ( - —) = (1 uh) (1~ w)(1— wh)
= (]. — wo)(l — wl)(l — ’UJ2)

(=) (1-2).

V2

This implies that vj = v, and hence (a} — 1)/(ah,a] — 1) = (a1 —
1)/(az — 1) = m. Set (ah,af —1) = n. Then a} = mn + 1 and
ab, = (mk +m + 1)n/(mn + 1). Hence, we are in case (4).

(B8) If v > 1, then vy = vy = 1, since by Lemma 3.4
{1,ap =1,0) = vy, =1} = {1, 0 = 70, @1 = V270, 2 = V170}-

Taking o = ap = a1 = ag, we see from Table 1 that Zai:a n; > 1
while ) ,__ ni = 1. This contradicts the second part of Lemma 3.4.
o i

Theorem 3.14. Suppose that [ = z36 —l—zfll + zlzgl2 is of type II and
g = 20° + 202yt + 21252 is of type IV. Then (f~*(0),0) and (g~*(0),0)
have the same topological type if and only if either

apal
0 p= e s
g = 25° + 2021 + 21292
with (ag — 1)]ai; or

__%gaja3 _ agajaz—agaitaeg—1
— Q0 apa;—ag+1 az(ap—1)
2) {f—Zo +2 + 212 }

a a a
g =2 +2027" + 21257
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with (apa; — ag + 1)/araz and az(ag — 1)/(aparaz — agas +ag — 1) or
apajaz T
(3) F=2"""" 420 + z2g
g = 25° + 2021 + 21292

with (apa; — ag + 1)/ajas or

aoa11 a1a2(a0—+1£
— L0~ ag apai—ag
(4) { f=2"" +2" + 2z }

a a a
g =2zy° + 2027 + 21257

with (ap — 1)/a1 and (apay — ap + 1)/arasz(ag — 1).

Proof. From Table 2, we have u}/uf and ug/u1/ue. From Lemma
4.3, we have the following subcases.

(1) wy/u)/uby with w) =wu;, i =0,1,2.
(i) uf/ub/ugy with u) = ug, uy = uy, ufy = us.
(ifl) ) /uf/uy with u) = wo, uf = u1, uh = us.
Case (i). Since ug/u}/uy, we have v) = 1. We also have v} = ~; as
u; = ul. Note (vh,v4) = 1. We see that (vhy),v5) = 1.

(a) 72 > 1. In this case, we have

{(Lah =+ = Laj = vjn = 15,0 =14}
={l,a0 = 72,1 = v2,02 = V172 }.
Since v5 = 2 > 1, (o], a5) = 1 and (g, a2) = 72 > 1, it follows that
v; =1 (e, (ap—1)/a1) and vy = v5. Since uhy = ug, we have wa = wj,
ie., ajay/(a} — 1) = ajaiaz/(apa; — ag + 1). By Table 2, uy = ug,
up = uj imply ap = af, a} = apai/(ap —1). This implies a}, = as.
Thus, we are in case (1) of the theorem.

(b) 72 = 1. In this case, we have
{Lag =10y =v5,0h =13 =72 =1} = {Lag = Lay = vz, 00 = 01 }.

We claim that either v; = 1 or v = 1. Suppose on the contrary that
both v; and vy are not equal to one. Then necessarily vh = v; = vg > 1.
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Let a be v = vy = vy. Then ) n; = 2 while > _,__ n; =1 by
Table 1. This contradicts the second part of Lemma 3.4. We conclude
that we have either v; = 1 or v = 1. Using this fact that u(/u} /ub
and v = 1, we see easily that v} = u) = us = uy.

;=

If v; = 1, then w] = wy since vj = 1. Note also that wj = wy as
vy = vg = 1. By Theorem 2.3 (ii), we have

(1 — wh) (1 —wh) (L — wh) = (L — wo)(1 — w)(L - ws).

It follows that we = wj. The rest of the argument is the same as case
(a). So we are in case (1) of the theorem.

If v = 1 and vy = v} > 1, then we have w) = w; and w} = w2 since
vj = 1. It follows from Theorem 2.3 (ii) that w{, = wy. Thus, we have

ajah,  apay apa1as

I I
a; = ag = agp

a,—1 a—1’ apay — ag + 1’
with (apa; — ap + 1)/ajas. It follows that ab, = (apaiaz — apa; + ap —
1)/a2(ap — 1) and we are in case (2) of the proposition.

Case (ii). Since u}/ub/uj, we have 44 = 1 and a}/aj. As uf = up,
uh = uy and ufj = ugz, we have ¢ = ¢, ¢y = ¢} and ¢y = ¢, and hence
— A
72 = To-

(a) 2 > 1. In this case we have 7 > 1. By Lemma 3.4, we have
{1,a0 =0,01 = viyp,05 =7 = 1} = {1, a0 = 72,01 = vz, 02 = v172}

Since (v2,7y2) = 1, we infer that v =1, v; = vh and vy =72 > 1. It
follows that w( = ws and w) = wq. By Theorem 2.3 (ii), we have that
w} = wg. Thus, we have a] = ag, aj = agaiaz/(apa; — ap + 1) and
apay /(ag—1) = afah/(a} —1) by Table 2. It is easy to see that a}, = a;.
Therefore, we are in case (3) of the theorem.

(b) 2 = 1. In this case we have 7 = 1. Since ug/u1/uz, we have
v = 1 and cca = (ug,u1) = ug = (up,uz) = ce;. It follows that
uy = uz = uy = uy. By Lemma 3.4, we have

{Lay =1,a] =vh,ay =1} ={l,0 = 1,1 = va, a2 = v }.
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We claim that either v; = 1 or v = 1. Suppose on the contrary that
both v; and vy are not equal to one. Then necessarily vl = v; = vs.
Let a be vy = vy = vy. Then ), _ n; = 2 while > ,_ ni =1 by
Table 1. This contradicts the second part of Lemma 4.4, We conclude
that either v4 = 1 or vg = 1. If vo = 1, then v; = v}. The rest of the
argument is the same as in case (a) above. Therefore, we are in case
(3) of the theorem.

If vo > 1 and v; = 1, then v) = v, > 1. Since v; = 1, we have
(ap — 1)/ay. It follows that w; = wj and wy = wj. By Theorem
2.3 (ii), we also have w} = wy. By Table 2, we infer that ay = af,
agy = agay /(ag—1) with (ap—1)/ay and afah/(a] —1) = apaiaz/(apa; —
ag + 1). This implies that ab, = ajaz(ag — 1)/(aga; — ap + 1). Hence,
we are in case (4) of the proposition.

Case (iii). Since u}/ujy/ub, i = ug, uy = uy and uh = uz, we have
A — A
7 =1 and 72 = 5.

(a) v2 =~4 = 1. In this case, since c'c = (u},uy) = v} = (uf,up) =
¢, we have uj = uy = u; = ug. The rest of the argument is the same

as case (ii) (b).

(b) 72 = 74 > 1. In this case, since uj/uy, we have ug = uh >
uy = uj. From (ii) of Theorem 2.3, we have 1 — ws = 1 — wh and
(1 —wo)(1 —wy) = (1 —wy)(l —wj). It follows that v = v} and
vy = 1asvg =1 = v = v] by Table 2. Hence we have wy = wi,
wy; = wj and we = wh, i.e., a} = ag, aj = apai/(ap — 1) with
(ap—1)/ay, and aab/(a} — 1) = apaiaz/(apas —ag+1). It follows that
ah = ajaz(ap — 1)/(apar — ap + 1). We are in case (4) of the theorem.
]

Theorem 3.15. Suppose that f = 236 —|—sz1 + zlzglz is of type II and
g = 20°21 + 20 22 + 20252 is of type V. Then (f1(0),0) and (g~1(0),0)
have the same topological type if and only if

{f IS }

kl k(l—1)+1 1
g =z zl—l—zl( ) Z22 + 2029

Proof. By Table 2, we know that ug = u; = uz. Thus, we have
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g = U3 = uz = uj = uj = uy by Lemma 3.2. By Table 2, this implies
that ay = af and af/(a} — 1). It follows that 4y = 1 = +4 and hence
{Lag =7 =10 = vy = vp,05 =75 = 1}
={1,ap = vo, 1 = v1, a2 = va}
by Table 1, Table 2 and Lemma 3.4. Since n} =1 =ng = ny = na, we

may assume without loss of generality that vog = v = 1 and ve = vj.
The fact that vg = v; = 1 implies

araz — az + 1 = (agaraz + 1,a1a2 — az + 1) = agaz — ag + 1,
ie.,
(*) az(al — 1) = (lo((lz — 1)
(%) implies az/ag. Set ag = kaz where k is a positive integer. Then ()
implies a; = 1+ k(ag —1). Hence, a = uj, = ug = (aparaz+1)/(a1az —
as + 1) = kaz + 1. By Proposition 2.2, we have

C(z)=(1— z%0)2- @0 —axtagay — (1 _ %) (@ —1)(az—1)+1

o) = (1- et 1)“0“2“0“
g == —_ .

zaoaz—a0+1
Since Af(z) = Ay(z), we have
(ag —1)(ah —1)+1=ag(ag — 1) +1

which implies a; = a}, because aj — 1 = kas = ap. Let us denote
l=ay=al. Thena} =ay)=kl+1, ap =kl, ag = k(l — 1) + 1. Then
f and g are in the form as required in the theorem. ]

Theorem 3.16. Suppose that f = z36 —l—zfll ~t—z1zgl2 is of type II and
g = 28° + 2028 + 20252 + 22282 s of type IV. Then (f~1(0),0) and
(g71(0),0) have the same topological type if and only if

{ f=z4 z{n(kﬂ) + zlzé(karm_l) }

k+1 k tmk | b1 b
g =251+ 202"F + 2025k 4 211202

(1)
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or

{ f= Z(I]c+1 + Z11n(lc+1) + le;(mk«kmfl) }

k+1 by b
g = 25T+ 2p2i™F 4 g2 4 20120
or
m(k+1 k+1
(3) =2z ( )+Z1+ + 212y
k+1 b b
g =25t 4 202F 4 2928 4 20120
or
k+1 k+1
(4) R R
k+1 by bz [
g =26 4 2028 + 2p25F 4 201 202

Proof. By Table 2, we have ug/uy, ug/uz and u}/uj. By Lemma 3.2
and Lemma 3.3, it is easy to see that either (i) ug/uj or (ii) w}/ug.

Case (i). In this case, we have u{/uj /uy. By Lemma 3.3, we see that
ug = uy, i-e., ag = aj. Moreover, we have either uj/us or ug/u;. We
shall assume without loss of generality that w;/us. This implies that
uj = uy and uh = us.

(a) If v} < uh, then u; = v} < uz = uh. From Theorem 2.3 (ii), we
see that 1 —we = 1—w}. Asug = uj and vgp = 1 = vf), we have wy = wy.
It follows from (ii) of Theorem 2.3 that w; = w}. Thus, we have v; = v}
since u; = wj. This implies (ap — 1)/a; and a} = apa1/(ap —1). By
Table 2, wh = wq implies ajay/(a} — 1) = apaz/(ap — 1), i.e.,

agaz _ 1 . az(aoal —ap + 1)
agp — 1 n al(ao — ].)

a'2 = CL_II
Observe that among the three integers a1, ag — 1 and aga; —ag+1, any
one of them can be expressed as an integral combination of the other
two. We have (aga1 —ag+1,a0—1) = (a1,a0—1) = (a1,apa1 —ap+1) =
ag — 1. It follows that a;/aq as a} is an integer. Set ag = k + 1. Then
there exist integers m and ¢ such that a; = mk and as = tmk. Thus,
ag =ap=k+1,a) =m(k+1) and a) = t(mk +m — 1). We are in
the case (1) of the theorem.
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(b) If u} = uj, then v} = u) = u; = uy and hence vy = v, =11 =
~v2 = 1. It follows from Table 1 and Lemma 3.4 that

/ ! / !
{Lap =10y =vy,ay =1} ={l,ap = 1,1 = 1, a3 = v1, a3 = va2}.

Thus we have either v; =1 or v3 = 1. If v; = 1, then v; = v} =1 and
hence w; = w}. Since wg = up = uj = wy, we conclude that wy = wh
by (ii) of Theorem 2.3. The rest of the argument is the same as in (a)
above.

If vo = 1, then (ap — 1)/az and vy = v4. It follows that w; = w) and
w) = wq. A similar argument as in case (a) shows that we are in case
(2) of the theorem.

Case (ii). In this case we have uf/uf, u}/uy, uo/uy and up/uz. By
Lemma 4.5, we have ug = u}, i.e., ap = a). Since vy = v} by Table
2, we have wy = wj. We may assume that u} is not divisible by wuy.
Hence, we have uj > uf, i.e., aj > a}. By Lemma 3.6, we have either

— ! — ! — ! i ! — ! — !
Ug = ul, uy = UO, Ug = u2 or upg = ul, Uy = u2, Ug = UO.

Suppose first that up = u}, w1 = uf, uz = uy. From u; = uf and

Table 2, we have af, = aga;/(ag—1, a;). There are two further subcases.

Case (a). If uy = uj # u) = wug, then by (ii) of Proposition
2.3 with v = w3 = uf, we have w; = w} and hence v; = 1, ie,
(ap — 1)/ay, since vy = 1 by Table 2. As wy = w} and w; = wy,
we conclude that we = w) by (ii) of Theorem 2.3. Since up = uj, it
follows that (a} — 1)/(ab,a} — 1) = v} = v = (ap — 1)/(az,a0 — 1).
Noting that ag = daf, we have (a},a} — 1) = (az,ap — 1). From
ayay/(ab,al —1) = uy = ug = apas/(az,ap—1), we have as = ab. Thus
we conclude that af, = apa;/(ap — 1) with (ap — 1)/a1, o} = ap and
ab = az. Set ag = k+1, az = a = a}. Then a; = mk, aj = m(k+ 1),
ay =k + 1. So we are in case (3) of the theorem.

Case (b). If u; = ufy = uh = ug, then vj, =74 =1 =y, = v2. From
Table 1 and Lemma 3.4, we have
{1 aj = = L a} = vhh = vh,ap =5 = 1}
= {1,060 :’)/1 = 1,061 = ’}/2 = 1,062 = ’1)1")/2 = V1,03 = ’1)2")/1 = ’1)2}.

Since ny = n3 = 1 and n} = 1 by Table 1, we have either v; = 1,
vg = v} or vg = 1, v; = v}. In the former case, we have w; = w{, and
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wy = wh. The same argument as in Case (a) above shows that we are
in case (3) of the proposition. In the latter case, we have wj = we and
w; = why. The same argument as in Case (a) above shows that we are
in case (4) of the proposition.

We next suppose that ug = u}, u; = uy, uz = uj. A similar argument
as above shows that we are either in case (3) or case (4) of the theorem.
O

Theorem 3.17. Suppose that [ = z36 —l—z'fll + zlzgl2 is of type II and
g = 25°21 + 202" + 20292 + zll’lzl2’2 is of type VII. Then (f~1(0),0) and
(g71(0),0) have the same topological type if and only if

(1) { f= 2ot g gotl g g pee }

a a a by b
g = 2y°21 + 2021° + 20297 + 27" 257

or

k 1
{f _ Zg(m +m-+1) + Zink+m+1 +z1Z§+1 }
bl b2
21 %2

k+1 mk+1

k+1
g=2zy 21+ 202 +zozg(m+)+
or
k 1
- {f — zg(m +m+ )+Zvlvzk+m+1 + 22kt }
1 1 k+1 by ba [
g =22 o2t 4 zgzgm( ) + 212"

Proof. By Table 2, we have ug = wuj, uj/ue and u}/uh. There are
four subcases to be considered.

Case (a). u} < uh. By Lemma 3.2 and Lemma 3.3, we have
up = uy = up = uj} < uy = up. Then from (ii) of Theorem 2.3,
we have (1 —ug)(1 —u}) = (1 — (uy/v0))(1 — (uj/v1)) and we = wh as
vy = v] =1 by Table 1. It follows that vy = v; = 1 which implies that
ag = a; and hence ug = u3 = ag + 1 = uy = u} by Table 2. On the
other hand, w) = wy implies ajay/(a} —1) = (az(apa; —1))/(a1(ag—1))
and hence a5 = as. We are in case (1) of the theorem.

Case (b). u} = uj > ug. This case cannot occur by Lemma 3.2 and
Lemma 3.3.
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Case (c). v} = uy < uj. By Lemma 3.2 and Lemma 3.3, we have
u)] = ub/uy and ug = w3 = uj = uh, us = uj. By (ii) of Theorem
2.3 with u = uz = uf,, we have wy = wj and hence vy = 1 since
vy = 1. Tt follows that wo is an integer. On the other hand, since
(a1,a0a1 — 1) = 1, we have ai/az. As u} = uh = uy = uy, we have
~5 = 1. By Lemma 3.4, we have

{170‘6 = 'Y(I)vo‘ll = 1/27(,)70‘,2 = 'Yé = 1}
={l,ap =12,01 = v = 1,3 = V172, 3 = Vo72}.
Since (vg,v1) = 1, we see that we have either vg = 1 or v; = 1.

If vy = 1, then (ag — 1)/(a1 — 1) and w; = w] since v{ = 1. As
wy = w} and we = w(, we have wy = wj by (ii) of Proposition 2.3. Set
ag = k + 1. Then we have a; = mk + 1 and as = n(mk + 1). From
the fact that w; = w}, w) = ws, wo = w) and Table 2, we infer that
ag =n(mk+m+1),a] =mk+m+1, and a;, = k+ 1. So we are in
case (2) of the theorem.

If v9 = 1, then (a; —1)/(ap — 1) and wy = w) since v{ = 1. As
wp = wj and wy = wy, we have w; = wj by (ii) of Theorem 2.3. Set
a; = k+ 1. Then we have ag = mk + 1 and az = nm(k + 1). From
the fact that wo = w}, w1 = wh, we = w{ and Table 2, we infer that
ag = n(mk+m+1),af =mk+m+1and aj =k + 1. So we are in
case (3) of the theorem.

Case (d). uy = u] = uh = up = u3 = uy. In this case we have
Y =75 =72 = 1. By Lemma 3.4 and Table 1, we have

! [ N AN SN R A
{Lag = =L a; =vyyy = vy, =y5 = 1}
= {].,Oéo = "/2 = 1,a1 = V2,09 = UQ’)/Q = V1,03 = Uo’)/g = ’Uo}.

By the second part of Lemma 3.4 and Table 1, we conclude that two of
vo,v1 and v must be one since n} = 1 = n; = ny = n3. If v3 = 1, then
a similar argument as in case (c) above will lead to case (2) or case (3)
of the theorem. If vo > 1, then vy = v; = 1. This implies that ag = ay,
wp = wy = w, = wj. By (ii) of Theorem 2.3, we have wy = wj. The
same argument as in case (a) above will lead to case (1) of the theorem.
O

!

Theorem 3.18. Suppose that f = z86 + Z;LIIZQ + zlz;2 is of type
II and g = 2§° + 2027" + 21252 is of type IV. Then (f1(0),0) and



1178 Y. XU AND S.S.-T. YAU

(g71(0),0) have the same topological type if and only if

(1) f =g R gy 2 2
g = 20 4 202k 4 g2 (mETmAD

or

ki1 ,
{f:zg(m T 4 2k + 22 m“}

g = 2 4 202k 4 2y 2R (mETmAD
or
aQﬂldz*mQallJrﬂQ*l
0 [l
g =2° + 2021t + 2125°
or
aoa1a2—a0a11+a0—1
(4) {f:zgo + 20220 + 212, e2(e0=1) }
g =23° + 2027" + 2125?

Proof. By Table 2, we have v} = v} and ug/u;/uz. By Lemma 3.2
and Lemma 3.3, we have two subcases.

Case (1). u1 = up = u} = ub/ufy = uz and ufy > uj = uh. In this case
we have 1 — w( =1 — wy by (ii) of Proposition 2.3 with u = uj = us.
It follows that ve = v, = 1 which implies that (apa; — ap + 1)/a1as.
From wy = uy = v} = u), and uf, = uy, we have

apay ajah —1
F3 = = .
() T ana—1)  (a, —1,d, —1)

(%) implies that a;/(ap — 1). Set a3 = k. Then we have ag = mk + 1,
ag = n(mk —m+ 1) and a = n(mk + 1). Note that 7§ = 2 > 1,
by our assumption, ugp = u; = uj = u}, v) = vz and uh > uj. From
Lemma 4.4 and Table 1, we have

! ! ! ! ! ! ! !
{1aa0 = Y0, &1 = Ug%p, X2 = U1’Yo}

= {1,&0 = Y2,001 = V2 = ].,052 = ’Ul’}/Q}.
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Thus, one of v] or v must be one.
If v{ = 1, then we see that w} = wy. Notice that wy = wy. By
Theorem 2.3 (ii), we have

(1= wo)(1 = wi)(1 = wz) = (1 —wp)(1 — wy)(1 — wj).

Thus, we have wj = wa, w} = wp, wh = wy. From w] = wp and wjh =
wy, we have (afah—1)/(a} —1) = apa1/(ap—1) and a}ab/(ab,—1) = ag.
From these we see that a} = (agpa; — ag +1)/a; = mk —m + 1 and
ah = a; = k. So we are in case (1) of the theorem.

If vy, = 1, then wj = we, w] = wy, wh = wp. A similar argument as
above leads to case (2) of the proposition.

Case (ii). up = uj/u; = uz = uf = uj. In this case we have aj = ag,

! r ! ! !
Y =1 =72 and apa1/(a1,a0 — 1) = (afay — 1)/(a} — 1,a}, — 1). From
Lemma 3.4 and Table 1, we have

{17010 =72 =101 =v2, 00 = V172 = 111}

! ! ! r_r/ ! ! r_r/ !
={lap = = 1,0} = vy = v3, a5 = v175 = V1 }-

So we have either v] = vy, v) = vy or v] = va, vy = v1.

If U'1 = U1, U'z = v, we have wi = w1, w'2 = wsy. Thus,

ajay —1  apay ajay —1  apa a2

ahb—1  ag—1 ay —1  apa; —ap+1
From this, we have

apaias — apgal +ag — 1 d —a
) 2 — U2.
ag(ao 71)

a) =

So we are in case (3) of the theorem.

If v} = vq, vy = vy, we have w] = wa, wh = wy. Thus,

ajay, —1 apay ajah — 1 apaias

aj—1 ag—1 ahb—1  apa; —ap+1
This implies that

apaiaz — agay + ag — 1
az(ao — 1)

I __ ! __
a; = ag, ay =
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So we are in case (4) of the theorem. O

Theorem 3.19. Suppose that f = z86 + zfllzg + zl,z;l2 is of type
II and g = 2§°21 + 2{ 22 + 20252 is of type V. Then (f 1(0),0) and
(g71(0),0) have the same topological type if and only if either

a0a1a2++11 ao(a1a27ai<}l»1)
f — Z611ﬂ2 az +Z2Z1 apay —ag

— ~@0 ayl as
g =2y 21+ 21 22+ 202,

(1) + leg1
or

ag(ajag—as+1)

1
_egajap+l apar a1l

f = zarag—az+l zillZQ + Z1%9
— ~@0 ayl as
g=2zy 21+ 21 22+ 202,

or

ﬂo'llaztrll u1(ﬂ0ﬂ2*agjl)
— apaz—ag aiaz—az az
(3) { f=z + 222 + 2125 }

g = 23°21 + 2722 + 2025>
or

agajaz+1l aj(agag—ap+1)
_ _Gpag—agFT as ajag—ag+1
f=z + 27720 + 2129

g =23°21 + 2722 + 2025>
or

agajag+l az(agaj—ai+1)
_ _Gpai—ai+1 ag agag —ag+1
f=z +27%22 + 2129

a a a
g =2y°21 + 21 22 + 2025°

or
agajas+1 ag(agag —ag+1)
_ ,e0a1—a1+l agaz —ag+1 ag
(6) f=z + 222 + 2125

7 a a
g =2y°21 + 21" 22 + 20257

Proof. By Table 2, we have ug = u; = ugz. So by Lemma 3.6, we have
uy = u) = uh = ug = 1 = ug. Thus, ) = 1. By Lemma 3.4 and Table
1, we have

/! ! ! 4 !
{1, =1,a] = vy, a5 =v1} ={1,a0 = vo, 01 = v1, 0 = V2 }.
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There are six subcases.

Case (1). wop = 1, v1 = vh, v = v]. In this case we have
wl = wy, Wy = we, wy = wy and (ara2 — az + 1)/(agaraz + 1), ie.,
ay = (apaiaz + 1)/(a1az — az + 1), and

ajay —1  apajay +1 ajay —1  apaiaz +1
ah —1 apa; —a; +1° a) —1 apas —ag +1°

This implies that

o = apaiaz — apgaz + ag . ao(a1a2 — a2 + 1) d —a
= = =aq.
! aoalfao—i—l aoalfal—f—l ’ 2

So we are in case (1) of the theorem.

Case (2). vo =1, v1 = v}, v2 = v}. In this case we have wj = wy,
w) = wy, why = we. A similar argument leads to
apaias + 1 , ag(a1a2 — a2 + 1)
ay = ar, a

14
an = —Y—7—
0 alag—ag—i—l’ aoal—al—i—l

o~

So we are in case (2) of the theorem.

Case (3). v1 =1, vp = v}, va = vh. In this case we have w) = wy,
wi = wp, wh = wa, and (agaz — ap + 1)/(aparas + 1), i.e.,

o - Q00102 +1 ajay —1  apaiaz +1
O apaz —apg+1’ ah—1 aras —ag + 1’
ajay —1 apaias + 1
ay —1 apa; —a; +1°
This implies
, al(aoag —ag + ].) ,
ay = , as = az.

aijas — as + 1
So we are in case (3).

Case (4). vy =1, vp = v}, v3 = v}. In this case we have wj = wy,
wi = wa, wh = wp and (apag—ap+1)/(agaraz+1). A similar argument
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leads to a} = aq, a = a1(apaz —ag + 1)/(araz — az + 1). So we are in
case (4).

Case (5). vy =1, vg = v}, v1 = v}, L.e., af = (agaraz + 1)/(apar —
ay + 1). In this case we have af = (apaiaz +1)/(apa1 — a1 + 1)

ajay —1 apaiaz + 1 ajah —1 apaias + 1

ay, —1 aias —ag +1’ a —1 apas —ag +1°
This implies

, , az(aoal —a1 + 1)
a, = aO Ao =
1 ’ 2
apaz — Qo + ].

So we are in case (5).

Case (6). va =1, v9 = v, v1 = v}. In this case we have wj = wa,
w) = wy, wh = wy. A similar argument leads to

’ Apaiaz + 1 ’ az(aoal — ap + ].) ’
aO = —_—, al = y a’2 = aO'
apgar — a1+ 1 apas —ag + 1

So we are in case (6). o

Theorem 3.20. Suppose that f = z36 + z‘lllle + zlz;’2 is of type 111
and g+ zy° + 2021t + 20252 + ztl’lzg2 is of type VI. Then (f~1(0),0) and
(g71(0),0) have the same topological type if and only if either

k+1 k+m—1 k+m—1
{f:z0+ + 27" +m zo + 2125 +m }

_ Jk+1 mk mk b1 b2
g=2zy =+ 2027 + 202y + 2] %

(1)

(2) { f=20" " 4 by + 212k }

m(k+1 b1 b
g =2 (k1) 4 2025 + 2025F + 281 252

Proof. From Table 2, we have u] = u}, up/u; and ug/uz. By Lemma
3.2, we have the following subcases.
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Case (1). v} = uy = ug = ug and ug = uy. Since ufj = up/u; = ug =
u] = uh, we have y) =1 =, = 42 and w = wp. By Lemma 3.4 and
Table 1, we have

! ! / / /
{l,ap =1,0] =vy, a5 =vi} ={l,a0 = 1,04 = 1,2 = v1,a3 = v2}.

Therefore, we have either v] = vy, v) = vy or v] = va, v) = v;.

If v} = vq, v = vy, then w; = wh, wy = w). It follows that

as(apar —ag + 1)

(*) = al(ao — 1)
r al(aoag — Qg + ].)
(%) ay = as(ao — 1)

Since (a1,a9 — 1) = (a1,a0a1 — ap + 1) = (apar — ap + 1,a9 — 1), from
() we see that aj/ag, (ag — 1)/az. Similarly, from (%), we see that
as/ay, (ap — 1)/a;. Thus, we have a; = as. Set ap = k + 1. Then
a3 = az =mk, af = k+1and o} = a), = mk+m —1. So we are in
case (1) of the theorem.

If vf = vy, v} = vg, then w; = wi, we = wj. A similar argument
shows that we are in case (1) again.

Case (2). u} = uhy = wp = uy, uj = uz. In this case, we have uj =
ub = ug = u1/uy = ug. We may assume that ug > ug = uq. By (ii) of
Theorem 2.3, we have wy = wj,, and hence vo = v, = 1. From Table 2,
we have w(, = af, = apaz/(ap—1) = wy and a; /(ap—1)/as, since ug = u;
and vy = 1. As ug = u} = uh, we have a9 = (ajay—1)/(a} —1,a5 —1).
Since uf = ug > up = w3 = uj = uh, we infer that 4 = 1 and
75 = v2 > 1. By Lemma 3.4 and Table 1, we have

Y AN A B Y
{1, 0 = 7y, 01 = vy, 2 = V17 }
={l,ap = 1,010 = 72,22 = V172,03 = Vo1 = L}

Since ag, o, ah, a1, a2 are bigger than one, hence {af, o], ab} =
{a1,a2}. We have three subcases.

(a) o = &}. In this case we have vy, = 1, i.e., (a] —1)/(ab,—1). From
Table 1, we have uy = (¢, — v} — vh)/vivh = a} — 1, n] = n) =1,
ny = (c—1)/va =c—1=ag—1, ng = 1. By the second part of Lemma
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3.4, we have nj, + nj + n% = ny + ng, which implies af = ap — 1. Note
ag = up = uy = (ajah —1)/(a} — 1). It follows that a'12 —1=ala, -1,

ie., a] = a4y = ap — 1. From Table 2, we have vj = v, = 1. By
(ii) of Theorem 2.3, we have (1 — wp)(l — wy) = (1 — wi)(1 — wh).
As up = w1 = uj = uh, vo = vi = vy = 1, we infer that v; = 1,

i.e., (ap — 1)/ay. Since we have shown a;/(ag — 1), we conclude that
a; =ag— 1. Set ag = k+ 1. Then a; = a}] = ay = k, az = mk and
ag = m(k +1). So we are in case (2) of the proposition.

b) a) = af. The same argument as in case (a) shows that we are
0 2
in case (2) again.

(¢) o} = a). In this case we have v] = v} which implies that a| = a,
and hence v} = v4 = 1 from Table 2. It follows that afy = o] = a}. So
we are in case (2) again.

Case (3). uj = uh = up = uz and u; = uj. The same argument as in

case (2) will lead to case (2) of the theorem. O

Theorem 3.21. Suppose that f = z36 + zillle + zlzgl2 1s of type 111
and g = 25921 + 202" + 20252 + 221252 is of type VII. Then (f~1(0),0)

and (g1(0),0) have the same topological type if and only if
(1) f = t(mnk+m+n) + an+1z2 + lemk+1
g= an+lzl + Zozmk—‘rl + 20 Zn(mk+1) + Zbl bz
with (m,n) =
(2) f= m"k+m+n) +an+1z2 +lenk+1
g= nk—i—lzl 422 2 ztn(mk+1) 4 bk
with (m,n) =
k42— k+l
(3) {f—z(’f”%-z z1+ 2125 }
g= z§+ z1 + zozl 142028 + 211“212’2
with a/(k + 1), or
k2 Bl
(4) f=atazn T s
g= z§+ z1 + zozl 142028 + 211“212’2
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with a/(k + 1), or

k 1 s(tm+1)+1 1
{f = Fretmet +z1( s +z125m " }

k+1 k+1 1, bib
g =20 21 + 2020+ 2o2s™ T 4 201 202

(5)

with k = s(tm + 1) + ¢, or

t 1)+1
{f _ Z(?)nk—i—m—i—l + Z;( m+1)+ 2 +Zngm+1 }

k+1 k+1
g =z 2 + 202 + 292

(6)
3 e

with k = s(tm + 1) +¢.

Proof. By Table 2, we have ug = wuj/uz and u} = u). Then, by
Lemma 3.2 and Lemma 3.3, we have the following two subcases.

(). wo = w1 = uj = up/ua = up, and ug = uy > wy = w1 =
uj = uh. By (ii) of Theorem 2.3, we have ws = w({ and hence
vg = 1 since vy = 1. This implies a;(ap — 1)/az(apa; — 1) and hence
(a1(ao—1)/(a1—1,a0—1))/az. From Lemma 3.4 and Table 1, we have

{1, 00 =70, 01 = viy5, @5 = V1o }
={l,ap = 12,01 = v2 = 1, @2 = v172, a3 = Vo2 }-
From u{, = ug, we have 7, = 2. By the second part of Lemma 3.4, one
sees that either v] = vy, v§ = vy or v| = vy, v = vy.

If vf = vy, v = vy, we have w) = wy, W] = wy, wh = wy, ie.,
ap = az(agar —1)/ai(ap — 1), (ahaz — 1)/ (a5 — 1) = (agar —1)/(a1 — 1)
and (ajah — 1)/(a} — 1) = (agar — 1)/(ap — 1). This implies that
ai = ag, a4, = a;. Set (ap — 1,41 — 1) = (a} — 1,ay, — 1) = k.
Then a} = a9 = nk+ 1, a = a; = mk + 1 with (m,n) = 1, and
ag = tn(mk + 1), ap = t(mnk +m + n). So we are in case (1) of the
proposition.

If v = vy, v = vg, we have w{ = we, w] = wy, wy = wy. A similar
argument leads to case (2) of the theorem.

(ii). uwp = w1 = uj = uh = uz = uyp. It follows that 4 = y2 = 1 and
az/a1((ap —1)/(ap — 1,a1 — 1)). By Lemma 3.4 and Table 1, we have

o VA S A SR B S B /
{1aa0 =7 = 1,01 =vyyp =vg, 05 =17 = vi }

= {1,&0 = Y2 = ].,011 = V2,2 = V172 = V1,03 = Vo7Y2 — ’Uo}.
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Note that n} = ny = ny = ny = ng = 1. If vg,v; and vy were all
bigger than one, by the second part of Lemma 3.4, we would have
ny +nfy > ny +ny +ng = 3. It is a contradiction. So one of the
vg, V1, V2 must be one.

() vo = 1. Then we have (a; — 1)/(ap — 1). By Lemma 3.4 and
Table 1, we have {1,v],v5} = {1,v1,v2}, hence either v = vy, v = vy
or Vi = vg, vy = v1.

If v = vy, vh = ve, we have wj = wy, wi = wy, wh = wy, ie.,

r 1 r 1
, agar—1 ajay —1  agayr —1 alah,—1  as(apar —1)

%0 = ai—1" ay—1  a—-1"ay—-1  ayag—1) "

Set a1 = k+ 1, a2 = a. Then a9 = mk+ 1, ay = mk+ m + 1,
ay = (a(mk+m+1) —m(k +1))/ma,ay = a(mk + 1)/m(k + 1). To
have a), € Z, we need m/a. Let a = sm, then a| = (s(mk+m +1) —
(k+1))/ms. From the fact that az/(a1(ap—1)/(ap—1,a; — 1)), we get
s/(k+1). Set k = us — 1, then a] = (mk+m +1—u)/m € Z. This
implies that m/(u—1). Set w = km+1, then k = us—1 = s(hm+1)—1.
To have a), € Z, we need ab, = sm(ms(hm+1)—m+1)/ms(hm+1) =
ms — (m —1)/(hm + 1) € Z. Thus, (hm +1)/(m —1). Note h > 0,
m > 0. We have two possible cases: h = 0 or h > 0. When h = 0,
we have u = 1, hence k = s — 1. So azg = m(k+1),a] =k+1 and
ah = mk + 1. Then aj = (apa; — 1)/(a1 — 1) = mk +m + 1. It leads
to case (2) of the theorem where t = n = 1. When h > 0, we have
hm+1>m—1> 0. Thus to have (hm + 1)/(m — 1), it forces m = 1.
Thenag =a1 =ay,—1=k+1,ady=as=a,a) =k+2—((k+1)/a)
with a/(k + 1). This leads to case (3) of the theorem.

If v] = v and v§ = vy, we have w{ = wp, W] = wa, Wy = wy. A
similar argument leads to case (4) or a special case of case (1) of the
theorem.

(8) vy =1. Then (ap — 1)/(a; —1). By Lemma 3.4 and Table 1, we
have {1,v],v5} = {1,v9, v2}, hence either v| = vg, v = vo or v] = vg,
vh = vp.

If vi = vy, vh = ve, we have wj = wy, wi = wy, wh = wy, ie.,

apa; —1 ajah—1  apa;—1 ajay—1  as(aga;—1)

r_
ao_ao—l’ ah—1 a;—1" aj —1 aj(ap—1)
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This implies a, = a2, a] = a2((apar — 1) — a1(ap — 1))/az(a; — 1).
Set ap = k+ 1, ay = mk + 1 and ay = a. Then af = mk +m + 1,
ay = (a(mk+m+1) — (mk +1))/ma and a}, = a. To have o} € Z, we
need m/a — 1. Set a = sm + 1. We have

o = sm(mk+m+1)+m _ s(mk+m+1)+1 k14 s—k '
m(sm + 1) sm+1 sm+1

Now we need (sm + 1)/(s — k). Set —t(sm + 1) = s — k, ie.,
k = (tm + 1)s +t. One sees that t > 0 since s > 0, k > 0, m > 0. We
have two possible cases: t =0 or t > 0. If t = 0, we have s = k. Thus,
ay = k+1, a, = a; = km+1. Hence, wy = wj = mk+m+1 = w; = wh,.
It leads to case (2) of the theorem. If ¢t > 0, then a} = (tm + 1)s + 1.
It leads to case (5) of the theorem.

If v} = vy, v = vg, we have wj = wy, w] = wy, wh = wy. A similar
argument leads to case (1) or case (6) of the theorem.

(v) vz = 1. By Lemma 3.4 and Table 1, we have {1,v},v5} =
{1,vg,v1}. Thus, we have either w) = wa, wj = wp, Wy = w; or
w( = wg, Wy = wy, wh = wp. The same argument as in (i) leads to
case (1) or case (2) of the proposition. o

Theorem 3.22. Suppose that f = z86 + zozfll + zlz;/2 is of type
IV and g = 2§°21 + 2{ 22 + 2025 is of type V. Then (f~1(0),0) and
(g71(0),0) have the same topological type if and only if

(1) { =t st at }

1 1 m(s+1
g =202 + 25 20 + 2029 (o+1)

or

2 1 1
{f = STt g g pstetttl 4 o pst }

g= Z8t+s+t+lzl + Zis+s+lz2 + z0z§+1

k+1 k
=z T 2028 4+ 2128
k
g =221+ 2022 + 2025
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where ag = (mk + 1) + ((mk — m 4+ 1)/a), with a/(mk — m + 1), or

(4) { f _ Z(()ms+m+1) + Zoszrl + le;m+l}

1
g= 28+121 -+ Z{n(s-{- )22 + Zozgm—i—l

or

2 1 1
{f = STt g g psttetttl 4 o pst }

g= Z8t+s+lzl + Zf+122 + Zoz;t+s+t+1

or

(6)

k41 k
=z + + 2027 + 2125
k

g =237z + 2122 + 20252

where ag = (mk + 1) + ((mk — m + 1)/a) with a/(mk —m + 1), or

- { f=z25mtmtl 28t 4 g 25mH }

m(s+1 1 1
g=2 ( )zl + zf’”"' 29 + z0z§+

or

{f _ Z8t+s+t+2 + zozft+s+t+1zQ + z0z§+1}

g= ZS+121 + Zist+s+t+lz2 + ZOZ§t+S+1

or

(9) { f=2"" 4 2020 + 2125}

k
g = zg21 + 27 22 + 2025

where a; = (mk + 1) + ((mk — m + 1)/a) with a/(mk —m +1).

Proof. From Table 2, we have ug = u; = ug. By Lemma 3.5, we have
wy = uy = uy = uy = uj = u). Thus, we have 4 = 1. From Table 1
and Lemma 3.4, we have

! r __ ! 4 ! ! !
{1aa0 =7, = 1,0 = vy, 0y = V)75 = vy}

= {1,0[0 = Vg, 1 = V1,02 = ’02}.
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Note that n] = nl, = ng = ny = ny = 1 (see Table 1). By the second
part of Lemma 3.5, we see that one of vg,v; or vo must be one. We
have three subcases.

(i). vo = 1. From Table 2, we see that vy = 1 implies (a1a2 — a2 +
1)/(agaiaz +1). From Table 1 and Lemma 3.4, we have either v{ = vy,
vy = vy or V] = vy, vy = v1. If v] = vy, v) = ve, we have w{ = wo,

! / :
wy; = wp, Wy = w2, 1.€.,

o — 200102 +1 agay  apgajaz + 1
Y7 aiag —as + 17 ap—1  apaz —ag+1’
agalal _apazay +1

1 ! - :
apga; —ag+1 apar —ap +1

From u) = u} = u}, we have da{/(aj — 1), and daa}/(apa) — af + 1).
Set aj = k, ap, = mk + 1 and a5 = a with a/(mk — m + 1). Then
ag = mk —m+1, ay = ((mk + 1)a — (mk — m + 1))/ma and as =
amk/(mk—m++1). To have a; € Z, we need m/(a—1). Set a = sm—+1.
We have a3 = (mk+1)s+1)/(sm+1) = k+((s—k+1)/(sm+1)). Set
s—k+1=—t(sm+1),ie, k= (tm+1)s+(t+1). It is easy to see that
t>0.Ift=0,we have k =s+ 1. Thena)=sm+m+1,a} =s+1,
afy = sm+1, ag = sm+1, a3 = s+1 and az = m(s+1). So we are in case
(1) of the theorem. If ¢t > 0, we have mk —m + 1 = (sm + 1)(tm + 1).
Thus, as = m[(tm + 1)s + (¢ + 1)]/(tm + 1) € Z. Hence, we need
(tm 4+ 1)/m(t + 1). Note (m,tm + 1) = 1. We see (tm + 1)/(t + 1).
This forces m = 1 since ¢t > 0. Thus, we have aj = st + s+t + 2,
aj=st+s+t+1,ab=s+1,ap=st+s+t+1,a; =st+s+1and
as = s+ 1. It leads to case (2) of the theorem.

If v} = vg, v = v1. Then we have wj, = wy, W] = wy, wWhH = wy, i.e.,

r !
o — apaias + 1 aga;  apaijaz +1
0= ————— =
aias —ag +1’ ap—1 apay —a; +1’
r !/
analasg _aparaz +1

apgal —ap+1  apaz —ap+1

Set a] =k, aj = mk+1 and ay, = a. We have a9 = ((mk+1)a— (mk —
m+1))/a, a1 = a and az = k. This leads to case (3) of the proposition.

(ii). vy = 1. By Lemma 3.4 and Table 1, we have either v = v,
vh = vg Or V] = Vg, Uy = vy.
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If v] = vy, vh = vq, we have w{ = wy, wj = wp, wy = wy. In the
argument of (i), case v] = vy, vy = vy, we replace ag by a1, a; by az,
az by ag. Then the same argument leads to case (6) of the theorem.

If v] = vq, vh = vy, we have w{ = wy, w] = w2, wh = wy. In the
argument of (i), case v] = vy, vj = vq, we replace ag by a1, a1 by as, as
by ag. Then the same argument leads to case (4) or (5) of the theorem.

(iii). ve = 1. By Lemma 3.4 and Table 1, we have either v = vy,
vh = vy or vj = vq, vy = vg. A similar argument as in (ii) leads to case
(7), (8), or (9) of the theorem. o

Theorem 3.23. Suppose that f = zg:’ + zoz;lll + zlz;’2 is of type IV
and g = 2§° + 202" + 20257 + 22252 is of type VI Then (f~1(0),0)
and (g=1(0),0) have the same topological type if and only if

a2(agzl1fag)+1)
a a aj(ag—1
(1) f=2"+ 202" + 2129 "
b1 b
g = 25° + 2027 + 20252 + 211 252

with (a1(ag — 1)/(ap — 1,a1))/az, or
_ a0 as IC
2) f=2"+ 2027% + 2129
g =200 4 2028 + 20252 + 20125

with (az(ap —1)/(ao — 1,a2))/a;.

Proof. From Table 2, we have uf/u}/ub, up/us and ug/uz. By
Lemma 3.2, Lemma 3.3 and Lemma 3.5, we have ug = uj, and either
(1) uy = uj/ug = uf or (i) ug = uj /uy = uj.

Case (i). We consider the following subcases.

() uh =ug > uf =wuy. By (ii) of Theorem 2.3 with u = up = uj,
we have w), = wy. Since vg = v) = 1, we have wj = wy. Note
(1—wp)(1—wy1)(1—wz) = (1—wp) (1 —w))(1—wh) by (ii) of Proposition
2.3. We see that w] = w;. Thus, we have

aga)  apay apalal _ apaz

14
ang = Qo = = .
0 ’ ap—1 ap—1’ apal —ay+1  ag—1
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These imply that a} = ay, ab = az(aga; — ag + 1)/a1(ap — 1). To have
ah € Z, we need (a1(ap —1)/(ap — 1,a1))/az. This leads to case (1) of
the theorem.

(B8) uhy =wuy =u} =up. In this case we have y; =y = v, = 1. By
Lemma 3.4 and Table 1, we have

! ! ! 4 ! ! ! !
{Lag =7 = 1,0} = vy, ay = vy, = v }
:{Lao =m1=1l,a1 =7 =12 =v172 = v, a3 = V271 =U2}

and nj = nh = n2 = ng = 1. So we have either v; = v}, va = v} or
vy = vh, vg = vy. If v = v}, va = v}, we have w) = wy, W] = wy,
w)y = wy. Then the same argument as in («) applies. If v] = wvq,
vh = v1, we have wj, = wy, Wi = way, wWh = wy, i.e.,

agay  apas agayan  agay

’
ag = ao;

ap—1 ap—1 apay —ah+1  ag—1
This leads to case (2) of the theorem.
(ii). In this case, if we replace a; by az, az by a1 in the argument

of (i), then a similar argument leads to case (1) or (2) of the theorem
again. u]

Theorem 3.24. Suppose that f = 236 + zoz‘fl1 + zlz;; is of type IV
and g = 25921 + 202" + 20252 4 221252 ds of type VII. Then (f~1(0),0)
and (g=1(0),0) have the same topological type if and only if

(mk+1)a
_ _mk+m+1 k+1 m(k+1)
(1) f=2z + 202, + 2129

k+1 k+1 b b
9= 20" 2y + 2028t 4 2028 + 231 222

with m(k + 1)/(mk + 1)a, or

k 1 k+1
=25t op2f T 4 228
k+1 k+1 b1 b
g =25 T 21 + 2027 4 2025 + 231 222

(2)

or

41 kt1-22
{f:zg”'i' + 2028™ + 212, ™

m(st—1)+1 t t by b
9=z (st=D)+1 ) 4 2021 + 2025 + 21" 257
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or

k k+1 k+1
+ mk+ ;71++Z

k 1 m(k+1 k+1

f= Z(r)n +m+ + 202] ( )+2122+
— 1 by b2
g=2zy 21+ 202 + 29z 1 %9

k mnk+7:+n—1 Etl
{ f=zgmktmtn 4 2z + 2125k

k+1 k+1 m(nk+1 b1 b
9= 20"z + 20275 + 202 ( )+z11z22

with n/(m — 1), or

k mnk+$+n—1 Etl
{ f=zgmktmtn 4 2z + z1 25kt

k+1 k+1 m(nk+1 b1 b
g = 2" 2y + 22T +z0z2( )+z1z22

(6)

with m/(n — 1).

Proof. From Table 2, we have up = u;/u2 and u{/u} /ul. By Lemma
3.2 and Lemma 3.3, we have ug = u; = uj = u} and uy = u}. From
wyp = u; = uj = uy, we have aj = (apa; — 1/(ap — 1,a; — 1)) and
ay/(af — 1). We consider two subcases.

(). wp = up = uy = u} < ug = uh. Hence 72 = 74 > 1. By (ii)
of Theorem 2.3, we have 1 = wy = 1 — w}, then wy = w) and hence
ve = vh. By Lemma 3.4 and Table 1, we have

! ! ! ! ! ! !
{1, 05 =v3,07 = v5, a5 = v175}
={1,a0 = 72,00 = v3,a2 = V172, 3 = Vo7Y2}

Note that (v4,v5) = (v2,v2) = 1, y2 = 74 > 1 and v, = vo. We have
{1,a = ¥4, ah = viv5} = {1,a0 = Y2, 02 = V172, @3 = vgy2}. If both
vo and vy were bigger than one, we would have of, = az = a3. By the
second part of Lemma 3.4, one sees that ny = ns + ng, which gives a
contradiction because ny, = no = ng = 1. Hence, we conclude that one
of vy or v; must be one.

If vy = 1, we have wj, = wp, w] = wy, wy = wp and (a3 —1)/(ap —1),
ie.,

R 1 agay  agay — 1
b= =
a;—1" ap—1 ap—1"
r 1!
agatay  az(apar — 1)

apay —ap+1  ay(ap—1) °
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Set a3 = k+ 1 and az = a. Then a9 = mk + 1, aj = mk +m + 1,
ay =k+1and ab = (mk+ 1)a/m(k+1). This leads to case (1) of the
theorem.

If v; = 1, we have wj = w1, w] = wy, wy = we and (ap —1)/(a1 — 1),
ie.,

T 1 agay  agay — 1
0 ap—1" ap—1 a—1"
r ! !
agalab _ az(agay — 1)
Il ! - :
apal —ag+1 ai(ap — 1)

Set ap = k+1, az = a. Then a; = mk+1, a5 =mk+m+1,a] =k+1
and a}, = a. This leads to case (2) of the proposition.

(ii). wp = uy = ufy = u} = ug = uy. Hence, 7o = 75 = 1. By Lemma
3.4 and Table 1, we have

! r __ ! 4 ! ! !
{1aa0 =7y = 1,01 = vy, 05 = V)75 = vy}

= {17010 =72 = 1,1 = V2,00 = V171 = V1,03 = VY2 = Uo}

Note nj = ny, = ny = ny = ng = 1. If vy,v; and vy were all
bigger than one, by the second part of Lemma 3.4, we would have
n} +nb > ny = ny+ng, which is absurd. Thus, one of vy, v; or v must
be one. Now we consider the following three subcases.

(a) vp = 1. By Lemma 4.4, Table 1 and Table 2, we have (a; —
1)/(ap — 1) and either v; = v}, va = v} or v; = vh, vy = V.

If v1 = v}, va = v}, we have wyg = wj, wy = wj, we = wh. The same
argument as in (i), with vy = 1, applies.

If vy = vh, vo = v}, we have wy = wj), w; = wh, we = wi, ie.,

apa; — 1 _ apa; — 1 _ agpalal
a; —1 0 ap — 1 apay —ap +1’
az(aga; — 1) aga)
al(ao — 1) B a6 — 1'

Set a; = k+1, ap = mk + 1, and az = a. Then aj, = mk + m + 1,
ay = a and ay = ((mk+m+1)a —m(k + 1))/ma. To have a), € Z, we
need m/a and a/m(k+1). Set a = tm, then from a/m(k+ 1), we have
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t/(k+1). So we set k = st — 1. Finally, we have

ay = st,agp =m(st — 1) + 1,a9 = tm,
s—1

ag =mst+1,a) =tm,ay =k+1—
m

with m/(s — 1). This leads to case (3) of the theorem.

(8) v1 = 1. By Lemma 3.4, Table 1 and Table 2, we have (ap —
1)/(a1 — 1) and either vy = v}, va = v} or vy = v}, vo = v]. If vy = 0],
v = vh, we have wy = w], w; = wy, we = wy. The same argument as
in (i) with v; = 1 applies.

If vy = v}, v2 = v}, we have wy = wh, wy = wj, we = Wi, ie.,

apa; —1 agpalal apa; — 1

!
=aq
a; —1 apay —ap + 1’ agp — 1 o
! !
az(apa; —1)  aga)
al(ao—l) af)—l'

Set ap = k+ 1, a3 = mk + 1 and a3 = a. Then aj = mk + m + 1,
ay = ma(k+1)/(mk+ 1) and a, = (a(mk +m + 1) — (mk + 1)) /ma.
To have ay € Z, we need m/(a — 1). Set a = sm + 1. Then

(sm+1)(mk+m+1)— (mk+1)

r_
%2 = m(sm+ 1)
smk +sm+s+1 s—k
= =k+1+ .
sm+1 sm—+1

So (sm+1)/(s— k). Set s —k = —t(sm + 1). Then a} = m(sm +
D(tms+s+t+1)/(m(tms+s+t)+1) =m(tms+s+t+1)/(tm+1).
To have o} € Z, we need (tm + 1)/(tms + s +t + 1). This implies
that (¢m + 1)/(t + 1). Note k& > 0, m > 0 implies ¢ > 0. We have
two possible subcases: t =0 or t > 0. If t = 0, we have s = k. Thus,
ay =a=km+1,a] =m(k+1), a, = k+ 1. It leads to case (4) of
the theorem. If ¢ > 0, then (¢m + 1)/(¢ + 1) implies m = 1. Thus,
ag =a1 =k + 1. So vy = 1. We are in case (ii) ().

(7) v2 = 1. In this case, we have a1(ag — 1)/az(apa; — 1) and either
vo = v}, U1 = V4 Or vy = v, v1 = V.
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If vg = v{, v1 = v}, we have wy = w}, w1 = w), we = wy, ie.,

apa; — 1 agpal aga; — 1 agalab
a; —1 ap—1’ ag—1 apal —af+1’
ag(aoal — 1) o a,
== =a.
ajy (0,0 — ].)
Remember that we have us = u; = ug. Thus, from Table 2, one

can check that az(agp — 1,a1 — 1)/a1(ap — 1). Now wy = 1 implies
ay(ap — 1)/as(ag — 1,a; — 1). So az(ap — 1,a; — 1) = ai(ap — 1).
Set (agp — l,a;1 — 1) = k. Then a9 = mk+ 1, ay = nk + 1, with
(m,n) = 1 and az = m(nk + 1). It follows that af = mnk + m + n,
ay = (mnk+m+mn—1)/n, a, = nk+1 with n/(m — 1). This leads to
case (5) of the theorem.

If vy = v}, v1 = v}, we have wy = wh, wy = W), wy = wy, ie.,

apa; — 1 apalab aga; — 1 apal
a; —1 apal —ap +1’ ag— 1 ap — 1’
ag(aoal - ].) '
—— =qy.
a2(a0 — 1)

Set (ap—1,a1—1) =k, ap = mk+1, a1 = nk+1. Then ay = m(nk+1).
Hence, we have
mnk+m+n—1

ay = mnk +m + n, a) = , ay =mk+1
m

with m/(n — 1). This leads to case (6) of the theorem. o

Theorem 3.25. Suppose that f = zggzl + 2‘111122 + zoz;lz is of type
Vand g = 28° 4 2029 4 20222 4 22252 is of type VI. Then (f~1(0),0)
and (g=*(0),0) have the same topological type if and only if

W f=zmkz 4 2l 422k
k+1 k ko b1 b
g = 20"+ 2027 + 228 + 2] 252

or

{ f= z()”k’zl + zink*mﬂzg + zozéc }

k+1 k ko bib
g =20 + zo2f + 2025 + 2] 252
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or
k k— 1
f=z21+ 2" 22+Zozm m+
k+1
g = 2T 4 202k 4 2ok 4 20 b

or

{f = zgzl + 2" koo + zozmk m+l }

k+1 k b
g =2 4202k 4 zo2k 4 2bi b
or
= zgnk_m'i'lzl + 28z + zoz;nk
(5) mk+1
9=z +zozl+z0z +z
or
k—m+1 k
= kmm Al + zle + zo29"
(6)
_ .mk+1
g=2z + zpz1" by z022 + z1 z2
Proof. From Table 2, we have uj = uj = ub, up/u; and wug/us.
By Lemma 3.5, we have uj, = u] = uh = ug = u3 = uz. Hence,

v =2 = 1. By Lemma 3.4 and Table 1, we have
{1,046 = v(/)’all = vllva,2 = ’1)12}
={Lao=m =1l,a1 =72 =1, 00 = v1,0a3 = v2}.

Note that n, = n] = ny = ny = ng = 1. By the second part of
Lemma 3.4, if v{,v] and v} were all bigger than one, we would have
ng 4+ n} +nhy < ngy + ng, a contradiction. Thus, one of vj, v] or v) must
be one.

(i). vy = 1. By Lemma 3.4 and Table 1, we have either v] = vy,
vh = vy or v] = vy, vy = v1. If v] = vy, v = vg, we have w{ = wo,
w = wi, why = wa, i.e.,

apalal +1 apay agalab +1
ay)y = —F—5——— = .
alah, —ah+1’ ap—1 ahay—af+1
apaz  agajan + 1

ap—1 afa) —al +1
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These imply that
’ aoal—ag—i—l ’ _al(aan—a0+1) r
Qg = ————— a, = ) a; = az.
ail ag(ao — 1)

To have aj, € Z, we need a1 /(ag — 1). From Table 2, u; = ug implies
that as(ag — 1,a1) = a1(ag — 1,a9), i.e., ajas = ai(ag — 1,a2). Hence,
az/(ap — 1). To have a} € Z, we need az(ap — 1)/ai(ag — 1,az2). It
follows that (ap — 1)/a1, hence ag — 1 = ay. Set az = k, ag = mk + 1,
a; = mk. Then aj = mk, af = mk —m +1, o}, = k. It leads to case
(1) of the theorem.

If v} = vq, v = v1, we have w{, = wy, W] = wa, Wy = wy, i.e.,

apalah +1 apay agalal +1
Go =~ 7 1’ 1 dd —d +1°
10y — Qg + ag agay — ay +
agay  apahah +1

ap—1 ahal, —a)h+1°
Using similar arguments as above, we see that ag = mk + 1, as = mk,
a1 =k, ay = mk, af = mk —m+1, af, = k. This leads to case (2) of
the theorem.

(ii). v} = 1. In this case, we have either v, = vy, v§ = vy or v = va,
'U2 = V1.

If v = vy, vh = ve, we have wy = w}, w; = wj, we = wh, ie.,

apajah +1 apay agajah +1
a0 =~ 7 1’ 1 dd —d 1’
Aol — Qg + ag ai1ay — Gy +
agaz  agpaah +1

ap—1 ahal —a, +1°
These imply aj = a1, a} = (apaz — ap + 1)/aq, ay = asz(apar — ap +
1)/ai(ap—1). A similar argument as case vj = vg, v = v in (i) shows
that ap = mk+1, a1 = k, az = mk, a = k, aj = mk, af, = mk—m+1.
So we are in case (3) of the theorem.

If v}, = vq, v = vy, we have wy = wi, wy = wh, wy = wy, ie.,

apalal +1 apay agalab +1
aygy = —F/—5——— = .
apah —ap + 1’ ap—1 ahay —a)+1
apaz  agayan + 1

ap—1 ajay—ab+1
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Similar as in the case v{ = vy, vh = vq, these will lead to a9 = mk + 1,
a; = mk, a2 =k, ay = k, o] = mk, ay, = mk —m + 1. So we are in
case (4) of the theorem.

(iii). vy = 1. A similar argument as above leads to case (5) or case
(6) of the theorem. O

Theorem 3.26. Suppose that f = zg:’zl + zf1122 +z0z;’2 is of type V
and g = 2521 + 2025 + 20257 + 221252 is of type VIL Then (£~(0),0)
and (g=1(0),0) have the same topological type if and only if

k41 ay t

(1) f:zgl + 21+21122+2022m
k+1 k+1 by b
g = 20" 2y + 2020F T 4 2p2b™ 4 271202

where a) = (nk + 1) + ((tn — nk — 1)/tm) with t/(nk + 1) and
tm/(tn —nk — 1); or

¢ k+1 as

@ f=2m2 4+ 27 2y + 20252
k+1 k+1 t b1 b
g = 20" 2y + 22D T + 202h™ + 201252

where afy, = (nk + 1) + ((tn — nk — 1)/tm) with t/(nk + 1) and
tm/(tn —nk — 1); or
3) f=202 + 2™z + o2kl
g = 20 ) 4 202TRT 4 o2t 4 Rbi b
where aj; = (nk + 1) + ((tn — nk — 1)/tm) with t/(nk + 1) and
tm/(tn —nk — 1); or
(4) f=om+ i m 4 02!
9= 23021 + 2028 4 2232 + 2 2%
where ay = (az(apar — 1) — a1(ap — 1))/az(a1 — 1) € Z, o} =
apaz(a; —1)/ai(ap — 1) € Z; or

5) { [ =2tz + zflzg + zoz;2 }

__ ,00 ay as by _bo
g =2y"21 1+ 2021 + 202" + 21 %9
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where af = (az(apar — 1) — a1(ap — 1))/as(ar — 1) € Z, afy =
apaz(a; — 1)/ai(ap — 1) € Z; or

(6) { =252 + 20 20 + 20252 }

a, a a b1 b
g = 221 + 2027 + 20297 + 27" 25"

where af = agaz(ar — 1)/a1(ag — 1) € Z, afy = (az(apa; — 1) —az(ap —

1))/(12(0,1 — ].) cZ.

Proof. From Table 2, we have uj = v} = u}. By Lemma 3.5, we have
uy = uy = uh = up = ug = ug. It follows v = 1. By Lemma 3.4 and
Table 1, we have

! ! ! ! ! !
{1,ap=1vp, a1 =vj,a5=v5}={l,a0=vy2=1, 01 = v, 00 = vy, a3 = Vg }

Note that nj = nj = ny, = ny = ng = ng = 1. By the second part of
Lemma 3.4, we have the following six subcases.

(). v = vo, v} = vy, vh = vy. It follows that wj = wo, W) = wy,
wh = wa, i.e.,

agayay, +1  agay —1 agajan +1  apa; —1
ajay —ay+1 ap—1" apay —ah+1  ap—1"'
agatay +1  az(aga; — 1)
apay —ay+1  ay(ap—1) °

These imply that aj = ao, a} = (az(apar — 1) —az(ap — 1))/az(ao — 1),
al, = ay. Set (ag —1l,a0 — 1) = k, a9 = mk+ 1, a3 = nk+1
with (m,n) = 1 and aa = a. From Table 2, u; = wug implies
az(ag — 1,a1 — 1)/a1(ag — 1), i.e., ak/mk(nk + 1), so a/m(nk + 1).
Hence, a} = (a(mnk + m + n) — m(nk + 1))/ma. To have da| € Z,
we need m/na. Since (m,n) = 1, we have m/a. Set a = tm. Then
ay = (nk+ 1)+ ((¢n — nk — 1)/tm). Finally, we have ag = mk + 1,
ay =nk+1, ay =tm, ay =mk+1, a] =nk+1+ ((tn —nk —1)/tm),
af = tm where tm/(tn —nk —1). This leads to case (1) of the theorem.

i / ! ! : ! [ A

(i). vy = vy, v] = va, vy = vy, i.e., WH = wp, W) = wy, W) = we. A
similar argument as in (i), by replacing a} by a}, a} by ay, @) by af,
leads to case (2) of the theorem.
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L [ — A A H [A— A [—

(iii). v{ = ve, v] = vy, vy = vy, L.e., Wi = wp, wWh = wy, W) = wa. A
similar argument as in (i), by replacing ag by a}, a} by ab, ab by ag,
leads to case (3) of the theorem.

(iv). vy = vo, v§ = v, vh = v;. We have wj = wyp, wj = wo,
P X
wh = wy, le.,

agayay, +1  apa; —1 agayay, +1  az(apa; — 1)
ajah, —ah+1 a3 —1" apay —ah+1  ai(ag—1) "’
agatay +1  apa; —1
apay —ay+1  ap—1"

These imply aj = (a2(apa; — 1) — a1(ap — 1))/az(ap — 1), @} =
apaz(ay —1)/ai(ag — 1), aj = a;. This leads to case (4) of the theorem.

(v). vy = va, v] = vy, vh = vg. Then we have wj = wa, W) = wy,
P 0 o . / r
wh = wp. A similar argument as in (iv), by replacing aj, by a5, a} by
ag, ay by af, leads to case (5) of the theorem.

(vi). v = vy, V] = vg, vy = va. Then we have wj = wop, Wy = wy,
w) = wy. A similar argument as in (iv), by replacing aj, by af, a} by
ah, ay by af, leads to case (6) of the theorem. O

Theorem 3.27. Suppose that f = z86 + zoza’1 + zozglz + ztl’lzg2 is of
type VI and g = z;°21 + 202" + 20252 + zi’lzf is of type VII. Then
(£71(0),0) and (g=1(0),0) have the same topological type if and only if

(1)

k 1 E+1 by b
=20t 42028t 4 2028 + 27 2,2

k+1 k+1 b1 b
9= 20" 4+ 2y + 2028 + 2028 + 270 25°

or

ktmt1 k41 molkt ) by b}
k+1
(2) F=z""T" 202 F a0z a2

k+1 k+1 b1 b
g =251 21 + 202" 4 2925 + 231222

with (mk +1)/a(k + 1), or

mk+1 by b2

_  mk+m+1 k+1 by b
(3) f=2"T"T 4 202 F 202 202
k+1
g = 20" 21 + 2028t + 2925 + 2325
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or

ma(k+1)
k+1
+ 202, ™

by b

+ zoz§+1 + 211 2y
k+1 k+1 b1 b
g =25 2 + 22 4 2925 + 201222

f _ zgnk-l—m-l—l

(4)

with (mk + 1)/a(k + 1).

Proof. From Table 2, we have uj/u}, uj/ufy and ug = uy/us. By
Lemma 3.2 and Lemma 3.3, we have two possible cases: (i) uj = u} =
ug = uy/ufy = up or (ii) uf = uh = ug = uy/uj = us.

In case (i), we consider two subcases.

(). ug = uh > uj) = v} = uy = uy. By (ii) of Theorem 2.3, we
have wy = wj. The assumption of («) implies v =2 > 1, 4] =1 and
vy = v9. By Lemma 3.4 and Table 1, we have

A /A 2 B N S A I B
{Lag =7 = L,a) = 75,0y = v173, @y = vy7y) = vy}

= {1,010 = 72, Q1 = V2,02 = V172,03 = 0072}-
Note that v5 = v2 = 1, (75, v5) = (y2,v2) = 1. We have
{1,a) = 1,05 =175} = {1, a0 = 72,02 = V172, a3 = Vo2 }.

If vy and vy were both bigger than one, then ay > ag = of, ag > ap =
a. Thus, we would have oy = ay = ag; hence, by the second part
of Lemma 3.4, we have n), = ng + n3 which contradicts the fact that
ny = ng = ng = 1. It follows that either vg =1 or vy = 1.

If vg = 1, then we have v; = v}{. Thus, wy = wj, w1 = Wi, wh = wa,
i.e.,
apa; — 1 apgal —1  apa; —1 agpal ay(apa; — 1)

o — = .
%o = a;—1" ap—1 ap—1" ap—1 ai(ag — 1)

These imply that a} = aj, a)y = as. vy = 1 implies (a3 — 1)/(ag — 1).
Set a; = k+1, ap = mk+1, ay = a. Then aj, = mk+m+1, o} = k+1,
a%, = a. This leads to case (1) of the theorem.
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If v; = 1, then we have vy = v}{. Thus, wy = wi, w; = w{, wa = wh,
ie.,

o - W~ 1 agay  agay —1 agay,  az(apa; — 1)
07 gp—1" ap—1 ap—1" ap—1 aj(ap—1)

These imply that a} = ag, ab = apaz(a; — 1)/a1(ap — 1). vy =1
implies that (ag —1)/(ax — 1). Set a9 = k+ 1, a1 = mk + 1, az = a.
Then af = mk+m+1, a) = k+1, ay = ma(k+1)/(mk + 1) with
(mk +1)/a(k 4+ 1). This leads to case (2) of the theorem.

(B). up =uy =uy =uy =uj =ub. Then ] =+5 =+, =1. By
Lemma 3.4 and Table 1, we have

A A [ N A SR R N A
{Lag =7 =1L a) =7, = L,ay = v1v7; = v}, a4 = v37y; = Uy}

= {].,Oéo = "/2 = 1,a1 = V2,09 = Ul’)/g = V1,03 = Uo’)/g = ’Uo}.

Note that nf, = nf = ny = ny = ng = 1. If vy,v; and vy were all
bigger than one, by the second part of Lemma 3.4, we would have
nh 4+ ny > ny + ng +ng. This is a contradiction. Thus, one of vy, vy or
v must be one.

(a). vo = 1. By Lemma 3.4 and Table 1, we have either v; = ],
v = vh or v1 = v, vy = v]. If vy = v}, vy = v}, then we have w(, = wo,
w] = wiy, wy = we. The same argument as in case (i) (@), vo = 1,
applies. It leads to case (1) of the theorem. If v; = v}, va = v}, we
have w{, = wg, w] = wz, wy = wy. In the argument of (i) (a), vo =1,
if we replace a} by ab, a, by a}, then a similar argument leads to case
(3) of the theorem.

(b). v1 = 1. By Lemma 3.4 and Table 1, we have either v = vy,
vy = Vg OF U] = Vg, Uy = vp.

If vgp = v}, va = v}, then we have wj = wi, w] = wp, wy = we. The
same argument as in case (i) («), v1 = 1, applies. This leads to case (2)
of the theorem. If vy = vj, v = v{, then we have wj = wy, w] = wa,
wh = wy. Replace a) by a}, a}, by a} in the argument of case (i) («),
vy = 1. A similar argument leads to case (4) of the proposition.

(c). v = 1. By Lemma 3.4 and Table 1, we have either v; = ],
vo = vh or v; = vh, vg = vy. If vy = v}, vp = vh, we have w{ = wa,
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[ A 3
wy = Wy, Wy = Wy, 1.€.,

as(aga; — 1) aga; —1  aga; — 1 agay,  apay — 1
)

!

%o = ai(ap—1) ’ ay—1  ap—1 ay—1  a;—1"
These imply that af = (apaiaz — apay + a1 — az)/az(ap — 1), a =
(aparaz — apar + a1 — az)/az(a; —1). Now ug = u; = ug implies
~v2 = 1. By Table 2, 7, = 1 implies az = aj(ag—1)/(ap—1,a; —1). Set
(ap — ;a1 — 1) =k, ag =nk + 1, a; = mk + 1. Then as = n(mk + 1),
ay = (mnk+m+n—1)/n, ay = (mnk+m-+n—1)/m. Tohave a} € Z
and a}, € Z, we need m/(n —1) and n/(m — 1). It forces one of m or n
to be one. Hence, we have either ag = nk+1,a; = k+1lorag =k+1,
a1 = mk + 1, i.e., either vy =1 or v1 = 1. So we are in case (a) or (b)
again. If vy = v}, vo = v}, a similar argument shows either v9 = 1 or
v; = 1 again.

(i). up = uy = wg = ur/u}j = uz. In the argument of case (i),
exchange the indices 1 and 2; a similar argument leads to cases (1),
(2), (3), (4) of the theorem. u]

Theorem 3.28. Suppose that f = z36 + zfll + zglz and g =
28° + 27 + 252 are of type I. Then (f~1(0),0) and (g7*(0),0) have
the same topological type if and only if af = ai,, a] = a;y, ah = aj,
where {ip, 11,12} = {0,1,2}.

Proof. We may assume that af, < a'l < a}, agp < a1 < ag without
loss of generality. By Lemma 3.5, we have aj = ag, a] = a1, aj = a
as required. O

Theorem 3.29. Suppose that f = 236 + zfll + le;’z and g =
280 + 20* + 2125 are of type II. Then (f71(0),0) and (g=*(0),0) have
the same topological type if and only if (1) a} =a;, 1 =10,1,2, or

ala%(ag—)l)
apg(ay —1
2) {f—281+z;‘°+m2° 1 }

g =20° + 21" + 21292
with ag(a; — 1)/araz(ag — 1), or

{ f=agtt et 4 21z§(mk+m_l)}
tm(k+1) k
)

(3)

1
g= 4+ 28
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or

k+1
g:zg( +)+Zf+1+212£nk

Proof. From Table 2, we have uj/uy, u}/ub. By Lemma 3.2 and
Lemma 3.3, we have the following subcases.

(1). ug = uf, ug = uh and ug = ugj. Note that vg = v, = vy =v; = 1.
By (ii) of Theorem 2.3, set u = ug = uj. We have 1 —wo = 1 —wj), i.e.,
wy = wh. Thus, ug = ug, u; = uj, and wy = wh, imply that a; = al,
i =0,1,2. This is case (1) of the theorem.

(ii). ug = uy/uz = uh. Then ug = uj. By (ii) of Theorem 2.3, setting
u = uz = uh, we have wy = wj again. ufj = uy, uj = ug, wWh = wo
imply that af = a1, a} = ap, ay = azai(ap — 1)/ap(a; — 1). This leads
to case (2) of the theorem.

(iii). wy = ui/uz = uj. Then uy = wh and wuy/uz/ug, uf/ul/uj.
We may assume that ug # uf, (here we just exclude case (i)). Now we
consider two subcases: (a) ug < ug or (b) uz = uy.

Case (a). By Lemma 3.5, we have ug = uj. By (ii) of Theorem 2.3,
we have 1 — wy = 1 — w). Thus, wy = w}, so vh = 1. Using (ii) of
Theorem 2.3 again, we have (1 —w;)(1—ws2) = (1 —w()(1 —w}). Note
that w; = u; = uy = wj. We have wy = w). Thus v = 1. Now
uy = U1, Wy = we, wh = wp imply aj = a1, a] = araz/(a; — 1) and
ayay/(a} — 1) = ag. It follows that a, = ag(aiaz — a1 + 1)/ajaz. Note
that vo = 1 implies (a1 — 1)/as. Set a; = k + 1, ay = mk. Then
uz = wy = m(k + 1), hence, from ug/ugy, we set ag = tm(k + 1). Now
we have aj, = k+ 1, a] = m(k+ 1), a}y = t¢(mk + m — 1). This leads to
case (3) of the theorem.

Case (b). In this case, we have uy = ug = uj = v} and uj) = uy. This
is in case (ii).

(iv). uy = ub/us = uy. Then ug = v} and u} /ub/uj, wo/ui/us. A
similar argument as in case (iii) applies (we just interchange f and g
in case (iii)). This leads to case (2) or (3) of the theorem.
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(v). ug = u}/uz = uj Then up = uy. We may assume ug # u( to
exclude case (i). Because of (ii) of Theorem 2.3, setting u = uy =
and u = wy = uh, respectively, we get wy = wj, wy = wh. Hence,
ve = vh = 1 since vg = v = 1. uy = u} implies that w; = w}. We have
ay = araz/(a1 —1), ap = afah/(aj —1), a; = a}. Note that vo = v) =1
implies that (a1 — 1)/ag, (af — 1)/a}. Set a1 = a} =k + 1, az = mk.
Then ay = m(k + 1), ay, = nk, ap = n(k + 1). This leads to case (4) of
the proposition. u]

Theorem 3.30. Suppose that f = 236 + z'f,l@ + 212‘21’2 and g =
260 + 2{1z2 + 21252 are of type III. Then (f~*(0),0) and (g~*(0),0)
have the same topological type if and only if ag = af, and either a; = af,
as = al, or ay = ah, az = af.

Proof. From Table 2, we have u] = ub, uy = us. By Lemma
3.2, we have u] = u) = u; = uz. Hence, uy = ug, i.e., ap = ay.
From Proposition 2.2 (iii), the degree of (f and (, are (aj — 1)(aja) —
1) + ay and (ap — 1)(a1az — 1) + ag, respectively. ¢y = (, implies
(ay — 1)(alay — 1) + af = (ap — 1)(araz — 1) + ag. Note ag = afy > 2.
We have ajab, — 1 = ajas — 1. From Table 2, u; = u} implies that
(arae — 1)/(ay — 1l,a2 — 1) = (ajay — 1)/(a} — 1,a, — 1). Hence,
(ap — l,a2 — 1) = (a} — 1,ab — 1). From Table 1, this is ny = ny.
Note that v}, = 7o, i.e., o) = op. By Lemma 3.4 and Table 1, we have

Y N N B N N B A o o o
{1, ag =0, a1 =vy7, a5 =v17p} ={1, 20 =0, 21 =v270, 22 =010 }-
Note that nj = ng, nj = ny = ny = ny = 1. By the second part of
Lemma 3.4, we have either v] = vy, vj = vy or v] = vy, vy = v1. Thus,

either w] = wy, wh = wy or W) = wa, wh = wy, i.e.,

aiah —1  ajay—1 ajay —1  ajaz—1

= and =
alh —1 as —1 ay —1 a; —1
or
r ! ! !
ajas —1  ajaz—1 and ajay —1  ajaz —1
ah—1 a; —1 ay —1 az —1

These together with ajal, — 1 = ajas — 1 imply that a1 = a}, az = a}
or ay; = a}, az = aj, as required. O
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Theorem 3.31. Suppose that f = z86 + zoz‘fl + zlzgl and g
20° + 2027t + 21292 are of type IV. Then (f~1(0),0) and (g~ (0),
hcwe the same topological type if and only if we have a; = a}, i = 0,1

A
SN—

?

Proof. From Table 2, we have u(/u}/ujy and up/u1/ue. By Lemma
3.5, we have u} = u;, i = 0,1,2. We consider the following subcases.

(). uh = uy > uj = uy. By (ii) of Theorem 2.3, we have
1—wh =1—ws, ie, wh = we. Note wy = uy = up = wy. Thus,
from (1 — w()(1 — w))(1 —wh) = (1 —wp)(1 — w1)(1 — wa) we have
w} = wy. So we have

agay  apay agpalal, _ apa1as

a6:a05 7 = ) = :
ag—1 ag—1 apal —ap+1 apa1 —ag + 1

These imply that a} = a;, i =0, 1,2, as required.

(B). uy = uy = v} = uy. In this case, 74 = 72 = 1. By Lemma 3.4
and Table 1, we have

I r ! 4 I ! !
{17a0 =7 =1 0] = vy, a5 =17 —U1}
={lL,ap =72 =1, 00 = 2,02 = V172 = V1 }.

Note that nj = nl, = n; = ny = 1. By the second part of Lemma

3.4, we have either vi = vy, vj = vy or v] = wve, vh = v1. If
v] = v, vy = vy, we have wj = wp, wj = wy, wh = wy. The
same argument as in case («) applies. If vi = vy, vh = vy, then
w) = wy, wy = wy. By (ii) of Theorem 2.3, we have wj = wp.
/A s : ! ! ! ! ! !
From Table 2, uj = u} implies that a}(a},ay — 1)/(apa) — aj + 1).
Similarly, u; = wug implies as(ai,a9 — 1)/(apa; — ap + 1). Hence

vy = (apaj—ap+1)/ab(ay, ap—1) and v2 = (apa1—ao+1)/az(a, ap—1).
Now vy = v} implies (ag—1)/(ap—1,a1) = (apal —ay+1)/as(al, ag—1).
Note that (a],ay — 1) = (agaj — af + 1,a5 — 1) and af = ag. We see
that (vh,ap — 1) = 1. This implies that (ag — 1)/(ag — 1,a1) = 1,
i.e., (ap — 1)/ay. Similarly, vo = v} implies (ag — 1)/aj. So we have
vj =wv; = 1. Hence, w} = wy. It follows that a} = a; as in case ().
So afy = ay follows. O

Theorem 3.32. Suppose that f = z86z1 + zfllzz + zozgl2 and
g = 25°21+27 22+2025° are of type V. Then (f1(0),0) and (g~1(0),0)
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have the same topological type if and only if (1) af = a;y, @} = aiy,
al, = a;, where {ig,11,i2} is an even permutation of {0,1,2}, or

aj(agag—ap+1) ag(ajag—ag+1l) az(agaj—a3+1)
. ajag—ag+1 apa; —aj+1 agag—apg+1
(2) f=zz + 2224 + 2029

a a a
g =221 + 27" 22 + 20257

or
ao(a1a2—a2-*1-1) az(a0a1—a1-i1-1) a1(aoa2—ao-*1-1)
(3) f =212, agayl—ar+ +2221 apaz—aqg+ +2022 ajag—ai+
g = 23°z1 + 27 22 + 20292
or
az(aga;—a;+1) aj(agag—ag+l) ap(ajag—az+1)

agag—apg+1 ajag—ag+1 + 202 agay —aj+1
2

+ 2227

(4) =%

a a a
g =221 + 27" 22 + 20257

with all the exponents being integers.

Proof. From Table 2, we have ug = u1 = ug, uj = uj = uj. By
Lemma 3.5, we have ug = u; = ug = uy = uj = uh. Set k' =
(agaj —a}+1,alay —ah+1,apab, —ap+1) and k = (apa1 —ap+1,a1a2 —
as+1,apas—ap+1). Then uy = (apaay+1)/k = uy = (aparaz+1)/k.
Comparing the degrees of (5 and (4, we see agaiay + 1 = apaias + 1,
and hence ¥’ = k. By Lemma 3.4 and Table 1, we have v) = v;,,
v} = v, vh = v, where {ig, 41,12} = {0,1,2}. There are six subcases.

(i). v} =v;, §=0,1,2. Then from Table 2 and k' = k, we have

ajas —as + 1 =adjay, —ah+1, apaz — ap + 1 = agay —ag + 1,
apa; —ay +1=apa) —aj + 1.
Since .
as(agay —ay + 1) + (a1ay — ay + 1) = agaias + 1,
az(apar — ar +1) + (a1a2 — a2 + 1) = aparaz + 1,
one sees that a, = ap. Similarly aj, = ag, a] = a;. We are in case (1)

of the proposition.

(ii). v = v1, v} = ve, v) = vy. Replace ag by a1, a3 by as, as by ay
in the argument of (i). Then a similar argument gives a; = a1, a} = az,
a% = ag. This leads to case (1) of the theorem again.
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(iii). vy = va, v} = vo, v = v1. Replace ag by a2, a1 by ag, az by a1
in the argument of (i). Then a similar argument gives af, = ag, a] = ag,
a’, = ay. This leads to case (1) of the theorem.

(iv). vy = vg, V] = vq, vy =v;. From Table 2 and k¥’ = k, we have

! ! !/ 4
a1ay —ay + 1 =ajaz —az +1, agay —ag +1 =apar —a; +1,

1! !
aga; —a; +1=apaz —ap + 1.

Note that af(agah — ay + 1) + (agal — a} + 1) = agajay + 1. Since
agalal, +1 = aparas +1, we have af(aga; —a; + 1) + (apaz —ap+1) =
agajaz + 1. Hence, a)(apa; —ay + 1) = ap(ajaz — az +1). A similar
argument shows that ag(aiaz — az + 1) = ai1(agaz — ap + 1) and
ah(agaz — ap + 1) = az(aga; — ay + 1). These give us

ai (aoag —ag + ].) ao(a1a2 —ag + 1)
alaz—az+1 aoal—al—i—l
az(agal — a + ].)
apaz —ag +1

ag = ay =

r_
a2—

This leads us to case (2) of the proposition.

(v). v = ve, v] = v1, vh = vg. A similar argument to case (iv) gives

ao(alag —as + l) r az(aoal —ay + ].)
apa; —ag +1 ’ = apas —ag + 1
ay (a0a2 —ag + 1)
ajas — ao + 1 )

r_
aO—

ay =

This leads to case (3) of the theorem.

(vi). vy = v1, v] = vo, vy = ve. Again, a similar argument to case
(iv) gives

a1 (aoag —ap + 1)
ajas — ao + 1

ag(aoal —a1 + ]_)
apaz — ag + 1

ao(alag —az + ].)
apa; —ay +1 )

ay =

ag =

I
Ay =

This leads to case (4) of the theorem. O
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Theorem 3.33. Suppose that f = z,° + 202," + 2029° + zll’lzgz and

g = z5° + 207" + 20252 + ztl’lzg2 are of type VI. Then (f~1(0),0) and
(g71(0),0) have the same topological type if and only if ay = ay and
either o} = a1, al, = ay or @), = ag, ay = a;.

Proof. From Table 2, we have ug/u1, up/uz and ugy/ul, uj/uy. By
Lemma 3.5, we have a{ = uy = ug = ag, and hence w, = wy since
vy = vo = 1. By Lemma 3.2 and Lemma 3.3 we have either (i) u; = uy,
ub = ug or (i) u] = ug, uy = u;.

In case (i) we consider two subcases:

(). uy = u; # uh = ug. In this case, by (ii) of Theorem 2.3, we have
w) = wy, wh = wy and wj) = wy, i.e.,

apa;  ayah apaz  agah

14
an = Qo = = .
0 ’ ap—1 af—1’ ap—1 afj—1

These imply that a} = a1, a% = a2 as required.

(B). up = uj =uz = uh. Thus, y; = v9 =] = ¥4 = 1. From Lemma
3.4 and Table 1, we have

/ ’ / ! ! IV ! / ror !
{Lag =7 =La} =7 =10 =vi7; = vy, 03 = v37; = V5}
:{1,060 :’Yl = 1,061 :’YQ = 1,062 :’1)1")/2 :’1)1,063:’1)2")/1 :’1)2}.

Note that n, = n§ = ns = nzg = 1. By the second part of Lemma
3.4, we have either v; = v}, v) = vy or v] = vg, vh = v1. If V] = vy,
vh = vg, the same argument as in (a) applies. If v] = v, vy = vy,
we have w; = wj, we = wj. Then a similar argument gives a; = a},
as = a) as required.

In case (ii) we have u] = ug, uj = u;. Interchanging the indices 1
and 2 in the argument of (i), a similar argument leads to the required
results of the theorem. O

Theorem 3.34. Suppose that f = ng’ 21 —l—zozfll +ZOZ(21’2 +le)§ 212)12 and
g = 20021 + 202" + 20257 + 221252 are of type VIL Then (f~1(0),0)
and (g=1(0),0) have the same topological type if and only if

(1) a;=a;  i=0,1,2
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or
aQa%(M*)l) B, b
—1
(2) [ =25"21 4+ 2021° + 202, "' + 21t 292

g = 23°z1 + 2027t + 20292 + Z1 z2
with a1(ag — 1)/agaz(ay — 1), or
az(agai—1)—aj(ap—1) agaz(a;—-1)

(3) f =2, ag(ag—1) 21+ 202y ai(ag—1)
by
2

b
+ 2025° + zl 222

g = 25°z1 + 2021t + 20257 +21 Z

where all the exponents are integers and az/(a1(ag—1)/(ap—1,a1—1)),
or

(4)
“2("'0“1*(1)*"’1)(“0*1) az(aoa1*(1)*a1)(ao*1)
ag(a;—1 ag(ag—1
[ =z%21 4 2024 et + 202y 2te0

bl bl
+ 2112y’

b
g =221 + 2021" + 20252 + z1 129°

where all the exponents are integers and az/(a1(ag—1)/(ap—1, a1 —1)),
or

ag(agay—1)—ag(ap—1)

— az(a;—1) by ba
(5) f=z 21+ zozl + zoz3* + zl Zy”

9= 23021 + 2028 + 20252 + 2 2%

where all exponents are integers and as/(a1(ap —1)/(ap — 1,a1 — 1)),
or

(6)
aoa(z(al—;) a2(a0a1—(1)—a1)(ao—1) a2(a0a1—(1)—a1)(ao—1) b, b,
a1(ag—1 ag(ag—1 ao(ay —1
F=2""""" 2142024 2re0 + 202 2o +2" 27

9=2821 + 2028 + 29252 + 251 2%
where all exponents are integers and as/(a1(ap — 1)/(ap — 1,a1 — 1)).

Proof. From Table 2, we have uyp = uj/uz and uj = u}/u). By
Lemma 3.2, Lemma 3.3 and Lemma 3.5, we have ug = u; = uj =
u} Juz = uh. We consider two subcases.
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(1). uh = ug > up = uy = uj = uj. By (ii) of Theorem 2.3, we have
(1 —we) = (1 — wh), i.e., we = w}h and, hence, vy = v}. By Lemma 3.4
and Table 1, we have

{1, ap = 73,01 = vh, a5 = V)75, a5 = vy75}
= {1,010 =72, Q1 = U2,Q2 = V172,03 = 0072}-
Note that v2 = 75 > 1 and (7y2,v2) = (74, v4) = 1. We have
{170‘6 = 7éaa’2 = vivé,aé = Ufﬁé}:{l,ao = Y2, Q2 = V1772, X3 = Vg2 ).

By Lemma 3.4, we have either v, = vg, v = v1 or vj = vy, v] = vo.

If v, = vy, v} = v1, we have wj, = wy, W] = wy, Wy = wy, ie.,

agay —1  apa; — 1 agay —1  apa; — 1

ah —1 a1 —1" ap—1 a—1"
ah(agal — 1) _ as(agay — 1)
aj(ag —1) ai(ag —1)

These imply a} = a;, ¢ = 0,1,2. We are in case (1) of the theorem.

If U6 = U1, Ull = Vg, We have w6 = wq, wll = Wo, w/2 = wy, i.e.,

agay —1  apa; — 1 agay —1  apa; — 1

al —1 ap—1" ap—1 a1 —1"
ay(agal —1)  az(agar — 1)

aj(ap—1)  afap—1)

These imply af, = a1, a] = ag, ah = agaz(a; — 1)/as(ap — 1). We are
in case (2) of the theorem.

(ii). up = uy = ug = uy = uj = uh. Thus, 75 = 75 = 1. By Lemma
3.4 and Table 1, we have

! ! ! 4 ! / ! !
{Liag =72 =1,a] = vy, a5 = v}, a3 = vy}
={L,ap =72 =1,04 = v3,00 = v1,a3 = Vo }.
Note that n] = ny, = n} = n; = ny = nzg = 1. From the second

part of Lemma 3.4, we have vj = v;,, v] = v;, vy = v;, where
{i0,11,72} = {0,1,2}. We have six subcases:
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(a) v =w;, 1=0,1,2. Then w;, = w;, i =0,1,2. This leads to case
(1) of the theorem again.

(b) v = v1, v} = vy, vh = va. Then wj = wy, Wi = wy, Wy = wa.
This leads to case (2) of the proposition again.

o / ! ! A A
(¢) v{ = w1, v] = va, vy = vg. Then wy = wy, Wy = we, wy = wy,
ie.,
agal =1  apa; —1 apal =1 az(apa; — 1)

aj —1 ap—1" ay—1  ai(ap—1)"

ay(apa) —1)  apa; —1

ay(ay—1)  a;—1"
These imply

az(apar — 1) —ai(ap — 1)
CLQ(CLO — ].)

ap = ay = ag.

This leads to case (3) of the theorem.

! ! ! ! A !l
(d) vy = ve, v = vo, vh = v1. Then wy = wa, W = wo, wh = wy,
ie.,
agal —1  az(apa; — 1) agal —1  agay —1

aj—1  ai(ap—1)" ap—1  a—1"
as(aga) —1)  apa; —1
ay(ay —1)  ag—1 "

These imply

az(apar — 1) — a1(ap — 1)

ap = as, a) = )
0 2 ! az(al — ].)
a, _ ag(aoal - ].) - al(ao - ].)
2 a2(a0 — 1)

This leads to case (4) of the theorem.

! / / / / !
(e) v = vo, v} = vg, vy = v;. Then wj = wop, W) = we, wWh = wy,
ie.,
apgal =1 apa; —1 apal =1 as(apa; — 1)

- ?

?

ay—1 ap —1 ap —1 o ai(ag — 1)

an(agay —1)  apar —1

aj(ah—1)  ap—1"
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These imply

, az(aga; — 1) —ai(ap — 1) r_ "
Ay = a2(a1 — 1) ) a; = az, Ay = ai.

This leads to case (5) of the theorem.

/ / / / / 4
(f) vj = ve, v = v1, vh = vg. Then wj = wq, W) = wy, wh = wy,
i.e.,
agay —1  az(apa; —1) aga; —1  apa; —1

ay —1  ai(ap—1) "’ ahy —1  ap—1
ay(apa —1)  apa; —1

ai(ap —1) a; —1

These imply

al = , al = ,
0 al(ao — l) 1 ag(ao — ].)
a, _ ag(aoal — ].) — al(ao — ].)
2 a9 (0,1 — ].)
This leads to case (6) of the theorem. O

The end of the proof of Theorems 3.7-3.34. We only need to
observe that the f and g listed in Theorems 3.7-3.34 have the same
weights. It follows from the Theorem in Section 3 [21] that (f~1(0),0)
and (g1(0),0) have the same topological type.
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