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NONSELF-ADJOINT DIFFERENTIAL OPERATORS
IN DIRECT SUM SPACES

SOBHY E. IBRAHIM

1. Introduction. In [8] Everitt and Zettl considered the problem of
characterizing all the self-adjoint operators which can be generated by
formally symmetric Sturm-Liouville differential expressions M, (p =
1,2) defined on two intervals I, (p = 1,2) with boundary conditions at
the endpoints. Their work was motivated by Sturm-Liouville problems
which occur in the literature in which the coeflicients have a singularity
in the interior of the underlying interval. An interesting feature of their
work is the possibility of generating self-adjoint operators in this way
which are not expressible as the direct sums of self-adjoint operators
defined in the separate intervals.

Our objective in this paper is to extend the results of Everitt and Zettl
in [8] to the case where the differential expressions M, are arbitrary
and there is any finite number of intervals I,,, p=1,... ,N.

The operators involved are no longer symmetric but direct sums
N N
To(M) = P To(M,,), To(M ) = P To (M),
p=1 p=1

where To(Mp) is the minimal operator generated by M, in I, and
MI;“ denotes the formal adjoint of M, which form an adjoint pair
of closed operators in @;}V:1L120 (Ip). This fact allows us to use the
abstract theory developed in [1] for the operators which are regularly
solvable with respect to Tp(M) and To(M ™). Such an operator S
satisfies To(M) C S C [To(M™T)]* and for some A € C, (S — \I) is
Fredholm with zero index. This class of operators is the counterpart of
the class of maximal symmetric and self-adjoint operators in the case
when Ty(M) is symmetric. Using ideas and results from [2], we are
also able to characterize all the operators which are regularly solvable
with respect to To(M) and To(M ™) in terms of the Li)p (Ip) solutions of
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Mp[u] = Awpu. In order to prove this for all the cases that can occur in
the intervals I,,, we need the analogue of the results in [2] for the case
when the endpoints of the underlying interval are both singular. This
is a result of special interest and extends one proved in [15] by Zai-Jiu
Shang for formally symmetric and J-symmetric differential expressions.

2. Preliminaries. We begin with a brief survey of adjoint pairs
of operators and their associated regularly solvable operators; a full
treatment may be found in [1, Chapter III and 3].

The domain and range of a linear operator T" acting in a Hilbert space
H will be denoted by D(T), R(T), respectively, and N(T') will denote
its null space. The nullity of T, written nul (T'), is the dimension of
N(T) and the deficiency of T, def (T'), is the codimension of R(T') in H;
thus, if T is densely defined and R(T') is closed, then def (T') = nul (T™*).
The Fredholm domain of T is (in the notation of [1]) the open subset
A3(T) of C consisting of those values A € C which are such that
(T — M) is a Fredholm operator, where I is the identity operator in
H. Thus, A € A3(T) if and only if (T — AI) has closed range and
finite nullity and deficiency. The indez of (T — M) is the number
ind(T — AI) = nul(T — AI) — def (' — AI), this being defined for
X e As(T).

Two closed densely defined operators A,B in H are said to form
an adjoint pair if A C B* and consequently B C A*; equivalently,
(Az,y) = (z, By) for all z € D(A) and y € D(B) where (-,) denotes
the inner-product on H.

The joint field of regularity II(A, B) of A and B is the set of A € C
which are such that A € II(A), the field of regularity of A, X € II(B)
and def (A — \I) and def (B — \I) are finite. An adjoint pair A4, B is
said to be compatible if II(A, B) # @. Recall that A\ € II(A) if and
only if there exists a positive constant K () such that

[[(A—ADz|| > K(\)||z|| for all z € D(A),

or equivalently, on using the closed-graph theorem, nul (A — AI) =0
and R(A — AI) is closed.

Definition 2.1. A closed operator S in H is said to be regularly
solvable with respect to the compatible adjoint pair A, Bif A C S C B*
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and II(A, B) N A4(S) # &, where

Ag(S) ={N: A€ Az(5),ind (S — A\I) = 0}.

The terminology regularly solvable comes from Visik’s paper [16].

We now turn to the quasi-differential expressions defined in terms of
a Shin-Zettl matrix A, on an interval I,,, where I, denotes an interval
with left endpoint a, and right endpoint b, (—o0 < a, < b, < 0),
p=1,2,...,N. The set Z,(I,) of Shin-Zettl matrices on I,, consists of
(nxn)-matrices A, = {a?,} whose entries are complex-valued functions
on I, which satisfy the following conditions:

(2.1)
a?, € L (1) 1<r,s<n,n>2,
a£7r+1¢0 aeonl, 1<r<n-1
af, =0 ae.onl, 2<r+1<s<n, p=1,...,N.

For A, € Z,(I,) the quasi-derivatives associated with A, are defined

(2.2)
ylo =y,
Y= (0, ) H Y)Y - S eyl 1< <n—1,
yll = (yln—1y — S a? yls—1, p=1,...,N,

where the prime 7 denotes differentiation.
The quasi-differential expression M, associated with A, is given by
(2.3) Myly] :=i"y™,  p=1,...,N,
this being defined on the set
(2.4) V(M) :={y: yIr =1 e AC,. (I,), r=1,...,m;p=1,... ,N}

where ACio. (I,) denotes the set of functions which are absolutely
continuous on every compact subinterval of I,.

The formal adjoint M of M, is defined by the matrix A} € Z,(1})
given by

(2.5) AY = J i Al T,
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where A is the conjugate transpose of A and J;,xn is the nonsingular
n X n matrix

(26) Jnxn = ((_1)T5r,n+1—s)1§r§na

1<s<n

6 being the Kronecker delta. If A = {af,}*, then it follows that

(27) {a’gs}+ = (_ )T+S+1 7€, s+1l,n—r+1-

The quasi-derivatives associated with A;,L are therefore

Yy, =y
r [r—1 r r+s s—1
y = (@) MO S ()
1<r<n-1},

n n—1 n n+s s—1
ZUEL] = (y[+ ])1_2521( 1) et ﬁ s,5+1, 1y[+ ]7

and

(2.9) Myl ="y, p=1,...,N,

for all y in

(2.10)

V(M+) ={y: y ]EACIOC( I),r=1...,n;p=1,... ,N}

Note that (AF)" = A, and so (M,;[)" = M,. We refer to [6, 7 and
17] for a full account of the above and subsequent results on quasi-
differential expressions.

For u € V(M,), v € V(M) and o, € I,, p=1,... ,N, we have
Green’s formula,

8
(2.11) / {oMy[u] — uby o]} dz = [, 0],(8) — [u, ], (@),

where

[u, v], <Znnil n+r+1 [7‘( )o TT11(33)>

(2.12) ()
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see [17, Corollary 1].

Given functions fj, € V(Mp), grp € V(M,S), j = 1,...,r, k =

1 ,8;p=1,...,N we obtain from (2.12) that

(2.13)  ([fips grplp(2))1<i<r

1<k<s

= (0" (757@) 15z T (@0)3 @)

l<n -
1<t<n 1<k<s

k<
Let w, be a function which satisfies
(2.14) w, >0 aeonl,  w,€Li (I,), p=1...,N.

The equation

(2.15) Myly] = Awpy, recC
on I, is said to be regular at the left endpoint a, if it is finite and
X € (ap,by),
(2.16)
ap € R, wy, a?, € L'[a,, X], rns=1,...,n; p=1,...,N.

Otherwise, (2.15) is said to be singular at a,. Similarly, we define the
terms regular and singular at by. If (2.15) is regular at both endpoints
then it is said to be regular; in this case we have

(2.17)

ap,bp € R, wy,al, € L*(ap,b,) rs=1,...,n;p=1,...,N.

Note that, in view of (2.7), an endpoint of I}, is regular for (2.15) if and
only if it is regular for the equation

(2.18) Myl =My  AeC.

Let H, = Lﬁ,p (ap,by) denote, for p = 1,..., N the usual weighted
L?-space with inner-product

(2.19) (£, 9)n ;:/I f@)g@wy(a)dz,  p=1,...,N,
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and norm ||f]| := (f, f)%u/pz; this is a Hilbert space on identifying
functions which differ only on null sets. Set
(2.20)

D(M,) :={u:u € V(M,),u and wipMp[u] € L, (ap,by)

p=1,... ,N},
Ly 1
D(MI;") ={v:ve V(MI;"),U and w—pM;[U] € qup(ap,bp),
p=1,...,N}

Note that, at a regular endpoint, say a,, ul" =1 (ap)(vzfl](ap)) is defined
for all u € V(Mp)(v € V(M,))), r = 1,2,...,n. The manifolds
D(M,), D(M,}) of L?Up (ap, by) are the domains of the so-called mazimal
operators T(M,,), T(MI;"), respectively, defined by

1
T(Mp)u := — Mp|u], u € D(M,)
Wp
and 1
Yo o + +
T(M, )v:= w—pMp [v], v € D(M,).

For the regular problem the minimal operators To(M,), To(M,}) are

the restrictions of --M,[-] and _-M,"[-] to the subspaces,
p p

Do(Mp) :={u:u € D(Mp), ulr=1 (ap) = ulr=1] (bp) =0,

r=1,...,n}

(2.21) 1) (g gy gy
Do(M,f) :={v:ve D(M)), vi “(ap) =vi ~(by) =0,
r=1,...,n},

respectively. The subspaces Do(M,), Do(M,") are dense in L?Up (ap,bp)
and To(Mp), To(M,) are closed operators (see [17, Section 3]). In the
singular problem we first introduce operators Tg(M,), Ty (M, ), Ty (M,)
being the restriction of 1/w,M,][-] to

(222) DG(MP) = {u tu € D(Mp)vsuppu - (a’PabP)v b= 17 tee aN}a

and with T§(M,}) defined similarly. These operators are densely-
defined and closable in Lﬁ,p (ap,by) and we define the minimal operators
To(Mp), To(M,) to be their respective closures (cf. [17, Section 5]). We
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denote the domains of Ty(M)) and Ty(M,) by Do(M,) and Do(M,),
respectively. It can be shown that, if (2. 15) is regular at ap,
(2.23)

{uGDO(Mp) = ul"U(a »)=0, r=1,...,n;p=1,...,N

veDO(M;):vK 1](ap):O, r=1,...,n;p=1,...,N.

Moreover, in both the regular and singular problems, we have
(2.24)

[To(M)]" =T (M), [T(Mp)]" =To(My), p=1,...,N;

see [17, Section 5] in the case when M), = M} and compare with the
treatment in [1, Section II1.10.3] in the general case.

In the case of two singular endpoints, the problem on (a,,b,) is
effectively reduced to the problems with one singular endpoint on
the intervals (ap,cp] and [cp,bp), where ¢, € (ap,bp). We denote by
T'(My;ap), T(Mp;by) the maximal operators with domains D(My; a,)
and D(Mp;b,) respectively and denote by To(Mp;ap) and To(Mpy; by)
the closures of the operators Ty (M,; app) and Tg(M,,; by,) defined in (2.22)
on the intervals (a,, ¢,] and [c,, b,), respectively.

Let Tj(M,) be the orthogonal sum Tg(M,) = T4(My; a,) ®Ty(M,; b,)
in

w

sz(apvbp) = L%vp(apvcp) S L?up(c,mbp)v p= 17 st 7N;

T4 (M,) is densely defined and closable in L3, (ap,bp) and its closure is
given by

To(Mp) = To(Mp; ap) & To(My; by), p=1,...,N.
Also,

nul [T (M) — M| = nul [To(Mp; ap) — M| + nul [To(Mp; by) — A,
def[ 0(Mp) — M| = def [Ty (Mp; ap) — M| + def [To(Mp; by) — Al],

and R[Ty(M,) — M] is closed if and only if R[Ty(Mp;a,) — M| and
R[Ty(Mp; bp) — M| are both closed. These results 1mply in particular
that,

H[To(Mp)] = U[To(Mp; ap)] N L[To(Mp; by)], p=1,...,N.
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We refer to [1, Section II1.10.4, 3 and 12] for more details.

Next, we state the following result; the proof is similar to that in [1,
Section I11.10.4].

Theorem 2.2. Ty(M,) C Ty(M,), T(M,) C T(My;a,) @ T(M,;b,)
and
dim {D[Ty(M,)]/D[To(My)]} = n.

If X € T[To(M,)] N A3[To(M,,) — M|, then
ind [To(M,) — M| = n — def [Ty (Mp; ap) — M| — def [Ty (My; b,) — A,

and in particular, if A € II[Ty(Mp)],
(2.25)
def [Ty (Mp) — M| = def [Ty (Mp; ap) — M) + def [Ty (Mp; by) — M| — n,

p=1,...,N.

Remark 2.3. It can be shown that
(2.26)

D[Ty(M,)] = {u : u € D[To(M,)] and u*~U(c,) =0,k =1,... ,n},
D[Ty(M;)] = {v: v e D[Ty(M})] and o "(e,) =0,k =1,... ,n};

see [1, Section I11.10.4].
Let H be the direct sum,

(2.27) H=H,=PL: (I,)

p=1 p=1

Elements of H will be denoted by f = {fi,...,fn} with f; €
Hy, ... ;fN € Hy.

When I; NI; = @, 1 # j, 4,j = 1,...,N, the direct sum space
®p_1 L3, (Ip) can be naturally identified with the space L,(Up;1,),
where w = wy, on I,, p = 1,...,N. This remark is of particular

significance when Uévzllp may be taken as a single interval; see [8 and
12].



NONSELF-ADJOINT DIFFERENTIAL OPERATORS 885

We now establish by [8, 13 and 14] some further notation.

(2.28) Dy(M) = @) Do(Mp),  D(M) = o)., D(M,),
' Do(M*) = @©)1Do(M,}), D(MT) = @N 1D(M}),
To(M)f ={To(M))f1, -, To(Mn)fn},
999 f1 ED()(Ml),... ,fN ED()(MN),
229 Ty(M*)g = (Ty(M{ )gu, -, To (Mg,
91 € Do(My"), ... ,gn € Do(My).
Also,
T(M)f ={T(M1)fr,... . T(Mn)fn},
2.30 fleD(Ml)a"'afNeD(MN)a
B30 mr)g = (1, T,
g1 € D(M),... ,gn € D(MY),
(2.31)
N
/9] = > Afor 90l (bp) = [Fs 9plp(an)}, feD(M),g e DMT);
p=1
(2.32) (£:9) =) (for90)p
VT =

where f = {f1,...,fn}, 9 ={g1,... ,9n} and (-, ), the inner-product
defined in (2.19).
Note that Tp(M) is a closely densely defined operator in H.

We summarize a few additional properties of Tp(M) in the form of a
lemma.
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Lemma 2.4. We have

(a) e .
[To(MF)]* = @ITo(M;)]* = DT (M)

In particular,

DI[Ty(M)]* = DIT(M™)] = D DIT(M,)],
D[To(M*)]* = D[T(M)] = €D DIT(M,)]

N
nul [Ty (M) — M| = Znul [To(M,) — \J,
nul [To(M™) Z nul [Ty (MF) — M.

(c) The deficiency indices of Ty(M) are given by

def [To(M Zdef To(M,) — M, for all A € II[Ty(M)],
N
def [To(M ) — X] = _def [Ty(M,}) = M|, for all X € ITy(M™*)].
p=1

Proof. Part (a) follows immediately from the definition of Ty(M) and
from the general definition of an adjoint operator. The other parts are
either direct consequences of part (a) or follow immediately from the
definitions. ]
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Lemma 2.5. Let To(M) = ®)_, To(M,) be a closely densely defined
operator on H. Then

(2.33) [Ty (M)] = () T(To(M,)].

Proof. The proof follows from Lemma 2.4 and since R[To(M) — A|
is closed, if and only if R[Ty(M,) — M|, p=1,...,N are closed. i

Lemma 2.6. IfS,, p=1,...,N are regularly solvable with respect
to To(My,) and To(M,f), then

S=al,S,

is reqularly solvable with respect to To(M) and To(M™).
Proof. The proof follows from Lemmas 2.4 and 2.5. O

3. The case of one interval with two singular endpoints. In
this section we shall consider our interval to be I = (a,b). We denote
by T'(M) and Ty(M) the maximal and minimal operators. We see from
(2.24) that To(M) C T(M) = [To(M™)]* and, hence, Ty (M), To(M™)
form an adjoint pair of closed densely defined operators in L2 (a,b).

Lemma 3.1. For A\ € H[To(M),To(M™)], def [To(M) — M +
def [To(M™) — M| is constant and
(3.1) 0 < def [Ty(M) — M| + def [Ty (M ™) — M| < 2n.
In the problem with one singular endpoint,
n < def [To(M) — M| + def [To(M™) — M| < 2n

for X € U[Ty(M), To(M™)].

In the regular problem,
def [To(M) — M| + def [To(M ™) — M| = 2n,
for X € U[To(M), To(M™T)].
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Proof. For \ € II[Ty(M), To(M™)], we obtain from (2.24) and (2.25)
that

def [To(M) — M| + def [To(M ™) — M]
— {def [To(M;a) — A + def [To(M;b) — AI] — n}
+ {def [To(M 5 a) — M| + def [To(M ;b)) — A — n}
= {nul [T(MT;a) — XI| + nul [T(MT;b) — M| — n}
+ {nul [T'(M;a) — M| 4+ nul [T'(M;b) — AI] — n}
<2(2n—n) =2n,

with equality in the regular problem. In the problem with one singular
endpoint it is proved in [2] that def [To(M) — M| +def [To(M ™) — XI] >
n. For the problem with two singular endpoints, we have

def [To(M)—NI] + def [To(M ™) — A]
= {def [Ty(M;a) — M| + def [To(M*;a) — M|}
+ {def [Ty (M;b) — M| + def [Ty (M*;b) — X} — 2n
>2n—2n =0.

The Lemma is therefore proved. ]
For \ € [Ty (M), To(M™)], we define r, s and m as follows:

r=r(\):=def [To(M) — A]
= def [To(M;a) — M| + def [To(M;b) — AI] —n

=ry+r2—n,

3.2 -
(32) s =8(A\):=def [Ty(M™) — \]
= def [To(M5a) — M| + def [To(MT50) — \I| —n
=81+ 82 —n,
and
m:=r7-+8.
Since

r=7ry+mr2—nm, 8§ =81+ 82 —n,
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then
m=7r-+3s8
=(ri+7ro—mn)+ (81 +82—n
(3.3) (ri+r2—n)+(s1+s2—n)
=(ri+s1)+(ra+s2)—2n
=my +mo — 2n.
Also, since

n<m; <2n, 1 =1,2,

then by Lemma 3.1, we have that

(3.4) 0<m < 2n.

For II[Ty(M),To(M ™) # @] the operators which are regularly solv-
able with respect to Tp(M) and Ty(M™) are characterized by the fol-
lowing theorem.

Theorem 3.2. For A € U[Ty(M), To(M™)], let r and m be defined
by (3.2), and let ; (j=1,...,7r), ¢ (k=7r+1,...,m) be arbitrary
functions satisfying:

(i) {¢; : 3 =1,...,7} C D(M) is linearly independent modulo
Do(M) and {¢r, : k=r+1,...,m} C D(M™) is linearly independent
modulo Do(M™);

(11) [¢ja¢k](a)7 [w]aqﬁk](b) :0} ] = la » T3 k:T+17 , .
Then the set
(3.5) A{u:ueD(M),[u,¢r](a) = [u, ¢](b) =0, k=r+1,...,m}

is the domain of an operator S which is reqularly solvable with respect
to To(M) and To(M™) and

(36)  {v:ve DOMY), [y 0l(a) - Wy ul(B) =0, j=1,... 7}

is the domain of S*; moreover, A € Ay(S).

Conversely, if S is regularly solvable with respect to To(M) and
To(M™) and X € U[To(M), To(MT)]NA4(S), then with r and m defined
by (3.2) there exist functions v;, j = 1,...,r, ¢p, k =r+1,...,m,
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which satisfy (1) and (i) and are such that (3.5) and (3.6) are the
domains of S and S*, respectively.

S is self-adjoint if and only if MT = M, r = s and ¢, = Vi_r,
k=r+1,...,m; S s J self-adjoint if M = JM*J (J is a complex
conjugate), r = s and ¢, = Yp—r, k=r+1,... ,m.

Proof. This is a consequence of [1, Theorem II1.3.6] and we give only
a brief sketch of the proof.

Let Dy, Dy denote the sets in (3.5) and (3.6), respectively, and define

D) = {u Tu = U +ch¢j for some ug € Dy(M) and ¢; € C},

j=1

D} = {v tv =y + Z ckdr  for some vy € Dg(M™) and ¢, € C}.
k=r+1

It is easily checked that D} C Dy and D% C Ds. Since D, is determined
by m —r = s, linear conditions and D(M)/Dy(M) has dimension m,
it follows that D;/Dy(M) has dimension m — s = r and, consequently,
D} = D;. Similarly, D) = D,. Let S,S* denote the restrictions of
T(M), T(M™) to Dy, Do, respectively. On using D; = D}, i = 1,2, it
is straightforward to prove that S* = $* and S = (S™)*; in particular,
this implies that S is a closed r-dimensional extension of Ty(M) and
as A € Ag(Tp(M)) it follows that A € Az(S) (see [1, Theorem IX.4.1]).
Furthermore, from [1, Theorem I11.3.1],

r=dim{D(S)/Doy(M)} =ind (S — AI) + def [To(M) — A]
=ind (S — AI) +r,
whence ind (S — AI) = 0 and A € A4(S5).

To prove the converse we first observe that the sesquilinear form j3[-, -]
in [1, Theorem III.3.6] is now given by

Blu,v] = (T(M)u,v) — (u, T(M")v)
= [u, v](b) — [u, v](a), u € D(M), ve D(M");

note that, since a, b are two singular endpoints, then the limits

[w,v](a) := lim [u,0](z),  [u,0](b) := lm [u,](2),
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exist for all w € D(M), v € D(M™) by (2.11). For A € U[Ty(M),
To(M*)] M A4(S), we obtain from [1, Theorem IIL3.1] that
D(S)/Do(M) and N([T'(M*)—XI][S—AI] have dimension def [T (M)—

A] =: r while D(S*)/Do(M*) and N([T(M) — M][S* — A]) have di-
mension def [To(M*) — M| =: s. The second part of the theorem
follows from [1, Theorem III.3.6] on choosing {¢; : j = 1,...,7},
{¢r : k=r+1,...,m} to be bases of N([T'(M*) — M][S — M]) and
N([T(M) — M|[S* — M), respectively. The last part of the theorem is

immediate. O

For X € I[Ty(M), To(M™)], define r, s and m as in (3.2) and (3.3).
Let {U¢ :j =1,...,81}, {®} : k = sy + 1,...,m1} be bases for
N[T(M;a) — M|, N[T(M%;a) — M], respectively; thus, ve, 9 €
L2 (a,c),j=1,...,81,k =81 +1,...,mq, and
(3.7) M[¥]] = AwVy, M @] = A\w®}  on (a,c).

Similarly, let {\IJ? cj=1,...,8} {® k= s+ 1,...,ma} be
bases for N[T'(M;b) — M| and N[T'(M*;b) — M|, respectively; thus,
b, &) € L2 (c,b) and

(3.8) M[\II;’] = )\w\Il’;-, MT[®}] = Mwd}  on (c,b).

Since [To(M*;a) — M| and [To(M*;b) — M| have closed ranges, so
do their adjoints [T'(M;a) — Al and [T'(M;b) — M| and, moreover,
R[T(M;a)— X+ = N[Iy(M*;a) — M| = {0} and R[T(M;b) -]+ =
N[To(M+;b) — M| = {0}. Hence, R[T(M;a) — M| = L?(a,c) and

R[T(M;b) — M| = L2 (c,b). Similarly, R[T(M™;a) — M| = L2 (a,c)
and R[T(M*;b)—\I| = L? (c,b). We can therefore define the following:
zj = Vi, ji=1,...,s1,
(3.9) [T(M;a) — M]zj := @7, j=s1+1,...,m,
[T(M*;a) — My} := ¥, j=1,...,s1,
yj = ®f, j=s1+1,...,mq;
w;’-::\Il;’-, j=1..., 589,
(3.10) [T(M;b) — Mah := %, j=s2+1,...,mo,
[T(M7T5b) — My} == ¥, j=1,...,s9,
b

::@I]’-, j=¢82+1,... ,ma.

&
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Next we state the following results; the proofs are similar to those in
[2, Section 4 and 11].

Lemma 3.3. The sets {z :j =1,...,mi}, {2t 1k =1,...,ma}
are bases of N([T(M*;a) — M|[T(M;a) — M]) and N([T(M*;b) —
M[T(M;b) — M), respectively; {y§ : j = 1,...,mi} and {y} :
k = 1,...,ma} are bases of N([T(M;a) — M|[T(M*;a) — M| and
N([T(M;b) — M|[T(M*;b) — AI]), respectively.

On applying [1, Theorem II1.3.1], we obtain

Corollary 3.4. Any z* € D(M;a) and ()t € D(M*;a) have the
unique representations

(3.11)
ma
za:z3+2ajm? 2y € Do(M;a), aj € C,
j=1
(3.12)
mi
()" =(=6)T+ D _by?  (26)T € Do(M*;a), b € C.

j=1

Also, any zb € D(M;b) and (2°)T € D(M™*;b) have the unique
representations

mo
(3.13) =28+ chxz 26 € Dy(M;b), e € C.
k=1

m2
(3.14) ()T =BT+ derh (25T € Do(MT;b), dy € C.
k=1

A central role in the argument is played by

Lemma 3.5. Let

(3.15) Eryxemy = ([25, y5](a))1<5<ma s
1<k<mq
(3.16) Ermyxm, 1= ([Igayg](b))lﬁjﬁmzv

lgkgmz
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and
(3.17) By, = ([0 48)(a) 1<i<sy
s1+1<k<mi
(3.18) Er = (@ 9](0) 1<<s,
s2+1<k<mg
Then
(3.19) rank E;;in =rank B, xm;, = m; — 0, i=1,2.

893

In view of Lemma 3.5 and since r;,s; > m; —n, i = 1,2, we may

suppose, without loss of generality, that the matrices

(3.20) B yx(mi—m) = ([x?’yg](a))iﬂéfé;?
and

(3.21) Eg;fon)x(men) = ([xgayz](b))rliyégz%:nz
satisfy

(3.22) rankE? o =mi—n,  i=12

If we partition E,,, xm,, ¢ = 1,2, as

1,1 | 1,2
(3.23) B _ | P Bomemxmen)
. m; Xm; — E271 :— Ezvz
nxn ' nx(m;—n)
and set
(3.24)
1 _ ol 1,2
(mi—n)xm; = T (m;—n)Xn ® E(mi—n)x(mi—n)
2,1 2,2
ETQLXTTLi = Enxn S2] Enx(m,-—n)’
(3.25)
1,1 2,1
FT%I,‘XTL = E(ml—n)xn ®T ETLXTL
2 _ pl2 T 2,2
Fmix(mi—n) - E(mi—n)x(mi—n) ® Enx(m,-—n)’
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then (3.22) yields the results,

3.26) rank Bl = rank F2
(m;—n)x m

X (m;—n) =m; — N, ’L:1,2

mg

Lemma 3.6. Let D1(M;a) be the linear span of {2z :i=1,... ,n}
where z¢ € D(M;a) satisfy the following conditions for k = 1,...,n
and some ¢ € (a,b),

2 (a) = i, () H(e) =0,
22(t)=0 fort>c.

(3.27) {

and let Do(M;a) be the linear span of {z¢ : i =1,...,m; — n} with
(3.22) satisfied. Then

D(M;a) = Dy(M;a) + Dy(M;a) + Da(M;a).
Similarly,

D(M;b) = Do(M;b) + Di(M;b) + Do(M; D).

If D1(M™*;a) and Day(M™;a) are the linear spans of {(z&)* 1 =
1,...,n} and {yp : k =n+1,... ,m1}, respectively, then

(3.28) D(M™*;a) = Dog(M*t;a) + Dy (M™T;a) + Do(M™T5a).
Similarly,
(3.29) D(M™*;b) = Do(M*;b) + Dy (M*;b) + Dy(M*;b).

We shall now characterize all the operators which are regularly
solvable with respect to To(M) and To(M ™) in terms of boundary
conditions featuring L2 (a,b)-solutions of the equations M[u] = A\wu
and M*[v] = Awv, X € C.

Theorem 3.7. Let A\ € H[Io(M),To(M™T)], let r,s and m be

defined by (3.2) and let ¢, i = 1,... ,my, y&, i = 1,...,myq, a:g’-,

j=1,...,msz, and y;?, j=1,...,ma, be defined by (3.9) and (3.10)
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respectively and arranged to satisfy (3.22). Let My (m; —n)s Nsx (ma—n)
K,y (mi—n) and L,y (m,—n) be numerical matrices which satisfy the
following conditions:

(1) Rank{MsX(mlfn) D Nsx(mzfn)} = 5 Rank{KrX(mlfn) D
er(mzfn)} =T,

. 1,2 _

(11) {KTX(mlfn)E(mlfn)X(mlfn)Mg;( (mlfn)}TXS -

1,2
{er(m2_")E(m27n)><(mzfn)NsTX (m2—n) }TXS'
Then the set of all w € D[T'(M)] such that

[u, Y 41l(a) [u, y7b1+1] (b)

(330) Msx(mlfn) _Nsx(mzfn) = 0sx1
[u, Y7, ] (a) [, 97,1 (b)

is the domain of an operator S which s regularly solvable with respect

to To(M) and To(M™) and D(S*) is the set of all v € D|T(M™)] which
are such that

(3.31)
[z, v](a) [, v](b)
er(mlfn) - er(mgfn) = Opx1-
(@5, —n»v](a) (25, > 0] (B)
Proof. Let

(332) Msx(ml—n) = (aik) r+1<i<m ;Nsx(mg—n) = (ﬁié) r+1<i<m
n+1<k<mi n+1<l<ms

and set

m; mao
(3-33) gi = Z QikYh» 95 = Z ﬁieyﬁ, i=r+1,...,m.
k=n+1 l=n+1

Then g; € D[T(M™)], where

(g in(ad
Ji g infe,b), i=r+1,...,m.
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By [17, Theorem 8|, we may choose ¢;, (i = r+1,... ,m) € D[T(M™)],

(¢ in(ad
“bi‘{qb% in [c, ),

such that for a’ € (a,c) and k =1,... ,n,
aylk— a\[k—1 ay|[k—1
say @@ =0 @) = @) W),
¢ =g on(a,d], i=r+1,...,m,

and for b’ € (¢, b),

@ e =0, (HE ) = (@),

3.35
(33%) =g on[b,b), i=r+1,...,m.
This gives
[u, Y 11](a) [ [, 35201 Brg1,k0R] ()
Mo (ma—n) : = :
[w, Y, (@) | [u, k2 1 Gkl (@)
_U, ¢g+1] ((l)
| [u, ¢7.](a)
Similarly,
[U, yfhtl](b) [U, ¢I;+1](b)
Nsx (mz—n) : = :
[, Y7, ] () [, 63,,](b)

The boundary condition (3.30) therefore coincides with that in (3.5).

Similarly, (3.31) coincides with (3.6) on making the following choices:
(3.36)

Krxmi—n) = (V&) 1<j<r + Lex(ma—n) = (€j0) 1<i<r
1<k<mi—n 1<4<mo—n
mi1—n ma2—n

(3.37) W= > ywxh, =) el
k=1 =1
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Then h; € D[T(M)], where

h¢ in (a,c|,
h]_:{] (a.¢

b -
h: inlcb), j=1,...,r,

and ¢; (j=1,...,r) € D[T(M)],

Yy in (a, ],
Vi = ¢ in [c,b)

such that for @’ € (a,c) and k =1,... ,n,

WHE e =0,  @H* (@) = () (),

3.38
( ) ¢;:h? On(a’a]7 .7_]‘""77

and for b’ € (c,b),

WHE e =0, ()FIE) = BHEE),

3.39
(3.39) P2 =hY on[b,b), j=1,...,r

It remains to show that the above functions ¢, k =r+1,... ,m, and
¥, j =1,...,r, satisfy conditions (i) and (ii) in Theorem 3.2. First,
suppose that {¢; : j = 1,...,r} is not linearly independent modulo
Dy(M), that is, there exist constants ¢y, ... , ¢, not all zero, such that
w = Y% ¢y € D[To(M)]. Since uli=t(c) = 0 for k = 1,...,n
and u € D[Ty(M)], then u € D[To(M)] and u|(a,c] € D[To(M;a)].
Hence, by Green’s formula (2.11), we have for all v € D[T(M™;a)]
that [u,v](a) — [u,v](c) = 0. This implies that [u,v](a) = [u,v](c) = 0.
Similarly, u|[c,b) € D[Ty(M;b)] and we have

[u, v](b) = [u,v](c) =0 for all v € D[T(M™;b)].
Hence,

O1xmy = ([w,971(a); - - - [, 4, 1(a))
(Sl [ Ewoe o)

- (Cla s 7CT)K7‘><(m17TL)E(1m1—n)><Tn1’
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on using the notation in (3.24). In view of (3.26), we conclude that,

(340) (Cl, e 7CT)KT><(m17n) - le(mlfn)'

Similarly,

Oty = ([, y1](0), - - -, [, 7, ](0))

= <[icj m;z_lnsjgxz,y}{] 0),..., [it:jminfjﬂzayfnz] (b)>

j=1 j=1 (=1

= (c1,-.- ,CT)LTX(mrn)E(lmz_n)sz,
on using the notation in (3.24). In view of (3.26), we conclude that
(3.41) (c1y-++ s ¢r)Lrx(ma—n) = 01x(ms—n)-
We obtain from (3.40) and (3.41) that
(et s e ) B x(my—n) ® L (ma—n)} = O1xm, m=mj1+mz—2n,

which contradicts the assumption that {K, « (m,—n) ® Lyx(m,—n)} has
rank r. It follows similarly that {¢ : k =7+ 1,... ,m} C D[T(M™)]
is linearly independent modulo Do (M ™).

Finally, we prove (ii) in Theorem 3.2.

(3.42)
mi—n mi
5.680@) 1o = (| 2 et 3 aw| @) 1ose,
r4+1<k<m - p=nt1 r+i<k<m
= (vje) 1<i<r ([22,y5)(@)) 1<e<my—n
1<t<mi—n n+1<p<m;
“(akp) r+1<k<m
n+1<p<my
1,2 T
:KTX(mI*") (m1—n)><(m1—n)Ms><(m1—n)'
Similarly,

1,2
(3.43) ([d}g’ ¢i](b))7’_‘:1§<]k§£m = LTX(m2*")E(mz—n)X(mz—n)NZX(mz—")'

From (ii), (3.42) and (3.43) it follows that condition (ii) in Theorem
3.2 is satisfied. The proof is therefore complete. a
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The converse of Theorem 3.7 is

Theorem 3.8. Let S be regularly solvable with respect to To(M)
and To(M™), let X € M[To(M), To(M™)] N Ay(S), let r,s and m be
defined by (3.2) and (3.3) and suppose that (3.22) is satisfied. Then
there exist numerical matrices K,y (m,—n)s Lrx(ma—n)> Msx(m,—n) and
Ny (my—n) Such that conditions (i) and (ii) in Theorem 3.8 are satisfied
and D(S) is the set of u € D(M) satisfying (3.30) while D(S*) is the
set of v € D(M™) satisfying (3.31).

Proof. Let {¢; :i=1,...,r} C DM),{¢; :j=r+1,..., m} C
D(M™) and set

Y  in (a,d], 97 in (a,d,
P = 4 d . =
v {wz-’ ey T\ e,
are satisfying the second part of Theorem 3.2. From (3.28) and (3.29)
we have that
n mi
(844) 0f =yjo+ > mir(z)" + D emyl,  G=r4l.m,
k=1 k=n+1
for some y§, € D[T (M™;a)] and complex constants 7, jx; and
n m2
(345) % =ylo+> &)+ D By, d=r+1,...,m,
k=1 k=n+1

for some y%, € D[To(M*;b)] and complex constants &z, B,k Since
y% € D[Ty(M*;a)] and yb, € D[To(M+;b)], then yjo € D[To(M+)],

where )
~Jyjp in (a, ],
Yio = Zl?o in [c, b).
Hence, for all w € D[T(M)],
[u,y0](a) = [u, 55l (c) =0 and  [u,yjo](b) = [u, yo](c) = 0.

Also,
[u, () *)(a) = [u, (z0)*](®) =0, k=1,...,n.
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Let
(3.46) B
My (mi—n) = (@) r1<i<m Nox(ma—n) = (Bjk) re1<i<m -
n+1<k<mi n+1<k<ma
Then, from (3.44),
[u, $711](a) [, Yo 1 Q1Y (a)
[ua ¢(rln](a) [ua Z;cnzln—q—l amky,‘i] (a)
[, y7111(a)
= Msx(mi—n)
[, Y, ] (a)
Similarly, from (3.45),
[u, ¢?~+1](b) 2 y2+1 (b)
= Nsx(mzfn)
[u, 67,)(b) [, Y, ] (b)

Therefore, we have shown that the boundary conditions (3.30) coincide
with those in (3.5); similarly (3.31) and the conditions in (3.6) can be
shown to coincide if we choose
(3.47)

Krx(my—n) = (Vik)  1<i<r and L,y (m,—n) = (€it) 1<i<r

1<k<mi—n 1<t<mgz—n

where the 7;r and €;; are the constants uniquely determined by the
decompositions,

(3.48)

n mi—n
1/’f:$fo+ZCzkzg+ Z 'Yikaa i:]-a"'arv
k=1 k=1
(3.49)

ma2—"n

n
b b b b .
Yy = w50 + E Sikzp + E €ipTy, i=1,...,m
k=1 =1

derived from Lemma 3.6.
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We next prove that (i) and (ii) are consequences of conditions (i) and
(ii) in Theorem 3.2. Suppose that rank { K x (m,—n) ® Lrx (mo—n)} < T-
Then, there exist constants cy,... ,c,, not all zero, such that

(350) (Cla v 7CT){KT‘><(TTL1—TL) S er(mg—n)} = O1xm-
This implies that

le(mlfn) = (clu .. 7CT)K7'><(m17n)
r r
= <Z Ci%Yils -+ Z ci7i7m1n> )
i=1 i=1
and, also,

le(mzfn) = (C1, s 7CT)L7'><(m27n)
r r
= < E Ci€ilyeso s E Ci£i,mg—n> .
i=1 i=1

Consequently, on substituting in (3.48) and (3.49), respectively, we
obtain

(3.51) Y=gl + Y Gk, i=1,...,m
k=1

(352) TPf :me—’—Zglkzll::a i= ]-a y T
k=1

Let uw = )"_, ¢;®;, then by (3.51) and (3.52) we have that

T T n
a a a
u = E ciwio+§ E CiCin2y,
i—1

=1 k=1
T T n
b b b
w = E Citi + E E ciinzy,
i=1 i—1 k=1

where u = {u®,ub}, u* € D[T(M;a)] and u® € D[T(M;b)]. For
arbitrary v = {v%,v*} € D[T(M1)], v* € D[T(M™;a)] and v* €
D[T(M™;b)], we have that
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Hence, by Green’s formula, v € D[Ty(M)], and we have that {¢; : ¢ =
1,...,r} islinearly dependent modulo Dy(M), contrary to assumption.
We have therefore proved that {K, (m,—n) ® Lyx(m,—n)} has rank r.
The proof of rank { M (1m; —n) © Nsx(ms—n)} = § is similar.

On using (3.44) and (3.48) and the facts that zf = (2¢)" = 0 on
(a,d](a" € (a,¢)), (k =1,...,n) and [u*,v?®](a) = 0 if either u® €
D(M;a) and v* € Dy(M™;a) or u* € Do(M,a) and v* € D(M™*;a),

we obtain

(¢, 6%1(a)) 1<icr ([ 2 el 3 aiey;:] (a)) i
=1

r+1<]<m {=n+1 r+1<j<m

=K,

1,2 T
X (ml—")E(ml—n)x(ml—n)MSX(ml—")'

Similarly, we obtain

([7, 931(b)) 1<i<r ({ Z Ei0y, Z /5ykyk] > 1<i<r

r+i<j<m k=n-+1 r+1<j<m

=L,y

T
X (ma— ")E(mz n)x(mo— n)NSX(m2—n)'

The proof is therefore complete. O

Finally, assume that M is formally J-symmetric, that is, M* =
JMJ, where J is complex conjugation. The operator Ty(M) is then
J-symmetric and To(M) and To(M*) = JTo(M)J from an adjoint
pair with [I[To(M), To(M )] = U[To(M)]. Since M[u] = Awu if and
only if M*[a] = Aw, it follows from (3.4) that for all A € I[Tp(M)],
def [To(M) — M| = def [To(M*) — M| is constant £, say, and so in
(3.2), r = s = £ with 0 < £ < n; note that Frentzen proved in [9] that a
formally J-symmetric expression M generated by a Shin-Zett] matrix
must be of even order. If S is a J-self-adjoint extension of Tp(M), then
S* = JSJ and consequently v € d(S*) if and only if 7 € D(S). In the
case when M is formally J-symmetric, for a complex conjugation J,
Theorems 3.7 and 3.8 include Theorem 5.5 in [15].

4. The general theorems. The results in this section are
generalizations of the main theorems in Section 3 for any N intervals
I, = (ap,bp), p=1,... ,N.
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For X € II[To (M), To(M™)], we define r, s and m as follows:
(4.1)

r=r(\) = def [To(M Zdef To(M,) — M|

and

2
z

m::r+s:er+Zsp

p=1 p=1

:er"'sp Zmp
p=1

By Lemma 3.1, m is constant on H[TO(M),TO(M"‘)] and
(4.2) nN <m < 2nN.

2

For II[To(M), To(M™)] # @ the operators which are regularly solv-
able with respect to Ty(M) and Ty(M ™) are characterized by the fol-
lowing theorem.

Theorem 4.1. For \ € H[ M), To(M™T)], let r and m be defined
by (4.1) and let wj, j=1,...,7r, ¢p, k=1 + ,m, be arbitrary

functions satlsfymg

(i) {¢; :j=1,...,r} C D(M) is linearly independent modulo
Dy(M) aNnd {¢r:k=r+1,... ,m} C D(M™) is linearly independent
modulo Dy (MN*'),

(i) [@Nl)jvfk] = Z;I)V:1{[¢jpv¢kp]p(bp) — [Yjp, rplp(ap)t = 0, j =
1,...,m;k=r+1,...,m
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Then the set

(4.3)
{E RS D(M), [gv fk] = Z{[um Prplp(bp) — [up, Prplp(ap)]} =0,

k—r+1,...,m}

is the domain of an operator S which s regularly solvable with respect

to To(M) and To(M™) and

(4.4)

{E S D(M™), [%’jv E] = Z{ijv”p]p(bp) — [¥jp, vplp(ap)} =0,
ji=1,...,r}

is the domain of S*, moreover A € A4(S).

Conversely, if S is reqularly solvable with respect to To(M) and
To(M™) and X € U[To(M), To(M)]NA4(S), then with r and m defined
by (4.1), there exist functions v;, j =1,...,7, ¢p, k =r+1,...,m,
which satisfy (1) and (i) and are such that (4.3) and (4.4) are the
domains of S and S*, respectively.

S is self-adjoint if and only if M = M™, r = s and ¢, = VYp_,,

k=r+1,...,m; S is J-self-adjoint if and only if M = JM+J, r =s
and ¢ = Vp_r, k=r+1,...,m.

Proof. The proof is entirely similar to that of Theorem 3.2 and [ 2,
Theorem 3.2] and is therefore omitted. O

The regularly solvable operators are determined by boundary condi-
tions imposed at the endpoints of each of the intervals I,,. The type
of these boundary conditions depends on the nature of the problem in
the interval I,,. There are four possibilities for each p, p=1,... ,N.
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Case (i). I, = [ap, bp], i.e., the case of two regular endpoints. In this
case, we put r, = s, =n, p=1,...,N, in (4.1). Then for each p,

def [To(Mp)—AI]+def [Ty (M. ) M| =2n for )\EH[TD(MP),TO(M;)].
By (4.3) and (4.4), if we put
(¢Jp)[n k](ap)a = (¢Jp)[n k]( )7
rfk = fzp;’;, " (ap), 65-; =i (by),

(jyk=1,...,n;p=1,...,N). Then the boundary conditions in this
case on the functions u, € D(M,,) are

(4.5) Bp(upv I ) Mﬁxn ( ) + Ngxn (bp) =0,
where
MYy, = (=D B )igicns N = () B5) 1< <05
1ZkZn 1<k<n
up(-) = (up(+), --- ,uz[,"_”(-))T, T for a transposed matrix,

and on the functions v, € D(M) are

P
(46) B;(UINIP) = Kgxn ( ) + Lflxn_p(bp) = 07
where
Kgxn = ((71)n+1ikak)1S]’Sna LfLXn = (( 1)n+1 kéfk)l<]<n7
1<k<n 1<k<n
— — — n—1
() = (@)oo, @)U,
and a?k,ﬁﬁkﬁfk,(ﬁk, jk = 1,...,n; p = 1,...,N, are complex

numbers satisfying

(4.7) MP

nxn

J(K?

nxn

)" =Ng

nxn

J(LP

TLXTL) °

The above boundary conditions determine the domains of the operators
which are regularly solvable with respect to To(M)) and To(M,") for
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each p; see [1, Theorem I11.10.6 and 10, Theorem I1.2.12] for more
details.

In the other three cases, the operators S,, p = 1,..., N, which are
regularly solvable with respect to To(M,) and To(M,}) are determined
in terms of boundary conditions featuring Lz,p (ap, bp)-solutions of the
equations (2.15) and (2.18).

Case (ii). I, = [ap,bp), i-e., the case of the problem with the left-
hand endpoint of I, assumed to be regular but the right-hand endpoint
may be either regular or singular. For A € II[To(M,), To(M,))], define
Tp,Sp and myp as in (4.1). Let {¢j, : j =1,...,sp,p = 1,... ,N},
{rp : k =sp+1,...,mp;p=1,...,N} be bases for N[T'(M, — M|
and N[T(M,;) — M, respectively. Thus, ¥jp,drp € L2, (ap,bp),
j=1...,8p,k=5,+1,...,my, and

Mp[Yjpl = Awptjp, pr+ [Prp] = j‘wpgékp’ p=1...,N.

We can therefore define the following functions x;p, yjp, j = 1,... ,myp,
p=1,...,N.
(48) Tjp += ¢jpa j=1,... »Sps

[T(Mp) — Mzjp := ¢jp, j=sp+1,...,my,

(4 9) [T(M;) - S‘I]y]p = Qz[)j,m .7 = 17 ---,Sp,
Yip = Djps j=sp+1,...,my,

and these functions are arranged to satisfy (3.22) for each p. Let

p -1 _ sn( D . p — P .
Mspxn‘]nxn =1 (ajk)rp-‘rlSJSmpaNspx(mp,n) = (5jk)rp+1§]gmp
1<k<n n+1<k<m,

and set

Mp
Jjp = Z ,Bfkykp, j=rp+1,...,mpy;p=1,... ,N.
k=n-+1

Then g, € D(M,}) and, by [17, Theorem 8] we may choose ¢;p,,
j=rp+1,...,my, € D(M)) such that for & = 1,...,n and some
¢p € (ap; bp),
k—1 _ k—1 k—1
@)t ) =% (@) o) = (@) (@),
dip=gjp on[cp,b,), p=1,...,N.
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Similarly, let

P -1 _ A\ (AP . p — (P .
KTanJan = (—i) (’ij)léaérvarpx(mpfn) = (Ejk) 1<j<rp >
1<k<n 1<k<mp—n

mp—n

hjp : = Zs?kmkp, j=1...,rp;p=1,...,N,
k=1

and wjpa ] = la vy Tpy P = ].,. .. ,N € D(Mp) such that
k—1 k—1 k—1
¢J['p }(al’) = Tfkv d’g['p ](Cp) = hg'p ](Cp),
Vjp = hjp on [cp, by).

Then the boundary conditions in this case on the functions u, € D(M,)
are

(4.10)
up(ap) [Up, Yn+1,P]p(bp)
By (up, Ip) = prxn : - Nspx(m,,—n) :
ug)nil] (ap) [up: ymp,p]p(bp)
= 05,15

and on the functions v, € D(M,') are

Up(ap)
By (vp, Ip) = K7,

p Tp XN

(4.11)

T Hrpx(mp—n) . = OTPX1’

[xmp*n,pv Uplp(bp)

which determine the domains of the operators which are regularly
solvable with respect to To(Mp) and To(M,S) for each p, where
prxn,prX(mpfn),Kfpxn and prx(mpin) are numerical matrices
which satisfy the following conditions:

Rank {Kfpxn @ prx(mp_n)} =Tp,

(4.12)
Rank {M ., ® prx(mp—n)} = 5p,
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(4.13) {L? E}?

P
o (mp—m) Emy—n) x (my—n) Ny x (mp—n)

+ (7i)nK1I")p><an><n(M.fp><n)T} = OTpXSp7 b= ]-7 o aN;

)T

see [2, Theorems 5.1 and 5.2] for more details.

Case (iii). I, = (ap, bp]; it is similar to case (ii) with the right-hand
endpoint of I, assumed to be regular, but the left-hand endpoint may
be either regular or singular. The boundary conditions in this case on
the functions w, € D(M,) are
(4.14)
up(bp) [Up) Ynt1,p]p(ap)
By (up, I) = M, :

SpXn {nil} - Nspx(mp—n)
up () [Ups Yy, plp(ap)

= Ospxl

and on the functions v, € D(M,') are

(4.15) [Z1p, Vplp(ap)

T Hrpx(mp—n) . = OTPX1’

[xmp*n,pv vplp(ap)

which determine the domains of the operators which are regularly
solvable with respect to To(Mp) and To(M,5) for each p, where

P P P P ; :
Mspxn, Nspx(mpfn), Krpx(mpfn) and Lrpx(mpfn) are numerical matri-

ces which satisfy (4.12) and (4.13), respectively.

Case (iv). I, = (ap, bp), i.e., the case of two singular endpoints of I,.
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By (4.1), (3.2), (3.3) and (3.4) we have that, for A € [Ty (M), To(M )],

N
) =t ) A= 3

p=1
N
=303
p=1
(4.16) ) N
s=s(\)i=def [Iy(M") =X =>_s,
p=1
N
= Z(szl, + 52 —n)
p=1
and
N
m :r—}—s:Z{(r;—}—s},)—l-(rf,—i—sf,)—2n}
p=1
N
= Z(m}) +m? — 2n).
p=1
Since '
TLS’I’)’L;SQTL, i:1727

then 0 < m < 2nN. Also, we can define the functions z;? ,yfzf ,

ip
. 1 _ b b . 2 _
i=1,...,my,p=1,... ,Nyandz;},y;7,j=1,... ,my,p=1,...,N,

in a similar way to those functions which are defined in (3.9) and
(3.10), respectively. These functions are arranged to satisfy (3.22) for
each p. Let M, x(m1—n), NP ) and L

P
spxX(m2—n)’ Krpx(m%)—n Tp X (mZ—n)
are numerical matrices defined similarly to those in (3.32) and (3.36),
respectively. Then the boundary conditions in this case on the functions
up € D(M,) are
[tp, yZil,p]p(ap)

By (up, Ip) = prx(m;_n) :
[up, yr:zl,,p]p(ap)
(4.17) b,
[tp, yn+1,p]p(bp)

14 . =0
spx(m2—n) b . spx1
[up, ynfg,p]p(bp)
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and on the functions v, € D(M,') are

[xtll;v Vplp(ap)
B; (Up? IP) = Kfp X (m}L—n)

[w(:rlej_n,pv Up]p(ap)

(4.18) (237, vp]p (bp)

- rp X (mZ—n) : = OTPXI’

[xmgfn,p’ UP]P(bP)

which determine the domains of the operators which are regularly solv-
able with respect to To(Mp) and Ty (M, ) for each p, where M?

spX(mp—n)?
NP K? and LP

spxX(m2—n)? “Fry,x(mb—n) pX(m2—n)
satisfy the following conditions:

are numerical matrices which

(4.19) Rank {M sy © N,z -y} = 591
. Rank {Kfpx(mrl)—n) S5 prx(m%_n)} =Tp,

(4.20) ({K” EM?

T
pX(mp—n)~ (ml—n)x(mL—n) (pr X (mzl,fn)) })Tp XSp

1,2
E

T .
_({prx(mf,fn) (mf,fn)x(mzz,fn)(N.fpx(mf,fn)) })Tpxsp’

see Theorems 3.7 and 3.8 in the single interval for more details.

Next, the characterization of all operators which are regularly solvable
with respect to To(M) and To(M™) in terms of boundary conditions
featuring L7, (ap,bp)-solutions of the equations (2.15) and (2.18) for
any N intervals I, = (ap,b,), p=1,..., N, is covered by the following
theorems.

Theorem 4.1. Let A € U[Ty(M),To(M™)] and let r,s and m be as
given in (4.1). Then the set of all u = {u,} € D(M) such that

N

(4.21) > By(u,1,) =0,

p=1
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is the domain of an operator S which s reqularly solvable with respect
to To(M) and To(M™) and D(S*) is the set of all v ={v,} € D(M™)
which are such that

(4.22) > B;(v,I,) =0.

In (4.21) and (4.22), By(u,I,) and By (v,1,) take one of the forms
in (4.5), (4.10), (4.14), (4.17); (4.6), (4.11), (4.15), (4.18), respectively,
depending on the nature of the problem in the interval I,.

The converse of Theorem 4.1 is

Theorem 4.2. Let S be regularly solvable with respect to To(M)
and To(M ™), let A € U[To(M), To(M )] N A4(S) and let r,s and m be
defined by (4.1). Then D(S) is the set of u € D(M) satisfying (4.21)
while D(S*) is the set of v € D(M™) satisfying (4.22).

Remark 4.3. Theorems 4.1 and 4.2 follow from the following results
for the case of a single interval: [1, Theorem I11.10.6 and 10, Theorem
I1.2.12] for the regular problem, [2, Theorems 5.1 and 5.2] for the case
of one singular endpoint and Theorems 3.7 and 3.8 in the case when
both endpoints are singular.

5. Discussion. In [8] Everitt and Zettl discussed the possibility of
generating self-adjoint operators which are not expressible as the direct
sums of self-adjoint operators defined in the separate intervals. In this
section we extend this case to the case of general ordinary differential
operators, i.e., we discuss the possibiilty of the regularly solvable
operators which are not expressible as the direct sums of regularly
solvable operators defined in the separate intervals I, = (ay,bp),
p = 1,2. We will refer to these operators as “new regularly solvable
operators.” If a, is a regular endpoint and b, is singular, then by [1,
Theorem II1.10.13] the sum

def [Ty (My)—M]+def [Ty(M,)—X| = n  for X € L[Ty(M,), To(M,})],
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p = 1,2 if and only if the term in (4.3) at the endpoint b, is zero. By
Lemma 3.1, for A € II[Ty(M), To(M™T)], we get in all cases,

(5.1) 0 < def [To(M) — M| + def [To(M ™) — M| < 4n,
while
(5.2) 2n < def [To(M) — M| + def [To(M ™) — M| < 4n,

when each interval has at most one singular endpoint, and

(5.3) def [To(M) — M| + def [Ty(M ™) — M| = 4n,
for the case when all endpoints are regular.
Let _
def [To(M) — M| + def [To(M™*) — NI| = d,
and

def [To(Mp) — M|+ def [Toy(M,) — M| =dp,  p=1,2.

Then, by part (c) in Lemma 2.4, we have that d = dy + ds.

We now consider some of the possibilities.

Example 1. d = 0. This is the minimal case in (5.1) and can only
occur when all four endpoints are singular. In this case To(M)] is itself
regularly solvable and has no proper regularly solvable extensions, see
[1, Chapter III and 3].

Example 2. d = n with d; = 0 and d2 = n or di = n and
d2 = 0. In this case we must have three singular endpoints and
one regular. There are no new regularly solvable extensions and we
have S = To(My1) ® S2 or S = S1 ® Tp(Mz) where Sy and Sy are
regularly solvable extensions of Ty(M;) and Ty(Ms), respectively, i.e.,
all regularly solvable extensions of To(M) can be obtained by forming
sums of regularly solvable extensions of To(M7) and To(Ms); see (i) of
Example 3 below.

Example 3. Two singular endpoints and d = 2n. We consider two
cases:
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(i) Both singular endpoints are from the same interval, say I;. Then
S =To(M;) @ S,
where S5 is a regularly solvable extension of Ty(Ms) and generates all

regularly solvable extensions of Ty(M).

(ii) There is one regular and one singular endpoint in each interval
and d; = dy = n. Then mizing can occur and we get new regularly
solvable extensions of Ty(M). For the sake of definiteness assume that
the endpoints a; and by are singular endpoints and by, as are regular
endpoints. The other cases are entirely similar.

For g S D(M), ¢j S D(MJr) with E = {ul,uQ}, ¢j = {¢7]’1,¢j2},
condition (4.3) reads
0= [g,fj] = [u1, ¢j1]1(b1) — [u1, pj1]1(ar)
+ [uz, djal2(b2) — [uz, ¢j2]2(az), Jj=1...,n
Also, for v € D(M), ¢; € D(M) with v = {v1, 02}, ¥ = {¥j1, ¥j2},
condition (4.4) reads N i
0=[1;,v] = [¥51, v1]2(b1) = [¥j1,v1]a(a1)

+ [thj2, v2]2(b2) — [¥j2, v2]2(az), j=LL...,n

(5.4)

(5.5)

and condition (ii) in Theorem 4.1 reads
(5.6)
0= [fj,fk] = [Yj1, Pr1l1(b1) — [¥j1, Pr1]1(ar)

+ [¥j2, Pr2l2(b2) — [Vj2, dr2l2(a2), Jk=1,...,n.

By [1, Theorem I11.10.13], the terms involving the singular endpoints
ay and by are zero so that (5.4), (5.5) and (5.6) reduce to

(5.7) [u1, @j1]1(b1) — [u2, ¢jal2(az) =0, j=1...,n,
(5.8) [¥j1,v1]1(b1) — [j2, val2(az) = 0,

and

j=1...,n,

(59) [wj1)¢k1]1(b1) - [¢j2a¢k2]2(a2) = 07 ]7k = ]-7 y T
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Thus, the boundary conditions are not separated for the two intervals
and hence the regularly solvable operator cannot be expressed as
a direct sum of regularly solvable operators defined in the separate
intervals I; and Is.

We refer to Everitt and Zettl’s paper [8] for more examples and more
details.
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