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FREE-BY-FINITE CYCLIC AUTOMORPHISM GROUPS

MARTIN R. PETTET

ABSTRACT. Motivated by an example of J.L. Dyer, we
consider a group G whose automorphism group is isomorphic
to the fundamental group of a graph of locally cyclic groups.
The conclusion is that G is infinitely generated Abelian and
Aut G is free-by-finite cyclic with all torsion elements having
order dividing 8, 10, 12 or 30.

1. Introduction. It is a natural problem to attempt to characterize
those groups which arise as the full automorphism group of some group,
or, at least, to ask whether such groups share any common structural
features. While little (if any) evidence exists to suggest any reasonably
general answers to this question, some progress has been made (notably
in [3, 5, 12]) on the less ambitious problem of finding large classes
of groups whose structure precludes them from being automorphism
groups. The purpose of this note is to record some further examples
of this type. (For other work along these lines see, for example, [4, 7,
10, 11, 14].)

The result described here is combinatorial in flavor and evolved from
an attempt to understand in a more general context an observation
of J.L. Dyer [4] that SLs(Z) is not the automorphism group of any
finitely generated group. Dyer’s demonstration depends on the well-
known presentation of SL2(Z) as an amalgam Zg xz, Zg. A fact which
makes this example of particular interest is that, while Zs % Z5 is the
only freely decomposable automorphism group [5], among amalgams in
general, automorphism groups appear to be not at all uncommon [9].
Thus, it is reasonable to ask whether Dyer’s example is an isolated one
or whether it is representative of a class of examples. The gist of the
following result is that Dyer’s observation applies to the fundamental
group of any graph of locally cyclic groups.

Theorem. Let A be a treed HNN group with locally cyclic vertex
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groups which is neither finite cyclic nor infinite dihedral. If A is
isomorphic to the full automorphism group of a group G, then

(a) G is infinitely generated Abelian and, moreover, is indecomposable
and torsion-free or else contains such a group as a characteristic direct
factor of index 2.

(b) All vertez stabilizers in A are finite of order dividing 8,10,12, or
30.

(¢) A contains a free normal subgroup B such that A/B is cyclic of
order dividing 120.

Corollary 1. With the exception of the finite cyclic and infinite
dihedral groups, the fundamental group of a graph of locally cyclic
groups is not the automorphism group of any finitely generated group.

Corollary 2. FExcept for the infinite dihedral group, a nontrivial
free-by-finite cyclic group whose center contains no element of order 2
s not the automorphism group of any group.

Corollary 3. An infinite free-by-finite cyclic group which contains
an element of finite order not dividing 8,10,12, or 30 is not the
automorphism group of any group.

The main tool in the proof of the theorem is the Bass-Serre theory
of groups acting on trees. (See [2, 13].)

2. Proof of Theorem. Suppose that A and G satisfy the
hypotheses of the theorem. In the Bass-Serre terminology, A is the
fundamental group of a graph of locally cyclic groups, and so there is a
(directed) tree T on which A acts with locally cyclic vertex stabilizers.
Since the central quotient G/Z(G) is isomorphic to the group of inner
automorphisms of G, T is a G-tree, and the stabilizer in G of any vertex
of T is Abelian.

To establish notation, we briefly summarize the main result of the
Bass-Serre theory as it applies to G. With the action of G on T is
associated a graph of groups consisting of the following: the quotient
graph X = T/G; for each vertex v of X, a vertex group G(v) which is
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isomorphic to the stabilizer in G of any preimage of v in T; for each
edge e, an edge group G(e) which is a subgroup of the vertex group
G(ie) corresponding to the initial vertex of e (and which is isomorphic
to the stabilizer in G of any preimage of e in T') and finally; for each
edge e of X, a monomorphism f. from G(e) to the vertex group G(te)
corresponding to the terminal vertex of e. If M is a maximal subtree of
X, then the fundamental theorem ([13, Theorem 13, 2, 1.4.1]) asserts
that G has the following presentation:

Generators: The elements of all the vertex groups G(v) together with
elements z., one for each edge e of X.

Relations: The internal relations for each G(v), plus . =1 if e is in
M, and z;'gz. = f.(g) for all edges e of X and g € G(e).

The vertex groups may be identified as subgroups of GG, and under this
identification, each vertex stabilizer in the action of G on T is conjugate
in G to a unique vertex group. The elements z., e ¢ M, may be
identified with elements of G which we shall call “HNN indeterminates.”
They form a basis for a free subgroup of G.

We suppose first that G is not Abelian.

Observe that in this case, G/Z(G) cannot be free. For if so, then
G = Z(G) x H where H is free of rank at least 2 and Aut H is isomorphic
to a subgroup of Aut G. But H admits automorphisms which invert one
element of a free basis and fix the rest, so Aut H contains Zsy X Zs. Since
every finite subgroup of Aut G fixes some vertex of 7' [13, Proposition
19] and hence, is cyclic, we have a contradiction.

Since G/Z(G) is not free, some vertex of T has nontrivial stabilizer
in G/Z(G) [13, Theorem 4] and so some vertex group H = G(v) is
not contained in Z(G). Let h € H\Z(G) and ij, be the corresponding
inner automorphism of G. From the presentation of G described above
and the fact that the vertex groups are Abelian, it is apparent that G
admits an automorphism a which inverts all vertex groups and fixes
all HNN indeterminates. Then o and «i;, each have order at most 2
and so each fixes a vertex of 7. It follows [13, Corollary 1, p. 64] that
(o, 3p) fixes a vertex of T'. Since vertex stabilizers in Aut G are locally
cyclic, o centralizes i5, and so i, =i, ' and « € (ip).
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If @ = ip, then for any element = of any vertex subgroup of G,
z~! = z® = 2" and so hzZ(G) has order at most 2 in G/Z(G). Thus,
h,z, and hz all fix vertices in 7" whence, by [13, Corollary 1, p. 64],
(x, h) stabilizes a vertex of T. But then, (z, h) is Abelian and so z* = z.
Therefore, « fixes all generators of G, and so a = 1, a contradiction
since 4, is nontrivial.

Thus, @« = 1 and so every vertex subgroup of G is an elementary
Abelian 2-group. In particular, this is the structure of Z(G).

We claim that if e is an edge of X not in the maximal tree M, then
the corresponding edge group G(e) is exactly Z(G). For suppose that
e is such an edge and g is an element of G(e)\Z(G). Let = z. be the
corresponding HNN indeterminate. Since G(e) is Abelian, G admits
an automorphism 8 which maps = to gz and fixes all other generators.
Then |5| = |iy| = 2 and (B8, 1,) is Abelian so |(3,i,)| < 4. Therefore,
(B,14) fixes a vertex of T' and consequently is cyclic, whence 8 = i,
and gzg = g 'zg = 2P = gz. Since g # 1, this is a contradiction, so
the claim is proved.

We conclude from this that if B is the subgroup of G generated
by the vertex groups (so B/Z(G) is a free product of Zy’s), then
G/Z(Q) is the free product of B/Z(G) with the free subgroup generated
by the z.Z(G)’s, e ¢ M. Since G is not Abelian, G/Z(G) is not
cyclic and so has Zs x Zy as a homomorphic image. Thus, if Z(G)
is nontrivial, Hom (G/Z(G), Z(G)) contains a copy of Zy X Zy. But
Hom (G/Z(G), Z(@)) is isomorphic to the centralizer in Aut G of the
chain 14Z(G)<G. Since every finite subgroup of A fixes a vertex of
T and, hence, is cyclic, it follows that Z(G) must be trivial. Thus,
G = B x F where F is the free group generated by {z. : e ¢ M} and
each nontrivial vertex group of G has order 2.

Suppose that F' # 1 so x = z. # 1 for some edge e of X. Since
G is not free, there is also at least one nontrivial vertex group, say
G(v) = (g9). Then G admits an automorphism ~ which inverts x and
fixes all other generators of G (including g). Since (z,g) = (x) * (g),
z9 # ="' and so vy and iy are distinct commuting elements of order 2
in Aut G, contradicting the fact that all finite subgroups of Aut G are
cyclic. We conclude that F' =1 and G is a free product of Zs’s.

If there are three or more factors in this free product, then by
permuting generators of these, we get a subgroup of Aut G isomorphic
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to the symmetric group S3. Again, because all finite subgroups of
Aut G are cyclic, this is absurd. On the other hand, if there are only
two factors, then G (and, hence, Aut G) is infinite dihedral, and this
case is excluded by hypothesis. This contradiction completes the proof
of the Theorem in the case that G is non-Abelian.

We assume for the remainder of the proof that G is Abelian.

Since Aut G does not contain Zs X Zs, the inversion map ¢ is the
unique element of order 2 in AutG. Also G is either indecomposable
or is a direct product Z x H where Z = Z4 and H is indecomposable. In
the latter case, Hom (G/Z,Z) = 0 (else, Aut G contains an involution
distinct from €) and so H = H? = G? which is characteristic in G.
In particular, Aut G = Aut H. Because of the assumed structure of
Aut G, it is easily seen that H (or in the former case, G) is neither
cyclic nor quasi-cyclic and so indecomposability forces it to be torsion
free and infinitely generated. The first conclusion of the Theorem is now
proved and,since the remaining statements concern only the structure
of Aut G, we will henceforth assume that G is torsion-free.

We note at this point that if « is an element of the stabilizer in Aut G
of some vertex of T', then by [13, Corollary 1, p. 66], (o, €) fixes a vertex
of T" and so is locally cyclic. It follows that every vertex stabilizer is
periodic.

To prove statement (b) of the Theorem, we adapt a technique used by
Hallett and Hirsch [6] and extended by Dixon and Evans [3]. Let a be
a torsion element in Aut G, and let S(«) be the ring of endomorphisms
generated by a. Let g(z) be an integral polynomial of minimal degree
such that g(a) = 0. If f(z) € Z[z] such that f(o) = 0, then g(z)
divides f(z) in Z[z]. Therefore, S(o) = Z[z]/(g(x)). Also, if a has
order m, then g(z) divides 2™ —1 = [],,, ®a(z) (where ®4(z) denotes
the d*® cyclotomic polynomial).

Suppose ®4(z)|g(z), so dlm and (g(z)) C (P4(z)). Then there is
a ring homomorphism S(a) — Z[z]/(®4(z)) = Q(eq) (where g4 is a
complex primitive d*® root of unity). Since Lemma 4.1 of [3] actually
holds for every n > 2 (not just for prime powers), the argument in
Theorem 4.2 of that paper yields that the group U(S(«)) of units
of S(a) contains a free Abelian subgroup of rank (¢(d)/2) — 1 if
d > 2. (See [8, 2.2.12].) But since the vertex stabilizers in AutG
are periodic, any torsion-free subgroup of Aut G is free [13, Theorem
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4], so (¢(d)/2) — 1 < 1. Thus, ¢(d) < 4, and it is easily verified that
de D=1{2,3,4,5,6,8,10,12}.

Now if m = p* for some prime p, then ®,,(z) must divide g(z), for
if not, then g(z) divides (z™ — 1)/®p,(z) = 2?  — 1,50 a?" = =1,
contradicting the fact that |a|] = m. Thus, if m is a prime power,
then m = 2,3,4,5, or 8. It follows that the possible orders of torsion
elements in Aut G are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, or 30. If we

can eliminate 20 and 24 as possibilities, we shall have proved statement
(b) of the Theorem.

Suppose there exists in AutG an element o of order 20. Since
inversion is the unique involution in Aut G, o'® + 1 = 0, and so g(z)
divides z'% + 1 = ®4(z)®20(z). But 20 is not in the set D defined
above, and so ®oo(x) does not divide g(x). Thus, g(x) = ®4(z) which
divides z* — 1. This implies that o* = 1, a contradiction.

Similarly, if |a| = 24, g(z) divides 2% + 1 = ®g(x)P24(z) and, since
24 ¢ D, g(z) = ®s(x). Since ®g(z) divides z® — 1, we again have a
contradiction. Thus, the proof of the second conclusion of the Theorem
is complete.

To prove statement (c), we recall that A is the fundamental group
of a graph of groups consisting, say, of a graph Y (= T/A), the vertex
groups A(v), edge groups A(e), and corresponding monomorphisms f,
from A(e) to A(te). As a consequence of statement (b), we may choose
for every vertex v of Y, a monomorphism h, : A(v) — Zj29. For any
edge e of Y and any generator g of A(e), hi(g) and hie(fe(g)) are
conjugate by an automorphism of Zj5y and hence, by an element h(e)
of the holomorph Hol (Z159). Asin [2, I.7.2], there is a homomorphism
Jj + A — Hol (Z12) which is injective on each vertex group and such that
J(A) < Zya9 (identifying Z139 as a normal subgroup of its holomorph).
By [2, 1.7.10], the kernel of j is free, and so the proof of statement (c)
(and of the Theorem) is complete. o

Remark . The possibility that G is not quite torsion-free but is
isomorphic to Z, X H where H is torsion-free is probably unavoidable,
but it is perhaps worth noting that the structure of Aut G can be pinned
down quite precisely in this case. For, as shown above, H = H? and
so the map h — h? defines an automorphism of H which extends to
a central element 6 of infinite order in AutG. Since all torsion-free



FREE-BY-FINITE CYCLIC AUTOMORPHISM GROUPS 315

subgroups of Aut G are free, the subgroup B (described in statement
(c) of the Theorem) intersects () nontrivially (and so has nontrivial
center). Hence, B is cyclic and Aut G/(#) is finite. It is then not
difficult to see that Aut G must be a semi-direct product of a finite
cyclic normal subgroup (of order 2, 4, 6, 8, 10, 12 or 30) with an
infinite cyclic subgroup. So, if this short list of possibilities is excluded
in addition to the finite cyclic and infinite dihedral groups, then G is
necessarily indecomposable torsion-free Abelian (and G™ # G for every
integer n).

3. The Corollaries. Corollary 1 is immediate.

To prove Corollaries 2 and 3, suppose that A has a nontrivial free
normal subgroup B such that A/B is finite cyclic. By [13, Theorem 4]
or [2, I.8.3], B acts freely on a tree and so, by [2, IV.1.5], A acts on
a tree with B-free vertex set. Each vertex stabilizer in A is then finite
cyclic and so the Theorem applies. If A = Aut G, G admits inversion
as a nontrivial automorphism, so Corollary 2 is proved. Corollary 3
follows from the fact that every element of finite order stabilizes some
vertex.

4. Some examples. We finish with some examples to confirm that
the set {8,10,12,30} which occurs in statement (b) of the Theorem
and in Corollary 2 cannot be reduced. Following what has become
a standard recipe for constructing examples, we exploit a remarkable
theorem of Corner [1] that any countable reduced torsion-free ring R
with 1 is isomorphic to the endomorphism ring of a countable reduced
torsion-free Abelian group G (and, hence, the group U(R) of units of
R is isomorphic to Aut G).

If 1 < n < 3 and e, is a primitive complex 2n*® root of unity,
then U(Z[e2n]) = Zon, and so, if R = Z[eg,|[x,1/z], then U(R) =
U(Z[&‘Qn]) X 4 = Zgn X Z. If 4 <n< 6, then U(Z[&‘Qn]) = Zgn X Z.
(See [8, 2.2.12].) Thus, each of the groups Zy, x Z, 1 < n < 6, is an
automorphism group satisfying the hypotheses of the Theorem and of
Corollary 3.

Proving that the integer 30 cannot be omitted from the set seems
to require a little more effort. For this, let p(z) = ®2(z)Ps(z)P10()
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and R = Z[z]/(p(x)). We shall show that U(R) = Z3¢ x Z and so this
group also occurs as an automorphism group.

Since Q[z]/(p(z)) = Q & Q(es) @ Q(e10), it follows that R is
isomorphic to a subring of S = Z @ Z[eg] ® Z[e10], and so U(R) <
U(S) 2 Zy x Zg X Zig X Z = Zy x Ly X Z3g X Z. The additive groups of
R and S are each free Abelian of rank ¢(2) + ¢(6) + ¢(10) = 7, and so,
by [8, 8.9.27], U(R) has the same torsion-free rank as U(S), namely 1.

If 2 = 2+ (p(z)) € R, then since z'® + 1 = p(z)®30(z), we have
z1% = —1. Tt follows that Z is a unit in R of even order dividing 30. If
its order were less than 30, it would have to be 2, 6, or 10 and so p(z)
would have to divide either z8 — 1 or z!? — 1. Since p(z) has degree
7 and since ®4(z) does not divide z° — 1, none of these possibilities
occurs. Thus, Z has order 30.

To complete the proof that U(R) = Zs x Z, it suffices to show that
—1 is the unique involution in U(R), so suppose that f(x) € Z[z] such
that f(Z)?2 =1in R. Then p(z) divides f(z)? — 1. We must show that
p(z) divides f(x) £ 1. If not, then for some ¢ € {1, -1}, two of the
cyclotomic factors of p(x) divide f(z)—e and the other divides f(z)+e.
Since (f(z)+1) —(f(x) —1) = 2, there exist integral polynomials m(x)
and n(z) such that one of the following holds:

m(z)Pa(z) + n(z)Pg(z)P1o(z) = 2
m(z)®g(z) + n(z)P1o(z)P2(z) = 2, or
m(z)P1o(z) + n(z)Pa(z)Ps(z) = 2.

Substituting £ = —1 in any of these relations yields an absurdity. Thus,
—1 is the unique involution in U(R) as required.
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