ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 23, Number 1, Winter 1993

NOTE ON A NONLINEAR EIGENVALUE PROBLEM
PETER LINDQVIST

ABSTRACT. This note complements some known facts
about the ordinary differential equation (|u’|P~2u') +|u|P~2u

= 0. The eigenvalues exhibit a fascinating dependence on the
exponent p, namely, f/)\p = {/)\q for conjugate exponents.
In terms of the Rayleigh quotients,

Corresponding eigenfunctions are related for conjugate expo-
nents. We shall express this dependence in a nice formula.

1. Introduction. The minimum A, of the Rayleigh quotient

JP | ()P da

= - l<p<o
J2 u(@) P de

(1)

taken among all real-valued functions u € C'[a, b] with u(a) = u(b) = 0
is equal to the first eigenvalue A of the equation

2) =2y + A =u = 0.

(The resulting sharp estimate {/A,||u||, < ||u'||, is called Wirtinger’s
inequality in the classical case p = 2, when the equation reduces
to v’ 4+ A = 0.) The existence of eigenvalues and eigenfunctions
has been considered in [1, Theorem 4.4]. This problem has been
thoroughly studied by M. Otani. He has explicitly determined all
eigenvalues and described the eigenfunctions and their zeros, cf. [4].
These results are so exhaustive that it seems difficult to add anything
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relevant to the original problem, and so the trend has been to generalize
the equation. For example, in [2] Otani’s approach is applied to the
equation (|u'[P~2u')" + AMu|P~2u = f(u), and in [6] equations of the
type ([u/|P72u’)" + a(z)|u[P~2u = 0 are studied. See [5] for further
generalizations.

However, we will consider the original and more pregnant formulation
(2). Our starting point is a simple but striking observation.

Proposition. For conjugate exponents, we have
1 1

(3) o=y - +-=L

p q

This beautiful conjugation is an immediate consequence of Otani’s
formula [4, p. 28]

(4) Ap_(p_l){bfa/ol (1 _Cii)l/p }p

for the first eigenvalue of Equation (2). A direct evaluation of the
integral (the so-called Eulerian integral of the first kind [9, 12.4]) yields

(1) T

—a)psin(n/p)

Moreover, even the higher eigenvalues appear in conjugate pairs. Thus,
the whole spectrum exhibits the same conjugation property!

This interesting behavior reflects a fascinating dependence among
the first eigenfunctions, say w, and wg, 1/p + 1/¢ = 1. Namely, if
one of these is known, the other one can be constructed by the aid
of a nice formula. See (7). This is remarkable, although Equation
(2) can be “completely” integrated, the reason being that for p # 2,
the solution appears in the shape of a very unilluminating implicit
function.! Moreover, there is a kind of conjugation among the higher
eigenfunctions, too.

2. Conjugate eigenfunctions. For the necessary background,
we refer the reader to [4] (especially Remark 8 on page 28 should be
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noticed). Section 1 of [2] is a resumé of Otani’s paper [4]. Before
proving the conjugation formula, we will sketch these preliminaries.

The starting point is to consider all absolutely continuous functions
u : [a,b] - R with u(a) = w(b) = 0. In this considerably wide
class of functions, the existence of a positive minimum A, > 0 for
the Rayleigh quotient (1) is easily established. Interpreting equation
(2) in its weak form to begin with, we see that its smallest eigenvalue
evidently is A = A,. The corresponding first eigenfunction (or ground
state solution) w, is unique up to a constant factor, and it has no zeros
in the open interval Ja,b[. According to [4, Lemma 3] u, € C?[a,b],
if 1 < p <2 and u, € Cla,bl NC%J), J = [a,b]\{(a + b)/2},
if 2 < p < oo (in the latter case, u, is not twice differentiable
at the midpoint; at this point u, = 0). Thus, one can work with
classical solutions. Actually, u, is real analytic in the open intervals
Ja, (a + b)/2[ and ](a + b)/2,b].

From now on, we shall normalize the situation so that [a,b] = [0, 1]
and u,(0) = 1. Then u = wu, is positive in ]0,1[. By symmetry,
u(z) = u(l — z). Multiplying the equation by u' and integrating, we
obtain

A
(5) WP =1- S W(O)=1
and so we have to integrate
du A tr
6 +—=(1- P
(6) dx < p— lu > ’

where the plus sign is valid for 0 < z < 1/2 and the minus sign for
1/2 < x < 1. Note that u/(1/2) = 0.
We are not going to explain how to find the fundamental formula (7)

below, but, once it is given, the verification is easily done, as we shall
see.

Theorem. The first normalized eigenfunctions in [0,1] are related
by

Aptp ()P + Agtg(y)? _

7
(7) p—1 q—1 P q
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where y = 1/2 — x, when 0 < z < 1/2, and y = 3/2 — z, when

1/2 <z < 1. Moreover, {/A, = /A,

Proof. Let us use the abbreviations
u(z) = up(x), A= Ap; v(z) = vy(x), w=Ag

when p + ¢ = pg. By symmetry, we may assume that 0 < z < 1/2.
Then 1 > AuP(z)/(p — 1) and (6) yields

® = 0 ) 0 (1- ﬁ“p)l/p e=l

Anticipating the final result, we substitute

uP + leq =1, AquP~ du + ppr?tdv =0

p—1 q-—

in (8), and after some simplification, we arrive at

u(x) du pt/e [(g=1)/nl*/* dv
9 = _
(9) /0 (1 ﬁup)l/p \l/p /, (1— ﬁvq)l/q

the lower limit of integration being

e )

On the other hand,
(10)

1 /1/2 [(a—1)/p]*/a o /
s y= dyz/ e 0<y<1)2
2 y o(y) (1 JEqva)t/a

by (6). Using the fact that x'/? = AP and comparing the integrals,
we conclude that

(11) o) = {2 (1- 2 uter) }/
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if 1/2 — y = z. Treating the values 1/2 < z < 1 in a similar way, we
arrive at the desired result

Au(z)P po(y)?
p—1 q—1

=1, |z —y|=1/2. u]

3. Higher eigenvalues. The equation

d !

i p—2,1 by P—2, _ 0

(P2 + Al

has nontrivial solutions in [0, 1] with zero endpoint values only for the
following values of A:

AR = kP, k=1,2,3,...,

cf. [4]. Here )\, = )\;,1) is the first eigenvalue (4). (In the linear
case we have the eigenvalues k272 corresponding to the normalized

eigenfunctions ugk)(x) = sin(kmz)/kn, k =1,2,3,...). Hence,

, . 11
(12) YA = /AP, St =t

This means that also the higher eigenvalues appear in conjugate pairs.

The higher eigenfunctions uél), u§,2), ... and u((ll), u§2>, ... are pairwise

related, i.e., given u,(,k) (or only u,) the conjugate k’th eigenfunction

u((lk), 1/p+1/q = 1, can be constructed from an explicit formula. More

precisely,
(13) u(z) = (—1)ug(kz —j), j/k<z<(j+1)/k

for j =0,1,2,... ,k — 1 according to [4, Theorem 1, Remark 8] or [2,
Equation (1.4)], and so the missing link is provided by (7). Through
this chain any uék) can be constructed from any u,()m), ifl/p+1/qg=1.T1¢
should be kept in mind that also the higher eigenfunctions are unique
apart from a normalizing constant factor.? This is essential for the

meaning of the construction.
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4. Comparison of eigenfunctions. The first eigenfunction u, of
(2), normalized by u’'(0) =1 (hence, v'(1) = —1) has maximum

_ ,/p—1 _ lsin(x/p)
(1) wl1/2) = g Bt = 3

in [0, 1]. Clearly, 0 < u,(1/2) < 1/2, when 1 < p < co. The maximum
increases with p. The same is true for any u,(x), as p increases. Indeed,

(15) us () > up(z), 1<p<s<oo,

when 0 < z < 1. This follows almost directly from (6), when one uses
the fact that, for any fixed ¢ in ]0, 1, the expression (1 —#?)'/? increases
with p.

In particular?,
sin(mz) 1

< < = —
. up () 5

(16) 0 < ug(z) <

when 1 < ¢ < 2 < p < o0 and 0 < x < 1. Here the function
Uso(2) = 1/2 — |z — 1/2] is the solution to the “minimax” problem

(17) min{w} =2

u | max, |u(z)|

obtained when p — oo (the admissible functions being merely abso-
lutely continuous). One can show that limg_, o up(2) = uso () uni-
formly in [0,1]. By (7) also lim, 14+ u4(z) = 0 uniformly in [0, 1].
(However, the limiting eigenvalue A; = limg_,14 A\; = 2 is not attained
for any reasonable admissible function with zero end point values.)

The curves y = up(z), 0 <z < 1,1 < p < o0, form a field filling up
the open triangle

A={(z,y)|0<2y<1—]22 -1, 0<z <1}

To see this, one just has to show that for any fixed z in ]0,1[, the
function p — u,(z) is continuous, 1 < p < co (we denote uy(x) = 0,
although this is not the solution to the problem, when p = 1). The
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desired continuity with respect to p can be read off from (8), A, varying
continuously with p.

More can be said about this, but we think that the above gives a
sufficiently clear picture of the situation.

5. Concluding remarks. In several dimensions little is known
about the corresponding problem. Given a bounded domain €2 in the
n-dimensional Euclidean space R, the minimization of the Rayleigh
quotient

Jo IVul?

Jo lul?

among all functions u (belonging to a convenient function space) with
zero boundary values in 2 leads to the nonlinear eigenvalue problem

(18)

(19) div (|Vu/P2Vu) 4+ AulP~2u = 0.

See, for example, [3, 7, 8]. The proper counterpart to the conjugation
in one dimension is far from obvious: unfortunately, (3) does not hold
even when 2 is a ball in R™ and n > 2.

We intend to return to this topic in a subsequent work.

Acknowledgment. I thank the referee for pointing out the papers
1, 5].

ENDNOTES

1. The simplest way to integrate the equation is indicated in [6]: the convex
function z = z(z) = |u/(z)|P~2u/(z)/|u(x)|P~2u(x) satisfies the separable equation
2+ (p—1)|z|94+ Xp = 0.

2. This is not true in general for the equation div (|Vu/P~2Vu) + Ajul[P~2u = 0
in several dimensions.

3. The exponents need not be conjugate here.

Note added in proof. Extending u, as an odd function to the interval
[-1,0] and, then, periodically to the whole real axis, i.e., uy(xz) =
—up(—x), up(z +2) = up(z), we can write the higher eigenfunctions as

ug? (x) = up (k).
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