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120 C.L. HAGOPIAN

ABSTRACT. Suppose M is a plane continuum, D is a
decomposition of M, and each element of D is a uniquely
arcwise connected set. Our principal theorem states that
every map of M that preserves the elements of D has a
fixed point. It follows that every arc-component-preserving
map of a plane continuum that does not contain a simple
closed curve has a fixed point. This result generalizes the
author’s theorem [17] that every uniquely arcwise connected
plane continuum has the fixed-point property. Our principal
theorem also applies to planar dynamical systems. Suppose
is a continuous flow on the plane. Suppose M is an invariant
continuum under 9 and D is the collection of orbits of ¥ in
M. Then, according to our principal theorem, some element
of D is a point or a simple closed curve. Hence, every invariant
continuum under 1 contains an equilibrium point or a closed
orbit. This result implies the Poincare-Bendixson theorem, a
compact limit set of an orbit of ¢ that does not contain an
equilibrium point is a closed orbit.

1. Introduction. Does every nonseparating plane continuum have
the fixed-point property? This unsolved problem was first considered
in the late 1920’s [11, 29]. A variety of partial solutions indicates that
a counterexample will have to be very pathological [4, 12, 13, 21, 22,
42, 3, 5, 6, 41, 26, 15, 30, 34]. For example, it is known that every
arcwise connected nonseparating plane continuum has the fixed-point
property [14]. Recently, the author [19] generalized this theorem by
proving that every arc-component-preserving map of a nonseparating
plane continuum has a fixed point. Note that the collection of arc
components is a decomposition of a continuum. In this paper, we
establish the fixed-point property for maps of a plane continuum that
preserve the elements of another decomposition, a decomposition with
elements that are uniquely arcwise connected.

In 1933, H. Whitney [43] defined a special type of decomposition to
study the topological properties of solutions of differential equations.
He called this decomposition a regular family of curves. The regular-
ity condition is a convergence property that restricts the crookedness
of arcs in the curves. Solutions of differential equations always have
this property. Whitney proved the existence of cross-sections of these
curves. Recall that the Poincare-Bendixson theorem is usually estab-
lished with a cross-section argument [24, p. 248]. Whitney also defined
a flow on the curves of the family. Each curve in Whitney’s family is
homeomorphic to a circle or an open interval. Recently, J.M. Aarts and
L. Oversteegen [2] extended Whitney’s results to regular curves that
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FIGURE 1.

are one-to-one continuous images of an open interval.

The decomposition in our principal theorem is a generalization of
Whitney’s decomposition. Instead of ruling out crooked arcs, we only
assume that the curves are uniquely arcwise connected. Instead of
restricting our attention to flows, we consider all maps that preserve
these curves. Although a cross-section may fail to exist, certain flow-
box type arguments still work. Whitney’s regular families of curves are
in separable metric spaces. We must require that our curves lie in the
plane.

A special case of our principal theorem, when D has a compact
element, follows immediately from [17]. As in [17], our proof is
based on Bing’s dog-chases-rabbit principle [10, p. 123]. The present
argument is more complicated because the dog may be forced to run
down infinitely many rays (instead of just one ray) in pursuit of the
rabbit (see Figure 1). Since our proof is rather long, it may be helpful
to read the summary in the appendix at the end of this paper before
considering the technical details.

2. More background. A collection D of sets is a decomposition of
a space if UD is the space and the elements of D are pairwise disjoint.
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A map f preserves the elements of a decomposition D if f sends each
element of D into itself.

A set is uniquely arcwise connected if it is arcwise connected and does
not contain a simple closed curve.

A continuum is a nondegenerate compact connected metric space.

A continuum M has the fized-point property if for each map f of M
into M, there exists a point p of M such that f(p) = p.

A map f of a continuum M is an arc-component-preserving map if f
sends each arc component of M into itself.

A map f of a continuum M is a deformation if there exists a map h
of M x [0,1] onto M such that h(p,0) = p and h(p,1) = f(p) for each
point p of M.

For each number ¢, 0 < ¢t < 1, let hy be the map of M defined by
hi(p) = h(p,t). The deformation f is called an isotopic deformation of
M if each h; is a homeomorphism.

Note that every deformation of a continuum is an arc-component-
preserving map.

Every uniquely arcwise connected plane continuum has the fixed-
point property [17]. Furthermore, every uniquely arcwise connected
continuum has the fixed-point property for local homeomorphisms
[35]. There are uniquely arcwise connected continua in Euclidean 3-
space that admit fixed-point-free maps [45, 10, 25, 35]. Note that
since these continua are arcwise connected, the fixed-point-free maps
are obviously arc-component-preserving maps. However, they are not
deformations. It is known that every deformation of a uniquely arcwise
connected continuum has a fixed point [18].

Let R be the set of real numbers.

A continuous flow on a space S is a map ¥ of R x .S onto S such that
for each point p of S,

(2.1) $(0,p) =p and
(2.2) P(ty + t2,p) = ¥(t1,¥(t2,p)) for all numbers ¢1,t2 in R.

For each number ¢ in R, let 1; be the map of S defined by ;(p) =
¥(t,p). By (2.1) and (2.2), ¥, = (¢)~'. Hence, each v; is a
homeomorphism. In fact, each v; is an isotopic deformation of S.
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The orbit of 1 through a point p is {¢;(p) : t € R}.

The orbit of ¥ through p is a closed orbit if there is a smallest positive
number o such that ¥,(p) = p. The number o is called the period of
the closed orbit.

A point ¢ is an w-limit point of p if there is an unbounded sequence
of positive numbers t1, ta, ... such that 1, (p), ¥, (p), ... converges to
g. The set of all w-limit points of p is the w-limit set L, (p). A set of
the form L, (p) is called a limit set of 1.

An equilibrium point of ¢ is a point p of S such that ¥;(p) = p for
each number t in R.

A tree is a finite graph that does not contain a simple closed curve.

A continuum M is tree-like if for each positive number ¢, there is a
cover of M with mesh less than § whose nerve is a tree.

There are tree-like continua without the fixed-point property [8, 38,
39]. No such continuum is arcwise connected [13]. It is not known
if every arc-component-preserving map of a tree-like continuum has
a fixed point [19, Q. 4.23]. In fact, the question is still open for
deformations [33, p. 369]. It is known that every isotopic deformation of
a tree-like continuum has a fixed point [20, Theorem 4.1]. Hence, every
flow on a tree-like continuum has an equilibrium point [20, Theorem
4.2, 1, 23, Theorem 4.2].

3. The decomposition D. Let R? be the Cartesian plane
with metric p. Let S? denote the 2-sphere that is the one-point
compactification R? U {w} of R2. We denote the boundary, closure,
and interior of a given set Y relative to S2 by BdY, Cl1Y, and IntY,
respectively.

Let M be a continuum in R2.

Let D be a decomposition of M with the property that each element
is uniquely arcwise connected.

For each point p of M, let D, denote the element of D that contains
p. If p and ¢ are distinct points of M and g € D, then the arc, the
half-open arc, and the arc segment (open arc) in D, with end points
p and q are denoted by [p,q], [p,q), and (p, q), respectively. We define

[p, p] to be {p}.
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For each proper subcontinuum C of S? and each point v of S?\C,
let T,(C) denote the continuum in S? that is the complement of the
v-component of S?\C.

Let ) be the collection of all continua Y in S2 such that

(3.1) Y =T,(C) for some subcontinuum C of M and

(3.2) D, CY for every point p of M NY.

Note that T, (M) € Y.

Lemma 3.3. There exists an element Y of Y such that no element
of Y is a proper subcontinuum of Y.

Proof. Let Z be a subcollection of ) that is linearly ordered by
inclusion. By the Brouwer reduction theorem [44, Theorem 11.1, p.
17], it is sufficient to show that the continuum NZ is an element of ).

Since (3.1) holds for each element of Z, (3.1) holds for NZ when C
is defined to be the boundary of T, (NZ) [37, Theorem 24, p. 176].
Since (3.2) holds for each element of Z, it follows that D, C NZ for
every point p of M N (NZ). Hence, NZ € ). This completes the proof
of Lemma 3.3. ]

4. Rays. Let x be a point of M.

Let P, be the image in D, of the nonnegative real numbers [0, +00)
under a one-to-one continuous function ¢ with the property that
©(0) = z. The function ¢ determines a linear ordering < of P, with
x as the first point. We call P, a ray.

For points y and z of P, the notation [y, 2], [y, 2), and (y, z) will be
used only when y < z.

An arc [y, 2] in P, is ordered from a set Y to aset Z if y € Y and
z€Z.

For each point y of P, let P, denote the ray {z € P, : y = z or
y <z}
Let A; and A, be disjoint arcs in R%\P,.
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For each integer ¢ = 1,2 and j = 1,2,3,4, let a; ; be a point of A;
with the following properties:

The end points of A; are a;,; and a; 4 and the order of A; is such that
Qi 5 < QG j+1 for 7 = 1,2, and 3.

Suppose there exist disjoint arc segments Bj, B2, B3, and B, in
R?\(A4; U A5) such that each B; has a;; and ay; as end points and
By U B3 is in one complementary domain of the simple closed curve
A1UB1UA2UB4.

Suppose

(4.1) for j =1 and 2, every arc in P, that is ordered from B;; to
B; intersects Bj2,

(4.2) every arc in P, that is ordered from B4 to Bjs intersects By,
and

(4.3) every arc in P, that is ordered from B; to By intersects Bs.

Suppose there exist points y and uw of By N P, such that (y,u)
intersects By and misses By (see Figure 2). By (4.1) and (4.3), (y, u)
intersects By and Bs.

Suppose there exists a point w of B4 NP, such that (u,w) N By = ¢.
By (4.1) and (4.3), (u,w) intersects By and Bs.

For j =1,2,3, and 4, let C; be an arc segment in B; such that C1C}
is irreducible between [y, «) and [u, w].

The point y is an end point of C;. Let v be the end point of C}
opposite y.

Let z be the first point of [y, u] that belongs to By.

Note that

(4.4) the simple closed curve C; U [y, v] separates A; from A, in R?.

To see this, for ¢ = 1 and 2, let D; be the arc segment in Cl B\ [y, u]
that has a; 2 and a point of [y, 2] as end points. Let E be the disk
bounded by A; U By U A; U By that contains [y,z]. The set {y,z}
separates aj 2 from as 2 in Bd E. Hence, [y, z] separates a; 2 from as 2 in
E [37, Theorem 28, p. 156]. It follows that D; and D, abut [y, 2] from
opposite sides [37, p. 180]. By (4.1) and (4.2), By N (Cy U [z,v]) = ¢.
Thus, D; and D, abut [y,z] from opposite sides with respect to
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FIGURE 2.

Cy U [y,v] [37, Theorem 32, p. 181]. Therefore, C U [y, v] separates
a1 2 from as o in R2. Hence, (4.4) is true.

Next we prove that

(4.5) C U [y, w] separates C; from C3 in R?.

Let g be the end point of C4 opposite w. Let G be the disk bounded
by C1 U [y,q] U Cy U [v, w] that contains Cy. Let A be an arc from C
to C3 in Cq UIntG. By [37, Theorem 28, p. 156], Cl1Cy separates
Cy from C3 in G. Therefore, Cy U Cy U [y, w] separates Cy from Cj
in R2. Since (C2 U [y,w]) N (C4 U [y, w]) = [y, w], either Co U [y, w]
or Cy U [y, w] separates Cy from C3 in R? [37, Theorem 20, p. 173].
Since (q,v) NG = ¢, it follows that AN (C4 U [y, w]) = ¢. Therefore,
C4 U [y, w] does not separate C; from Cs in R?. Hence, (4.5) is true.

Let  be the complementary domain of C; U[y, v] in R? that contains
w. Since (v,w) C Q, (v,w) NCLC3 # ¢, and C3 N (Cy U [y,v]) = ¢, it
follows that C3 C Q.

Note that

(4.6) Cy U [y, w) separates By N Q from C; in R2.
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To see this, let ¢ be a point of B, N ). Let p be the end point of Cj
that belongs to [y, z]. Since C3 C €, there is an arc segment C' from c
to [p,v] in By N Q such that C and C5 abut [p,v] from the same side
with respect to Cy U [y, v]. Since C' U C3 U [p,v] and Co U [y, p) U (v, w)
are disjoint, by [37, Theorem 32, p. 181], C' and C5 abut [p,v] from
the same side with respect to the simple closed curve in Cs U [y, w).
Thus, Cy U [y, w) does not separate c from C3 in R%. Hence, by (4.5),
C2 U [y, w) separates ¢ from C in R2. Therefore, (4.6) is true.

Finally,

(4.7) P, CQ

To see this, assume the contrary. Then, since P, does not contain a
simple closed curve, P,, N C; # ¢. Let s be the first point of P, in C;.
Let r be the last point of [w,s] in Bs. By (4.6), Co N [r,s] # ¢, and
this contradicts (4.1) and (4.2). Hence, (4.7) is true.

5. Indecomposability in the limit. Let L, denote the set
N{CIP, : y € P, }.

Hereafter, we assume L, is not degenerate. Hence, L, is a continuum.
We call L, the limit of the ray P,.

A continuum is indecomposable if it is not the union of two proper
subcontinua.

A subset ¥ of a continuum @ is a composant of ® if there is a point
p of ® such that ¥ is the union of all proper subcontinua of ® that
contain p.

Let ® be an indecomposable continuum in S2. J. Krasinkiewicz [31]
defined a composant ¥ of ® to be internal if every continuum in S2
that intersects ¥ and S%\V intersects every composant of ®.

Lemma 5.1. Suppose ® is an indecomposable subcontinuum of L.
Suppose for some point y of P, no internal composant of ® intersects
P,. Then ® contains uncountably many elements of D.

Proof. Assume ® contains only countably many elements of D.
Since each element of D is arcwise connected, no element of D that
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is contained in ® intersects more than one composant of ®. By [31,
Theorem 2.3], ® has uncountably many internal composants. Hence,

there exists an internal composant ¥ of ® and an arc A in an element
of D such that ANW # ¢ and A\T # ¢.

Since A intersects every internal composant of ® more than once,
there exist points r and s of AN ¥ such that (r,s) ¢ ¥. Let B be a
continuum in ¥ that contains {r, s}. Note that AU B separates S? [37,
Theorem 22, p. 175]. Since ¥ is internal, each component of S?\(AUB)
intersects ®. Since ® C L, and P, N ¥ = ¢, it follows that P, crosses
A infinitely many times. Since P, C D,, the arc A is in D,. Hence,
D, contains a simple closed curve, and contradicts the assumption that
each element of D is uniquely arcwise connected. This completes the
proof of Lemma 5.1. O

6. Folded rays. The ray P, is folded on a subcontinuum L of L, if
there exist two points y and z of P, and a complementary domain A
of L in S? such that {y,2} C A and [y, 2] ¢ C1A.

Lemma 6.1. Suppose L is a subcontinuum of L, that contains only
countably many elements of D and P, is not folded on L. Then there
exists a complementary domain A of L in S? and a point y of P, such
that C1A contains P,.

Proof. Assume the contrary.
Since P, is not folded on L, it follows that

(6.2) for each complementary domain A of L, there is a point p of
P, such that ANP, = ¢.

It follows from (6.2) that

(6.3) L=L,.

Let € be the collection of elements of D\{D,} that are contained in
L. Since £ is countable, there exists a countable subset ¥ of L such
that £ = {D, : 0 € X}.

Let F}, Fs,... be the elements of a countable base of S? that intersect
L.
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For each positive integer a, let G, be the collection of complementary
domains of C1(P, U F,) in S2. Since S? is a separable metric space,
each G, is countable.

For each positive integer «, let

H,={peLNnD,:[z,p|NClF, = ¢}.

For each positive integer o and each point o of X, let

Ha,tr = {p € LmDG : [J’p] ﬁClFa = ¢}

For each positive integer a and each element I' of G,, let

Hyr={peIL\U(EU{D,}):
an arc in D,\CL F,, goes from p into I'}.

Note that

(6.4) L=U{H,UHy,UHyr:a=1,2,...,0€%, and T € G, }.

To see this, let p be a point of L. We consider three cases.

Suppose p is a point of LN D,. By (6.2), L is not an arc. Therefore,
[z,p] does not contain L. Thus, there is an integer « such that
[z,p] N CLF, = ¢. Hence, p € H,.

Suppose p is a point of L\D, and L contains D,. Let o be a point
of ¥ such that D, = D,. Since [0, p| does not contain L, there is an
integer « such that [o,p] N C1F, = ¢. Hence, p € H, ;.

Suppose p is a point of L\D, and L does not contain D,,. Let g be
a point of D,\L. Since [p, q] does not contain L, there is an integer a
such that [p,¢] N ClF, = ¢. Note that ¢ ¢ C1(P, U F,). Let I be the
g-component of S*\C1(P, U F,). Then p € H, r. Hence, (6.4) is true.

By (6.4) and the Baire category theorem, there exist an integer «, a
point o of ¥, and a complementary domain I" of C1 (P, U F,,) such that
either H,, Hy o, or H, 1 is somewhere dense in L.

If H, is somewhere dense in L, define H to be a subset of H, such
that Cl H contains an open subset of L.



130 C.L. HAGOPIAN

If H, is nowhere dense and H, , is somewhere dense in L, define H
to be a subset of H, , such that C1 H contains an open subset of L.

If H, U H, , is nowhere dense and H,  is somewhere dense in L,
define H to be a subset of H,  such that Cl H contains an open subset
of L.

Let Y be a disk in F,, such that

(6.5) LNIntY # ¢.

Since L = L, there exists a point =’ of P, in Y.
Note that

(6.6)
each two points of H are the end points of an arc in S?\(P, UY).

To see this, let a and b be distinct points of H. We consider three
cases.

Suppose H C H,. Then Y and [z, a]U[z, b] are disjoint. Since 2’ € YV’
and D, does not contain a simple closed curve, P, and [z, a] U [z, b]
are disjoint. Hence, [a,b] C S?\(P, UY).

Suppose H C Hy,. Then Y and [0,a] U [0,b] are disjoint. Since
D, NP, = ¢, it follows that [a,b] C S?\(P, UY).

Suppose H C H,r. Let I and J be two arcs in M\(D, U ClF,)
from @ into I' and b into I', respectively. Since I' is a connected open
subset of S?\ (P, UCLF,), there exists an arc K in IUJUT from a to
b that misses P, UCLF,. Since Y C F,, the arc K is in S\(P, UY).
Hence, (6.6) is true.

Let A be a nonempty open subset of L contained in C1 H (see Figure
3).

Let Z be a disk in S?\Y such that

(6.7) LNIntZ # ¢ and

(6.8) LNZCA.

Let n be a point of H.
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FIGURE 3.

For each component A of P,/\Y, let O(A) denote the complementary
domain of AUY that misses 7.

Let A be the collection of all components A of P,/\Y such that
ZNO(A) # ¢. Note that each element of A is an arc segment with
both end points in BdY.

For each element A of A,

(6.9) ANO(A)=¢ and
(6.10) ANInt Z # 6.

Statement (6.9) is true; for otherwise, since A C C1H, by (6.6), there
is an arc in S?\(AUY) that runs from 7 to a point of H N O(A), and
this contradicts the definition of O(A).

By (6.7) and (6.8), L NInt Z is a nonempty subset of A. Therefore,
since Z N O(A) # ¢, (6.10) follows from (6.9).

Since Y and Z are disjoint, it follows from (6.5) and (6.7) that A is
infinite.

By (6.10), for each point p of P,

(6.11) P, contains all but finitely many elements of A.
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For each element A of A,

(6.12) O(A) contains at most finitely many elements of A

and

(6.13) only finitely many elements of A separate 7 from A in S?\Y.

To verify (6.12), assume there exists an infinite subcollection B of
A such that UB C O(A4). By (6.10), each element of B intersects Z.
Hence, by (6.11), there is a point t of L in Z N Cl(UB). By (6.8) and
(6.9), t ¢ O(A). Therefore, t € A.

Since A is an open subset of L that contains ¢, there exists an arc
segment I in O(A) with end points in A\{¢} that has the following
property. There is a complementary domain K of AU I in O(A) such
that t € C1K and KN L C A.

Since infinitely many elements of B intersect K, it follows from (6.2)
and (6.11) that no complementary domain of L contains K N (UB).
Therefore, K N L # ¢. Since K C O(A), this contradicts (6.9). Hence,
(6.12) is true.

To establish (6.13), assume the contrary. By (6.12), there exists
a sequence {A, : n = 1,2,...} of distinct elements of A such that
O(A,) C O(Ap+1) for each n. For each n, by (6.9) and (6.10), ZN A,
misses L and is not empty. Since P, is not folded on L, by (6.2) and
(6.11), there is an integer n such that L N Z separates A; N Z from
A,NZ in Z. Let I be an arc segment in Z such that Cl/ is an arc
irreducible between A; and A,. Since A; C O(A4,), it follows that
I c O(A,,). Since INL # ¢, this contradicts (6.9). Hence, (6.13) is
true.

Let C = {A € A : no element of A separates ) from A in S*\Y}.
Since A is infinite, it follows from (6.12) and (6.13) that C is infinite.

Next we define a special pair p, ¢ of points of P,/NInt Y. We consider
two cases.

Case 6.14a. Suppose LN P, NIntY # ¢. Define p to be a point of
LNP, NIntY, and let ¢ be a point of (P, NIntY)\{p}.
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Case 6.14b. Suppose LNP,NIntY = ¢. Applying (6.2), we define p
and ¢ to be points of P, NIntY such that P, misses the p-component
of S%\L.

There exist an element (y,u) of C in P, a point z of (y,u) N Int Z,
and an arc segment [ in (Int Z)\ClO((y,w)) such that

(6.15) (CLI) N ([z',u] UBd Z2) = {z},
(6.16) LNClI # ¢, and
(6.17) either z€ L or P, NCLI={z}.

To verify this, consider two cases.

Case 6.18a. Suppose LN P, NIntZ # ¢. Let z be a point of
LNP,NIntZ. Let (y,u) be the element of A that contains z.
It follows from (6.9) that (y,u) € C. Let I be an arc segment in
(Int Z)\CLO((y, u)) that satisfies (6.15). Since z € L, (6.16) and (6.17)
hold.

Case 6.18b. Suppose LNP,NInt Z = ¢.

First we note that

(6.19) (L\P,) NInt Z # ¢.

To see this, assume otherwise. Since LNInt Z # ¢ and LNP,NInt Z =
¢, there exists a point ¢ of [z,q] in L NInt Z. Let T be an open disk in
Z containing t such that T'\[z, ¢] has exactly two components. Since
t € L, infinitely many elements of A intersect T'\[z,q]. Since both
components of T\[z,q] are in S?\L, this contradicts (6.2) and (6.11).
Hence, (6.19) is true.

By (6.19), there is a point ¢t of L\P, in Int Z. Let T be an open disk
in Z that contains ¢ and misses [z, ¢]. By (6.2), there exist an element
(y',u") of Ain P, and a point r of TN (y', u’) such that TNP,, misses
the r-component R of S?\L.

Let S be an arc in T that runs from r to ¢. Define s to be the first
point of S that belongs to L.

Let I be the arc segment in S that precedes s with the property that
Cl1I is irreducible between s and [g,u']. Define z to be the end point of
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FIGURE 4.

I opposite s. Let (y,u) be the element of A that contains z. By (6.8)
and (6.9), s ¢ C1O((y,uw)). Since z € R, it follows that P,NCLI = {z}.
Hence, by (6.9), (y,u) € C. Clearly, (6.15), (6.16) and (6.17) hold.

Let J be a polygonal arc segment in Z\([z,u] UO((y,w)) UCLI) with
end points b and by in (y,u) such that z € (b,by) C Z (see Figure 4).

Define Ky to be the component of S?\(J U [b, by]) that contains I.
Note that Ky C Z.

The following statements and definitions (6.20,,)—(6.29,,) will be used
inductively.

By (6.12), (6.13), and (6.16), for n = 1, there exists an element
(Yn, un) of C such that

(6.20,,) Kn 10 (Yn,un) # ¢

and

(6.21,) no element of C in (b,,_1,yy,) intersects K, 1.
Forn=1,

(6.22n) let P, = (bn,l,un) NCIK,_q,
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(6.23,)
let I, be the component of I'\(p,u,) whose closure contains z,

let J,, be the arc in ClJ that is irreducible

6.24,,
( ) between b and (yn, un)a

and

(6.25,) let b, be the end point of J, that belongs to (yn, un)-

Let J’ be the arc in ClJ that is irreducible between by and (y1,u1).
Since Y UO((y, u)) misses (y1,u1)UCl Ky, there exists an arc segment
Qin Y U O((y,u)) from p to z such that ClI; and ClQ abut on
[b,bp] from opposite sides with respect to the simple closed curve
T in J; U J" U (b,bo) U (y1,u1) [37, Theorem 32, p. 181]. Since
TN (LUQU{p}) = ¢, it follows that J; U J' U (y,u;) separates p
from I in S2?. Since J; N J' = ¢, either J; U (y,u;) or J' U (y,u;)
separates p from I; in S? [37, Theorem 20, p. 173].

We assume without loss of generality that J; U (y,u1) separates p
from I; in S2.

Forn =1,
(6.26,,)
let K, be the complementary domain of J,, U (b, b,) that contains I,,.

This situation is complicated because J, U (b,b,) may fail to be a
simple closed curve (see Figure 5).

Clearly, for n =1,

(6.27,,) p ¢ K.
By (6.16) and (6.17), for n =1,

(6.28,,) LN (K, U{z}) # ¢.
Next we show that for n =1,

(6.29,,) K,NY NP, =¢.
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FIGURE 5.

Let A be an arc in J; such that AN (p,u;) = {b}. Since (y,u) and
(y1,u1) belong to C, it follows that (y,u) and (y1,u1) are not separated
in S2\Y by an element of A. Hence, there is a polygonal arc segment
B in S*\(Y U (p,uy)) such that AU {b;} C C1B. Let I’ be an arc in
ClI;\B that contains z. Note that B U [b,b1] is a simple closed curve.
Let K be the complementary domain of B U [b, b;] that intersects I'.

Observe that

(6.30) KiNY CK.

To see this, let ¢ be a point of K3 N'Y. We must show that ¢ € K.
Let C be a polygonal arc in K; from ¢ to I’ such that B N C is finite
and C crosses B at each point of BN C. Clearly, c € K if BNC = ¢,
so we assume BN C # ¢. Since I' UY U (z,u) misses B U Jy, one
complementary domain of BU Jy contains I'U{c}. Since CNJ; = ¢, it
follows that C' crosses B an even number of times. Therefore, C' crosses
BU|[b, b;] an even number of times. Thus, ¢ € K. Hence, (6.30) is true.

It follows from (6.30) that (6.291) can be established by proving

(6.31) KNY NPy, = ¢.



FIXED POINTS OF PLANE CONTINUA 137

To verify (6.31), first note that since p ¢ Ky and J; U (b, b;) misses
[p,b) U (I'\{z}), the arcs I’ and [p,b] abut on A U [b, u] from opposite
sides with respect to a simple closed curve in J; U (b, b;). Hence, I' and
[p,b] abut on A U [b, u] from opposite sides with respect to B U [b, b;]
[37, Theorem 32, p. 181]. Since [p,b) N (B UIb,b1]) = ¢, it follows that
pEK.

Let E be an arc from p to ¢ in Int Y. Either p € L (Case 6.14a) or
LNP, NIntY = ¢ and P, misses the p-component of S*\L (Case
6.14b). Hence, the p-component of E\ClK contains a point e of L.
Let D be an open set in Y\Cl K that contains e.

Now suppose that (6.31) is false. Since e € L, there exists an arc [r, s]
in Py, such that r € KNY and s € D.

Let (r',s') be an arc segment in [r,s]\Y such that ' € K NBdY
and s € BAY\K. A component of (BU|[b,b1])\Int Y separates r’ from
s in S?\IntY [37, Theorem 27, p. 177]. Since B N (b,b1) = ¢ and
(r,s)YN(Y U (b,b1)) = ¢, it follows that BU[b,u] U [y1, b1] separates 7’
from s’ in S?\Int Y. Hence, {u, y; } separates r’ from s’ in BdY. Thus,
(r',s') is an element of A that separates (y,u) from (yi,u;) in S?\Y
[37, Theorem 30, p. 158], and this contradicts the fact that (y,u) and
(y1,u1) belong to C. Hence, (6.31) is true. Consequently, (6.29;) is
true.

Proceeding inductively, for each integer n > 1, we define (yy,, u,), Py,
I, Ju, by, and K, satisfying (6.20,,)—(6.29,). For n > 1, (6.20,,) and
(6.21,,) follow from (6.12), (6.13) and (6.28,,—1). To verify (6.27,,) for
n > 1, note that by (6.27,_1), there exists an A in J, such that [p, b]
and Cl I, abut on AU b, u] from opposite sides with respect to a simple
closed curve in J, U (b,b,) [37, Theorem 32, p. 181]. The arguments
given for (6.28,,) and (6.29,,) when n =1 hold when n > 1.

Since Y N Z = ¢, for each point v of P,

(6.32) there exists an integer n such that v ¢ P, .
Let X be the limit superior of P;, P,,... . By (6.32), X C L,. Thus,
by (6.3), X C L.

Since K misses Y, so does P;.
It follows from (6.29,,) that

(6.33) YNU{P,:n=12,..}=6¢.
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Since Ji, Ja, ... is a nested sequence of arcs, by, by, ... converges to a
point ¢ of X N J;. For each positive integer n, let B, be the polygonal
arc in J,, with end points ¢ and b,,.

Since Ji N [z,y] = ¢, it follows from (6.21,) and (6.24,) that
(Ji\B1) NU{P, :n=1,2,...} = ¢. Thus, for each positive integer n,
every component of P, intersects B,,. Therefore, BjUPs, BoUPs, ...
is a sequence of continua whose limit superior is X. Hence, X is
connected.

For each component A of P,\Y,

(6.34) XNInt (YUO(A)) = ¢.

To see this, let v be the last point of Cl A with respect to the ordering
of P,. By (6.21,,) and (6.24,,), ¢ ¢ (b,v). Let ¢ be a positive integer such
that B; N (b,v) = ¢. By (6.8), c € A. Thus, by (6.9), B, N O(A) = ¢.
Since P, contains U{P, : n =i+1,i+2,...} and P, does not contain
a simple closed curve, ANU{P, :n =i+ 1,i+2,...} = ¢. Since B;
intersects each component of U{P, : n =i+ 1,7+ 2,...}, it follows
from (6.33) that U{P,, :n =149+ 1,4+ 2,...} misses Y U O(A). Hence,
(6.34) is established.

Next we prove that Knaster’s chainable indecomposable continuum
with one end point [32, Example 1, p. 204] is a continuous image of X.
We use a result [16, Theorem 1] that was derived from an argument of
Bellamy [7].

According to Theorem 1 of [16], X can be mapped onto Knaster’s
continuum if there exists a sequence G1, G2, ... of nonempty open sets
in X such that C1G; N ClG2 = ¢ and, for each n,

(6.35,) Gant1UG2pi2 C Gopo1 and
there exists a separation of V,, UW,, of X\Ga, such that
(636n) G2n+1 Cc V,, and G2n+2 cWwW,.
To establish the existence of the sequence G1,Gs,..., order By so

that b; is its first point. Let ¢; be the first point of B; that belongs to
L. By (6.2) and (6.32), ¢; # c.

If by # c1, define Cy to be the arc in B; from by to c;. If by = ¢y, let
Cl = {Cl}.
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FIGURE 6.
Note that

(6.37) ¢ € X.

To see this, consider two cases.

Case 6.38a. Suppose c¢; € P,. Let m be an integer such that
Jm N [z,c1] = ¢. Then [z,¢1] C ClK, for each integer n > m. It
follows from (6.12) that ¢; € X.

Case 6.38b. Suppose ¢; ¢ P,. There is a point v of P, such that
C1NP, = ¢; otherwise, by (6.2), LN(C1\{c1}) # ¢, and this contradicts
the definition of ¢;. Let d be the last point of C; N P, that precedes
c¢1 with respect to the ordering of By. Since C1 N[z, z] = ¢, it follows
that d € P,.

Let II be the arc in C4 from d to ¢;. Let (y',u’) be the d-component
of P,\Y. Since ¢; € A and IINP, = {d}, it follows from (6.9) that
(v, ) €C.

Let A be an arc in J;\II such that AN (p,u’') = {b} (see Figure 6).
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FIGURE 7.

Observe that

(6.39) A and II abut on [y, ] from the same side.

To verify (6.39), first note that, by (6.9), II N O(y',u’) = ¢. Hence,
there exists a polygonal arc segment B in S?\(Y U (p,u;)) such that
AUTI C C1B. Let C be an arc in S?\(p,u’) from p to u' such that
BN is finite and C crosses B at each point of BN C.

Suppose (6.39) is false. Then C crosses B an odd number of times (see
Figure 7). It follows that p and u’ are separated in S? by BU[b,d]. By
the argument for (6.31), there is a component of P,\Y that separates
(y,u) from (y',u') in S?\Y, and this contradicts the fact that (y,u)
and (y',u’) belong to C. Hence, (6.39) is true.

Let i be a positive integer such that J; N (b,u’) = ¢. Let E be an arc
in ClI; such that EN[y,u'] = {z}. Since E and A abut on [y, '] from
the same side, by (6.39), E and II abut on [b,u'] from the same side.
Since IINP, = {d}, it follows that c; € K for each integer j > i.

Let F be a disk in K; such that ¢; € Int F. Since ¢; € L, it
follows that F' NPy, # ¢. For each integer j > i, since ¢; € Kj, if
F N (bj,bj) = ¢, then F C K;. Hence, for some j > i, the set P;
contains the first point of F'N P}, with respect to the ordering of P,
(recall (6.22,,)). It follows that ¢; € X. Thus, (6.37) is established.
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Let D; and D, be open disks in S? such that B; ¢ D, C1I; C D,
and C1D; N C1Dy = ¢ (see Figure 8).

Let i(1) = 1.

Let j(1) be an integer greater than 1 such that

(6.40) CiNPy,,,=¢ and Jjq) N[z,bi]=¢.

Y5(1)

By (6.12), (6.13), (6.16) and (6.17), there exists an integer (2) > j(1)
such that Do N Ky N (yi(g), uz(g)) # .

Let © be an arc segment in (BdY NCLO((y;(2), ui(2)))) \[p, wi(2)] that
has u;) as an end point. Let ©; be a polygonal arc segment in
O((¥i(2), ui(2)))\[b, bi2y] from a point e of ©® to Dy N K; such that
B1 N O is finite and ©; crosses By at each point of By N O;.

By (6.291), ui2) € Ki. Since © N (J1 U [b,b1]) = ¢, it follows that
€ ¢ Kl.

Let II; be the arc in B; from ¢ to ¢. Since ©; misses [b, b1]U(J1\IL1),
it follows that ©; crosses II; an odd number of times.

By (6.34), there exists a simple closed curve ¥; in Y U ©; U Dy U
O((y,u)) such that ©; C X3, X N¥; C Dg, and II; NX; C ©;. Since
II; crosses ¥ an odd number of times, ¥; separates ¢ from ¢; in S2.
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FIGURE 9.

Define Q; to be the c-component of S?\¥;. Note that Bjzy € C
S\ (4.

Let ‘/1 = Ql n (X\Dg) and W1 = X\(D2 U ‘/1)

For i =1 and 2, let G; = D; N X. Note that V3 U W7 is a separation
of X\G2

Let co be the first point of L N B;(y) with respect to the ordering of
B;. By (6.2) and (6.32), c2 # c.

If bya) # co, define C3 to be the arc in By from b;g) to cyo). If
bi(2) = c2, let Ca = {c2}. By the argument for (6.37), c; € X.

Let D3 and D4 be open disks such that B;) C D3 C D1 N2 and
Cy C Dy C D1\§2y. Note that D3N X C V; and DyNX C Wy (see
Figure 9).

It follows from (6.40) and the arguments for Cases 6.38a and 6.38b
that ¢; € Cl1K; for each integer 7 > i(2).

Proceeding inductively, we let n be an integer greater than 1.

We assume that, for each integer m, 1 < m < n, an integer i(m), a
point ¢, of X\{c}, a subset C,,, of By, and disjoint open disks Da,, 1,
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Ds,,, have been defined such that
(6.41,)
Cm s the first point of L N B;(,,) with respect to the ordering of By,

(6.42,,) Cp is a minimal connected set containing {b;(m), cm},
(6.43,,) Bi(m) C Dam-—1,

(6.44,) Cm_1 C Da,,, and

(6.45,,) cm—1 € ClK; for each integer i > i(m).

For each integer i, 2 < i < 2n, let G; = D; N X. We assume that for
each positive integer ¢ less than n, (6.35;) and (6.36;) are satisfied.

Let j(n) be an integer greater than i(n) such that C,, NP, =~ = ¢
and Jjn) N [2, bi(n)] = ¢. Define i(n + 1) to be an integer greater than
j(n) such that Dyn N Ky N (Yi(nt1), Yi(nt1)) 7 ¢-

Let II,, be the arc in B; from ¢, to c. Define ©,, to be a polygonal
arc segment in O((Yi(n+1) Ui(n+1))) from (BAY)\X to Do, N Ky, that
crosses II,, an odd number of times.

Let X, be a simple closed curve in
Y U©,UDsy U O((yi(n—l)a uz(n—l)))

such that ©,, C X,,, X NX%, C Dy,, and II,, N3, C ©,. Since I,
crosses ¥, an odd number of times, 3,, separates ¢ from ¢, in S2.

Define €2, to be the c-component of S?\%,,. Let V,, = Q,, N (X \Da,)
and W,, = X\ (Da, U V,,).

To complete the inductive step, define ¢, 41, Crit1, Dapy1, and Doy 40
satisfying (6.41,,4+1)—(6.45,+1), (6.35,) and (6.36,) when Gapy1 =
X N Dypy1 and Gopio = X N Dopyo. It follows from the existence
of G1,Gs,... that Knaster’s continuum is a continuous image of X
[16, Theorem 1].
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Since Knaster’s continuum is indecomposable, X contains an inde-
composable continuum @ [32, Theorem 4, p. 208].

For each internal composant ¥ of &,

(6.46) NP, = ¢.

To see this, assume the contrary. Let v be a point of ¥ N P,. Since
¥ is internal and ¥ C X C M\IntY’, it follows that v ¢ Y. Let A be
the v-component of P,\Y. Since ¥ is internal, ¥ N O(A) # ¢, and this
contradicts (6.34). Hence, (6.46) is true.

By (6.46) and Lemma 5.1, ® contains uncountably many elements
of D. Since L contains @, this contradicts the assumption that L
contains only countably many elements of D. This completes the proof
of Lemma 6.1. u]

Lemma 6.47. Suppose L is a subcontinuum of L, that contains only
countably many elements of D and P, is not folded on L. Then for
each point v of Py, the ray P, intersects M\L.

Proof. Suppose P, C L for some point v of P,. Assume without
loss of generality that P, C L. The proof of Lemma 6.1 with Cases
6.14b, 6.18b, and 6.38b deleted shows that this assumption involves a
contradiction. o

7. Frames. Suppose L, contains only countably many elements
of D and P, is not folded on L,. By Lemma 6.1, there exists a
complementary domain A of L, in S? and a point 7 of P, such that
Cl A contains P.

We assume without loss of generality that P, C ClA. By Lemma
6.47, we can also assume without loss of generality that z € A.

Change (if necessary) the embedding of M in S? so that w € A.

Suppose L is a nondegenerate subcontinuum of L. Since P, C CIA
and A C S?\T,(L), it follows that Bd T,(L) = L.

Note that T, (L) does not separate R2.

K. Sieklucki [41, Lemma 5.5] proved that T, (L) has the following
properties:
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FIGURE 10.

There exists a sequence Q1, Qs,... of disks in R? such that T, (L) =
N{Qr:n=1,2,...} and for each n,

(71) Qn+1 C Int @y,

(7.2)
the boundary B,, of Q,, is a polygonal simple closed curve

with consecutive vertices b, (1),b,(2),... ,bn(tn), bn(tnt1) = bn(1),

and
(7.3) for j =1,2,..., iy, the interval in B,, from b,(j) to b,(j + 1)
' has diameter less than 27" (see Figure 10).
For every b,(j), n = 1,2,..., and j = 1,2,..., u,, there exists a

vertex by, +1(v(j)) such that

the interval N, (j) in R? from b, (j) to b,y 1(v(5))

(7.4) : _
has diameter less than 27",
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(7.5) Np(3)\{bn(5), bnt1(v(5))} C Int @ \Qn 1,
and

(7.6)  N,(j))NN,(k)=¢ for each integer k # j, 1 <k< p,.

For each n, let ¥, = U{N,,(j) : 5 =1,2,... ,un}.

Let N = U{%, : n =1,2,...}. Note that each component of N is a
half-open arc in R?\T, (L) with an endpoint in L.

Let m be a given positive integer. Define IV,,, to be the union of all
components of N that intersect B,,. Let O,, be a subset of N, that is
maximal with respect to the property that each component of O, is a
component of N, and each pair of components of O,, with a common
endpoint is separated in @,,\L by another pair of components of O,,.

Let ¢;n(1),¢m(2), .. yem(&m)s em(Em+1) = ¢m(1) denote the consec-
utive vertices of B,, that belong to O,,. Since L is not degenerate, we
can assume without loss of generality that £, > 3.

Let n be an integer greater than m. Define E to be the closure of
a component of Q,\(On, U T,(L)). We call E an (m,n)-section on
T, (L). The polygonal arc B, N E is called the bottom of E. The two
components of £NQO,, are called the sides of E. Note that the sides of
E are half-open arcs in Q,\T, (L) with distinct end points in L. The
diameter of the union of the sides of E is less than 23,

For j = 1,2,...,&m, let E; be the (m,n)-section whose sides are
contained in the components of O,, that intersect {cm(]-), cm(jﬂ)}.

Assume there is a point o of L and an arc segment ¥ in S*\T,(L)
such that ¢ € C1X C D, C M\D,.

Assume without loss of generality that B, NX # ¢.

Suppose there exist two (m, n)-sections E and F' that have a common
side such that @, NYX C E U F and ClX misses the closure of each
uncommon side of E and F. Change the indexing of the (m,n)-sections
(if necessary) so that E = E,, F = E,, and each pair of consecutive
sections has a common side.

Define F; to be the closure of the component of (E7 U E¢, )\(X U L)
that contains a side of Fy. Let F; = E; for 1 < j < &. Define
F¢,. to be the closure of the component of (E; U E¢, )\(X U L) that
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contains a side of E¢ ;. We call F = {F; : 1 < j < &,,} an m-frame
on (T;(L),X). We call F; and F¢,, the end sections of F. Each F},
1 < j < &y, is called an interior section of F. Let A be the arc in C1X
that is irreducible between o and B,,. The half-open arc A\{c} is the
common side of Fy and Fg, .

Since X is an arc segment, for each positive integer m, there exists
an m-frame on (T, (L), X).

F.B. Jones [27] defined a continuum C' to be nonaposyndetic at a
point p of C with respect to a point g of C\{p} if every subcontinuum
of C that contains p in its interior also contains q.

Lemma 7.7. For each positive integer i, there exists an m-frame F
on (T4(L),X) such that m > i and no pair of consecutive sections of
F contains L in its union.

Proof. Let m and m’ be integers such that 0 < m < m'. Suppose F
is an m-frame on (T,(L),X) and U is the union of a pair of consecutive
sections of an m/-frame on (T, (L),¥). Then the union of some pair
of consecutive sections of F contains U N L. Hence, it is sufficient to
show that there exists an m-frame F on (T,(L), %) such that no pair
of consecutive sections of F contains L in its union.

Assume that, for each positive integer m, every m-frame on (T, (L), X)
has a pair of consecutive sections whose union contains L. Then, for
each m, there exist a positive number §,,, a pair of consecutive sec-
tions E,,, Fp, of an m-frame on (T;(L),X) and an arc segment A,, in
B,, UO,, UX such that §;,0ds,... converges to zero, L C E,, U F,,, the
arc A,, has diameter less than §,, and contains the uncommon sides
of E,, and F,,, and A,, UT,(L) separates (Int E,, U Int F,;,)\L from
S%\Q,, in S2.

For each positive integer m, let z,, and y,, be the end points of
Ap,. Note that {z,,,ym} C L for each m. For each m, let W,,, be the
complementary domain of A,, U T,(L) in S? whose closure contains
E,, UF,,. Let y be a limit point of y1,ya,... .

The continuum L is nonaposyndetic at y with respect to each point
of L\{y}. For assume otherwise. Then there exists a continuum Y, an
open disk G, and a point z of L\C1G such that y € GNL C Y C L\{z}.
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FIGURE 11.

Let Z be an open disk such that z € Z C S?2\(GUY).

Let ¢ be an integer such that B; N Z # ¢. Define m to be an integer
greater than ¢ such that A,, C G. Let p be a point of Z N (Q;\Qmn)-
Since z€ LN Z and L C F,, UF,, C CIW,,, there is a point ¢ of W,,
in Z (see Figure 11).

There exists a polygonal arc I in Q;\T;(L) from p to ¢ such that
A,, N1 is finite and I crosses A,, at each point of A,, N I. Since A,,
separates p from ¢ in @Q;\T;(L), the arc I crosses A,, an odd number
of times. It follows that I U Z contains a simple closed curve that
separates z,, from y,, in S?. Since {Z,,yn} C Y C S*\(I U Z), this
violates the connectivity of Y. Hence, L is nonaposyndetic at y with
respect to each point of L\{y}.

According to a theorem of H.E. Schlais [40, Theorem 9, 16, Theorem
4], L contains an indecomposable continuum ®.

For each internal composant ¥ of ®, note that ¥ NP, = ¢. To see
this, assume there is a point y of P, in ¥. By Lemma 6.47, there is a
point z of P, in A. Let J be an arc in A that is irreducible between
[z,y] and [y, z]. Since ¥ is internal, each complementary domain of
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J U [z, 2] intersects ®. Since ® C L, and [z,z) NP, = ¢, it follows
that J NP, # ¢ for each point u of P,. Thus, J N L, # ¢, and this
contradicts the fact that J is in A. Hence, Y NP, = ¢.

According to Lemma 5.1, ® contains uncountably many elements
of D. Since ® C L C L, this contradicts the assumption that L,
contains only countably many elements of D. This completes the proof
of Lemma 7.7. u]

For each real number (, let I(¢) denote the interval {(z,y) € R? :
0<z<1landy={(_}

Suppose A is an arc, B is a continuum, and AU B C S?. Then B
straddles A if, for each homeomorphism h of U{I(¢{) : —1 < { < 1} into
S? with h(I(0)) = A, there exists a positive real number § such that
BN h(I(C)) # ¢ when |¢| < 4.

Lemma 7.8. Suppose F is a section of an m-frame F on (T,(L), %),
y is a point of (P, NInt F)\L, z is a point of P,\F, and UF contains
ly,z]. Then [y, z] intersects the closure of a side of F.

Proof. Assume [y, z] misses the closure of each side of F. By Lemma
6.47, there is a point u of P, in A. Let p be a point of LN [y, 2] NBd F
such that every arc in [y, p| from P,\T,(L) to p intersects Int F', and
every arc in [p,u] from p to P,\T, (L) intersects P \F. Let J be an
arc in A that is irreducible between [z, p] and [p, u].

The continuum LNBd F straddles every arc in P, that contains p and
has both end points in A. Consequently, each complementary domain
of J U [z, u] intersects L N Bd F. Since [z,u) NP, = ¢, it follows that
JNL # ¢, and this contradicts the fact that J is in A. Hence, [y, 2|
intersects the closure of a side of F'. o

8. Framing over a sequence of rays. Suppose there exists

a sequence P, ,P,.,... of pairwise disjoint rays in M such that
L., D CIP,,,, and L,, # L,,,, for each positive integer n. Note
that Ly, ,L,,... is a strictly decreasing sequence of continua.

Let L=n{L;, :n=1,2,...}. Assume L is not degenerate.
Let Q, denote the connected set U{P,, :n=1,2,...}.
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Define a linear order <<< on Qg , as follows:

Define y <<z if {y,2} C P, andy < zorify e P, _, 2 € P, ,
and m < n.

For each point y of Q,, let Q, denote {z € Q,, : y = z or y << z}.

Suppose there exists a point y of Q, in a complementary domain
A of L such that Q, C CIA. Since A = S*\T,(L), it follows that
BdT,(L) = L.

Assume there is a point o of L and an arc segment ¥ in A such that
o€ ClY C D, C M\Qy.

Let F = {F; : 1 <j <&} be an m-frame on (Ty(L), X).
Let G ={F; € F: P, N (Int F;\L) # ¢ for each point z of Q,}.

Assume G has at least two elements. Let F; and Fj be the first and
last sections, respectively, of F that belong to G.

Lemma 8.1. Suppose A is an arc segment in F;\L, i < j < k, that
has an end point in L. Then there exists a point z of Q, such that each
arc in Q that intersects both Int F;\L and Int F},\L also intersects A.

Proof. Let H be an m-frame on (T,(L),¥) such that A intersects
the bottom of a section of #. Since L = N{L,, : n = 1,2,...}
and each L, contains ClP there is a point z of Q, such that

Q. C (UH)\(CLA\A).

Suppose there is an arc B in Q,\A that intersects both Int F;\L
and Int Fi,\ L. Since the elements of P, ,P,,,... are pairwise disjoint,
there is a point u of Q, such that P, contains B. Assume without loss
of generality that « is an end point of B that belongs to Int F;\L and
the other end point v of B belongs to Int Fj,\ L.

Let U be the u-component of (UH)\(AUX UL). Note that U misses
Fj and contains (UH) N (Int F;\L). Since BN CI(AU X) = ¢, the
continuum L NBd U straddles each subarc of B that has one end point
in U and the other end point in M\CI1U.

Since F; € G, there is a point w of P, in Int F;\L. Let C be an arc
in U that is irreducible between [u,v] and [v, w]. Each complementary
domain of C' U [u, w] intersects L N BAU. Note that [u,w) N Q, = ¢.

Tni1)
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For each positive integer n, since L, D L, it follows that C NL,,, # ¢.
Thus, C N L # ¢, and this contradicts the fact that C' is in U. Hence,
each arc in Q, that intersects Int F;\L and Int F;\ L intersects A. |

A subframe of F is a collection of consecutive sections of F.

By Lemma 8.1, for each Fj, ¢ < j < k, there is a point z of Q, such
that each arc in Q, that intersects both Int F;\L and Int Fj\L also
intersects Int F;\L. Since each L, contains C1P, ., it follows that
F; € G. Hence, G is the subframe {F; : i < j <k} of F.

A connected subset K of (UG)\Bd(T,(L) U (UF)) that intersects
Int F; and Int F), (the interiors of the end sections of G) is a trace of G
if for each arc A in K, there exists a function g of A into G such that
(1) a € g(a) for each point a of A and (2) if @ and b are points of A and
g(a) # g(b), then the arc in A from a to b intersects a side of g(a) and
the interior of each section of G between g(a) and g(b) (with respect to
the index ordering of G).

A set K agrees with G if K is a trace of G, G\{F;}, G\{Fx}, or
g\{FlaFk}

Lemma 8.2. There is a point z of Q, N Int F; such that Q. is a
trace of G.

Proof. Let T = {t € L: t is an end point of a side of a section of G}.

Define z to be a point of Q, N (Int F;\L) such that Q. is contained
in UF and misses T'U Bd (Ty(L) U (UF)) and U{Int F;\L : 1 < j <
iork <j<&mlt

Using Lemma 7.8, we define a function g* of Q. onto G such that
(1) u € g*(u) for each point u of Q, and (2) if v and w are points of
P, for some point u of Q, and g*(v) # g*(w), then [v,w] intersects a
side of ¢g*(v) and the interior of each section of G between ¢g*(v) and
9" (w).

By considering the restriction of g* to each arc in Q,, we see that Q,
is a trace of G. m]

9. Framing over one ray. Suppose L is a nondegenerate subcon-
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tinuum of L,. Suppose there exists a point y of P, in a complementary
domain A of L such that P, C C1A. Assume there exist a point o of
L and an arc segment ¥ in A such that o € C1X¥ ¢ D, C M\D,.

As in Lemma 8.1, let F = {F; : 1 < j < §,,} be an m-frame on
(Ty(L),S). Let G ={F; € F: P, N (Int F;\L) # ¢ for each point z of
P,}.

Assume G has at least two elements. Let F; and Fj be the first and
last sections, respectively, of F that belong to G.

The argument given for Lemma 8.1 can be modified to establish the
following:

Lemma 9.1. Suppose A is an arc segment in F;\L, i < j < k, that
has an end point in L. Then there exists a point z of P, such that each
arc in P, that intersects both Int F;\L and Int Fi\L also intersects A.

It follows from Lemma 9.1 that G is the subframe {F} : i < j < k} of
F.

The proof of Lemma 8.2 can be modified to establish the following:

Lemma 9.2. There is a point z of PyNInt F; such that P, is a trace
of G.

10. Borsuk rays. Let f be a map of M that preserves the elements
of D.

Assume f moves each point of M.

By the compactness of M and the continuity of f, there is a positive
number § such that for every point = of M,

(10.1) plz, f(z)) > 6.

It follows from (10.1) and an argument of K. Borsuk [13] that for
each point = of M, there exists a unique sequence a,(1),a;(2),... of
points of D, such that a,(1) = z and, for each positive integer n,

(10.2) plaz(n),az(n+1)) =46/3  [13, (4],
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ifye (az(n);aw(n + 1))a

(103) then pla(n),y) < 6/3 (13, (5)]
(a2 (m)] 1 4z (n), as(n + 1)] = {as(n)}
(104) 13, (11)],
and
(105)  {as(n)asln+ 1)} C [o flaa(m))] (13, () (13)].

For each positive integer n, let ¢,, be a homeomorphism of the half-
open real line interval [n — 1,n) onto [a;(n),az(n + 1)). Let ¢ be the
map defined by ¢(r) = ¢, (r) if n —1 < r < n.

Define P, to be U{[z,a;(n)) : n = 2,3,...}. By (10.4), ¢ is a one-
to-one map of the nonnegative real line [0, 4+00) onto P,. The map ¢
determines a linear ordering < of P, with x as the first point.

We call P, a Borsuk ray.
By [18, (3.6)],

(10.6) P,={zeD,:[z,z2]N][z f(2)] = {z}}.

Let y be a point of P,\{z}. By (10.6), P, = P,\[z,y). Therefore,
P,={zeP,:y=zory<z}

As in Section 5, define L, to be N{C1P, : y € P,}. By (10.2), L, is
not degenerate. Hence, L, is a subcontinuum of C1P,.

Note that, for each point y of P,

(10.7) L,=L,.

By [18, (3.7)], for each point y of D,

(10.8) P, NP, + ¢.

By (10.2), P, ¢ [z, f(z)]. Since D, does not contain a simple closed
curve, there exists a point ¢ of P, such that P, N [z, f(z)] = {¢}.
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By [17, (7), p. 98],
(10.9) ¢ € f(l=, <))
By [17, (8), p. 99], for each point y of P¢,
(10.10) y € f([z,y))

By [17, (9), p. 99], for each point y of P,

(10.11)  there exists a point z of P, such that P, N f([z,y]) = ¢.

11. Nested limits. As in Section 3, assume M is embedded in
SZ\{w}.

By Lemma 3.3, there exists a continuum Y in S? such that

(11.1) Y =T, (C) for some subcontinuum C of M,
(11.2) D, C Y for every point p of M NY, and
(11.3)

no proper subcontinuum of Y satisfies conditions (11.1) and (11.2).

Let A be an arc segment in S?\Y that has an end point z; in C. By
(11.2), P, C Y. Therefore, L,, C Y.

Let U4 = {U: there is a point x of L,, such that L, = U and
P.CL,}.

Case 11.4a. Suppose U is empty. Then define L to be L, .

Case 11.4b. Suppose U is not empty.

Define a binary relation — on U as follows:

For each pair of elements U,V of U, define U — V if there is a point
xz of U such that P, CU and L, =V # U.
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An — nest in U is a nonempty subcollection of I/ that is linearly
ordered by —.

Let W = {W: there is an — nest N in U such that W = NN/}.

By (10.2), each element of W is nondegenerate. Thus, each element
of W is a continuum. Since each singleton of I/ is an — nest, U C W.

Define a binary relation —— on W as follows:
Let V and W be elements of W.
Suppose {V,W} CU. ThenV -— W ifV — W.

Suppose V € U and W € W\U. Then V —— W if there is an
— nest N in U that has V as its first element such that W = Nif;
and W —— V if there is a point & in W such that P, € W and
L,=V#W.

Suppose {V,W} C W\U. Then V —— W if there is an — nest N/
in U that has a first element U such that V —— U and W = NN.

Note that —— is transitive.

Furthermore,

(11.5) each —— nest in W has an upper bound in W.

To see this, let A" be an —— nest in W. If N is finite, then clearly
N has an upper bound. Thus, we assume that A is infinite. For each
pair of elements V, W of N, note that V' —— W only if W is a proper
subcontinuum of V. Since M is a compact metric space, it follows that
there is a sequence Vi, Vs, ..., of elements of N such that V;, =— V,41
for eachn and NN =nN{V,, : n=1,2,...}. For eachn, if V,, € U, define
U, = V,; and if V,, ¢ U, define U,, to be an element of U such that
V, == U, == Vpq1. Then NN = n{U,, : n =1,2,...}. Thus, NN
is an element of W and an upper bound for N. Hence, (11.5) is true.

Using (11.5) and Zorn’s lemma [28, p. 33], define L to be a maximal
element of VW with respect to ——.

In Cases 11.4a and 11.4b, for each point = of L
(11.6) either P, ¢ L or L, =L.

12. An uncountable subcollection of D. Let £ be the collection
of elements of D that are contained in the continuum L.
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In this section, we prove that

(12.1) € is uncountable.
Either L e W\U or L € Y U{Lg, }.

Case 12.2a. Suppose L € W\U. Then, by the argument for
(11.5), there exists a sequence Uy, Us,... of elements of U such that
Up—=Us— - and L=n{U,:n=12,...}.

For n = 2,3,..., there is a point x,, of L, such that C1P, C

L and L, = U,_1.

Tn—1
Note that, for each positive integer n,

(12.3) Clp, DL, DCIP

Tni1”
For each pair of distinct positive integers m and n,

(12.4) D, ND,, =¢.

To see this, assume the contrary. Then P, UP, C D, . Since
U, - Uz — ---, it follows that L, _ # L, ,. Thus, by (10.7),
P, NP, = ¢, and this contradicts (10.8). Hence, (12.4) is true.

Note that

(12.5) P, is not folded on L.

To see this, assume the contrary. Then there exist a complementary
domain A of L and three points y, z, and w of P,, such that {y,w} C A
and z € [y,w]\ClA. Let J be an arc in A that is irreducible between
[y, 2] and [z,w]. Let n be a positive integer such that U, NJ = ¢.
Every arc in M that intersects A and S?\Cl A is straddled by Bd A.
Hence, Bd A intersects each complementary domain of JU [y, w]. Since
BdA Cc L c CIPy,,, C Uy, it follows that P N[y, w] # ¢, and this
contradicts (12.4). Hence, (12.5) is true.

As in Section 8, let Q,, denote the set U{P,_ :n =1,2,...}. Define
a linear order << on Qg, as follows:

Tn42
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Let y<<zif {y,z} CP,, andy << zorifyeP, ,zeP, ,and
m < n.

For each point y of Q,, let Q, denote the set {z € Q,, : y = z or
Yy <Kz}

Assume & is countable ((12.1) is false).
By (12.5) and Lemmas 6.1 and 6.47, there exist a complementary

domain A of L and a point y of P,, such that y € A and P, C CIA.
Since A = S\ T, (L), it follows that Bd T, (L) = L.

Since P, C ClA, it follows that L,, C C1A. By (12.3), P,, C CIA
for each n = 2,3,... . Hence, Q, C CIA.

There exist a point o of L and an arc segment ¥ in A such that

(12.6) o € ClE C D,.

To see this, we consider two cases.

Case 12.7a. Suppose A = S?\T,,(L). By (11.3), there is a point p of
M N T, (L) such that D, ¢ T, (L). Hence, there exist a point o of L
and an arc segment X in D, that satisfy (12.6).

Case 12.7b. Suppose A # SZ\T,(L). The arc segment A is in
S?\T,(Y). Thus, A C S*\T,(L). Since P, C ClA, it follows that
[z1,y] N L # ¢. There exist a point o of L and an arc segment ¥ in
[z1,y] that satisfy (12.6).

By (12.4), D, intersects at most one element of {P,_ :n=1,2,...}.
Hence, by Lemma 6.47, we can assume without loss of generality that
Q,NCIXE = ¢.

Using Sieklucki’s nested sequence of polygonal disks (described in

Section 7), define a sequence Fi, Fa,... with the property that each
Fm is an m-frame on (T, (L), X) refined by Fr,y1.

For each positive integer m, let G, = {F € F,,, : P, N (Int F\L) # ¢
for each point z of Q,}. By Lemma 8.1, each G, is a subframe of F,,,.
Note that if m and n are integers and 0 < m < n, then G, refines G,,
and each end section of G, contains an end section of G,,.

For each positive integer, m, let Gy, (1), G (2),... , Gm(Am) be the
consecutive sections of G,,.
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By Lemma 8.2, for each positive integer m, there exists a point z,,
of Qy NInt G,,(1) such that Q. is a trace of G,,. Hence, L C UG,
for each m. By (12.3), for each G, (i), 1 < i < Ay, and for each point
u of P, _, the Borsuk ray P, intersects Int Gy, (¢)\L.

It follows from (12.4) and the proof of Lemma 8.1 that, for each
positive integer m,
no arc segment in (Q,\L) NU{Gp () : 1 < i < A}

(12.8) o
has an end point in L.

For each positive integer m, there exist arcs A,, and B, in Q,_ such
that A, is a trace of G,,,, By, C A, f(Br) C (UGm)\L, and f(B,,)
is a trace of G,,. To see this, let u be a point of P, NInt G, (Am). By
(12.8), we can assume without loss of generality that [z,,,u] N L = ¢.
Let n be an integer greater than m such that [z,,,u] NUG, = ¢. By
(10.10), (10.11) and (12.8), there exist points v and w of Q,\P, such
that w € P, C UG,, f(v) € P,NInt G,, (1), f(w) € P, NInt G,y (A1),
and [z, u] separates [f(v), f(w)] NU{Gmn(7) : 1 < i < Ay} from the
bottom of each G, (7), 1 < i < Ay, in U{G(3) : 1 < i < A }. Let Ay
be an arc in P, that contains [v,w] and is a trace of G,,. By (12.4),
[2m,u] N f([v,w]) = ¢. It follows from (12.4) and (12.8) that there
exists a subarc By, of [v,w] such that f(B,,) C (UG,,)\L and f(B,,) is
a trace of G,,. Note that f(B,,) may fail to be in P, (see Figure 12).

We have shown that T, (L) has the following property:

Property 12.9. The continuum T,(L) does not separate S* and
there exists an arc segment X in M\ T, (L) with an end point in T, (L),
a sequence A;, As,... of arcs in Q, converging to BdTy(L), and a
sequence Gy, Go,... such that for each positive integer m,

(a) Gm is a subframe of an m-frame on (T, (L), ),

(b) Gt refines G,

(c) each end section of G,, contains an end section of G, 11,
(d) A,, agrees with G,,, and

(e) either f(A,,) C (UG,,)\Ty(L) or there exists a subarc B,,, of 4,,
such that f(Bp) C (UGm)\Ty(L) and f(B.,) agrees with G,.

Next we prove that Ty (L) contains a continuum that is irreducible
with respect to Property 12.9.
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FIGURE 12.

Assume X1, Xs,... is a decreasing sequence of continua in Ty(L)
that do not separate S2.

For each positive integer n, assume there exist an arc segment X, in
M\X,, that has an end point in X,,, a sequence A;(n), A2(n),... of
arcs in Q, converging to Bd X,,, and a sequence Gy(n), G2(n), ... with
the following property:

For each m,

(12.10) Gm(n) is a subframe of an m-frame on (X, %,),
(12.11) Gm+1(n) refines G, (n),
(12.12)

each end section of G,,(n) contains an end section of G,,+1(n),
(12.13) Ap,(n) agrees with G,,(n), and

either f(Am,(n)) C (UGm(n))\X, or there exists a subarc
(12.14) By, (n) of Ay (n) such that f(Bp(n)) C (UG (n))\Xn
and f(B,,(n)) agrees with G,,(n).
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Let X = N{X, :n =1,2,...}. By the Brouwer reduction theorem
[44, p. 17], it is sufficient to prove that X is a continuum with Property
12.9.

For each positive integer n, since Aj(n), Az(n),... converges to
Bd X,, it follows from (12.14) and the continuity of f that ei-
ther f(BdX,) C BdX, or BdX, C f(BdX,). The sequence
Bd X;,Bd X,,... converges to BdX. Thus, f(BdX) C BdX or
BdX C f(BdX). Since f is fixed-point free, Bd X is not degener-
ate. Hence, X is a continuum.

Since S?\ X = U{S?\X,, : n =1,2,...} and each S?\ X,, is connected,

(12.15) S\ X is connected.

By the argument for (12.6) there is an arc segment ¥ in M\X that
lies in one element of D and has an end point in X. By (12.4), we can
assume without loss of generality that Q, N ClX = ¢.

Define a sequence Fi, F2,... with the property that each F,, is an
m-frame on (X, X) refined by Fpt1.

There exists a sequence G, Gs, ... such that for each m,
(12.16) G is a subframe of F,,
(12.17) Gm+1 refines Gy,
(12.18)

each end section of G, contains an end section of G,,;1, and

(12.19) there exist integers i,, and j,, jm > m, such that

(am) UG, (4m) C (UGm)\Bd (X UUF,,),

(br,) the interior of each interior section of G,, contains the sides of
two consecutive sections of G;  (jm,),

(¢m) mno end point of a side of a section of G,, belongs to
A, (JM) U f(Aim (]m))v and
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FIGURE 13.

(dm) the Hausdorff distance [32, p. 47] from A;  (jm) to Bd X}, is

less than m 1.

Use the following procedure to define the sequence Gyi,Go,.... If
the sections of a subframe G,,(n) are contained in X U UFy, then,
since X C X,,, the collection of sections of F; whose interiors intersect
UG (n) is a subframe of F;. Hence, there exist a subframe G; of F; and
a sequence of subframes G;, (1), i, (j2), ... such that each UG;  (jm)
is in (UG1)\Bd (X U UF;) and intersects the interior of each section
of Gy, the interior of each interior section of G; contains the sides of
two consecutive sections of each G;, (jn), each A; (jm) U f(4s,, (Gm))
misses the set of end points of the sides of the sections of G; (recall
(10.6)), and the Hausdorff distance from A;  (jm) to BdXj  is less
than m~!. The subframes G; and G;, (j1) are drawn in Figure 13.

Next, define a subframe Gz of F5 and a subsequence S of G;, (j1),
Gi,(j2), ... such that Go refines Gy, each end section of G contains an
end section of G;, and the conditions described in preceding paragraph
for G; and G;, (41), Gi, (j2), - . . hold for G, and S. Assume without loss
of generality that S = Gi, (j2), Gi;(j3),... . Repeat this procedure to
define gg, g4, e
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For each positive integer m, let A, = A;_ (jm)-

Since the sequence Bd X;,Bd Xs,... converges to Bd X, it follows
from (12.19) (d,,) that

(12.20) Ay, Ag, ... converges to Bd X.

By (12.13), (12.14), (12.19) (am)—(cm) and Lemma 7.8, for each
positive integer m,

(12.21) A,, agrees with G,
and either

(12.22) F(Am) C (UGm)\X
or

there exists a subarc B,, of Ay,, Bm = Bi,, (jm),

(12.23) such that f(B,,) C (UG,,)\X and f(B,,) agrees with G,,.

It follows from (12.15)—(12.18) and (12.20)—(12.23) that X has Prop-
erty 12.9. Hence, there exists a subcontinuum of Ty (L) that is irre-
ducible with respect to Property 12.9.

For convenience, we assume that

(12.24) no proper subcontinuum of X has Property 12.9.

By Lemma 7.7, there exists a positive integer o such that § > 2!~
and no pair of consecutive sections of G, contains Bd X in its union.

Since X is in one element of D and f preserves the elements of D, by
(10.6), £ N f(Q.) = ¢ for some point z of Q.

Assume without loss of generality that for each integer m > «,

(12.25) SN F(Ap) = 6.

Let G1,G2,...,Gg be the consecutive sections of G,. For j =
1,2,...,86—1,1let H = U{G;:1<i<j}, and let C; be the common
side of G; and Gj4;.
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Let C = {C; : 2 < j < B —2}. Note that each element of C has
diameter less than J.

Form=o,a+1,... and j =2,3,...,8 -2, let Cj(m) = 4,, N Cj.

A point p of C;(m) is sent back by f if f(p) € H;; otherwise, p is
sent forward by f.

The arc A,, has the switch property if a component of A,,\ UC has
end points in UC that are sent in opposite directions by f.

Statement (12.22) is true for only finitely many integers m > a. To
see this, assume the contrary. Suppose without loss of generality that
(12.22) is true for each integer m > a.

For each integer m > a, if f sends two points of U{C(m):2 < j <
B — 2} in opposite directions, then, by (10.1), (12.22), and (12.25), A,,
has the switch property.

Suppose for infinitely many integer m > «, two points of U{C;(m) :
2 < j < 38— 2} are sent in opposite directions by f. Then infinitely
many elements of {A,, : m = a,a + 1,...} have the switch property.

Assume without loss of generality that there exists a component G of
(UGx)\ (X U X UUC) such that for each integer m > «, the arc A, has
the switch property on a component Y, of A,,\ UC that is in CI1G.

For each integer m > «, we have three cases.

Case 12.26a. Suppose f(ClY,,) C G (see Figure 14(1)). Then CI1G
is a section of G,, and Y,, has an end point in each side of C1G.

Case 12.26b. Suppose f(ClY,,) intersects two components of
(UGa)\(ZUXUQG) (see Figures 14(2) and 14(3)). Then C1G is a section
of G, and there exists an arc A in ClY,, such that f(A) C CIG and
f(A) intersects each side of C1G.

Case 12.26¢c. Suppose f(ClT,,) intersects only one component of
(UGa)\(ZU X UG) (see Figure 14(4)). Then there exist an element C;
of C in CIG and an arc A in C1Y,, with an end point in C; such that
f(A) C C1G and C; N f(A) # ¢. In this case C1G is either a section of
G, or the union of the first two sections or the last two sections of G,,.

Since one of these three cases holds for infinitely many elements of
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FIGURE 14.

{Y,,:m=a,a+1,...}, there is a continuum L’ in X N ClG with the
following properties:

There exist a sequence @1, ®,, ... of arcs in Q, converging to L’ and
a sequence Hi, Ha, ... such that for each positive integer m,
(12.27) H.,,, is a subframe of Fp, 1 q,
(12.28) UH.n, C Cl1G,
(12.29) Hum+1 refines Hyy,,

(12.30) each end section of H,, contains an end section of H 41,

(12.31) ®,, agrees with H,,,

and
either f(®,,) C (UHm)\L' or there exists a subarc
(12.32) V,, of ®,, such that f(¥,,) C (UHm)\L'
and f(¥,,) agrees with #,,.
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Since A C S*\T,(L'), it follows that L' = Bd T (L').

By the argument for (12.6), there exists an arc segment X' in
M\T,(L’) that lies in one element of D and has an end point in L'. By
(12.4), we can assume without loss of generality that Q, N Cl1Y' = ¢.

Define a sequence J1, J2,... with the property that each J,, is an
m-frame on (Ty(L'),X’) refined by Jpm1.

There exists a sequence K1, K, ... such that for each m,
(12.33) K., is a subframe of Jpp,
(12.34) Km+1 refines Ky,
(12.35)

each end section of IC;,, contains an end section of ,,,+;, and

(12.36) there exists an integer i,, such that

(a) UH,;,, C (UK,,)\Bd (T, (L) UUTw),

(b) the interior of each interior section of K, contains the sides of
two consecutive sections of H;, , and

(c) no end point of a side of a section of K, belongs to ®;, U f(®;,,).

It follows from (12.31)—(12.36) that T, (L") has Property 12.9. Since
Cl@G is either a section or the union of two consecutive sections of
Ga, it follows that BdX ¢ L. But T,(L') and X are continua
that do not separate S? and L' C BdX. Consequently, T, (L') is a
proper subcontinuum of X, and this contradicts (12.24). Hence, for
all but finitely many integers m > «, the map f sends each point of
U{C;(m):2 < j < B — 2} in the same direction.

Assume without loss of generality that for each integer m > «, every
point of U{C;(m) :2 < j < 8 — 2} is sent back by f.

The set {m : f(An N (G1UG2)) € G1 UGz} is finite; for otherwise,
a case similar to Case 12.26c (with C1G = G1 U G3 and C; = ()

holds for infinitely many elements of {A,, : m = a,a + 1,...}. It
can be shown that this implies the existence of a continuum L’ in
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X N (G1UGy), asequence @1, P,,... of arcs in Q, converging to L',
and a sequence Hj, Ha, ... that satisfy (12.27)—(12.32). The argument
following (12.32) shows that this is impossible.

Hence, we can assume without loss of generality that for each integer
m > a,

(1237) f(Am n (Gl U Gz)) C G1 UGs.

For each positive integer m, let H,,, be the collection consisting of all
sections of G, 1o that intersect Int (G1 U G2), and let @, be an arc in
Amta N (G1 UGy) that intersects Cy and agrees with #,,.

The sequence @1, ®,,... converges to a continuum in X N (G1 U Gy).
For each positive integer m, conditions (12.27)—(12.31) (with C1G =
G1 UG?y) are satisfied. By (12.22) and (12.37), f(®,,) C (UH,,)\X for
each positive integer m. According to the argument following (12.32),
a proper subcontinuum of X has Property 12.9, and this contradicts
(12.24). Hence, (12.22) is true for at most finitely many integers.

Assume without loss of generality that (12.23) holds for each integer
m > Q.

By the preceding argument, for infinitely many integers m > «,
the arc A,, does not have the switch property on a component of
A, \UC that is contained in B,,. Hence, we can assume without loss of
generality that for each integer m > «, every point of B,, NU{C;(m) :
2 < j < B —2} is sent forward by f.

It follows from a similar argument that, for infinitely many integers

m 2> q,

(12.38)  f(p) ¢ H; for each point p of B,,\Hj,, 2<j<pB-2.

We assume without loss of generality that (12.38) holds for each
integer m > a.

Since for each positive integer m, the arc B,, ;. has the properties
given in (12.23) and (12.38), there exist a sequence @1, ®o,... of arcs
in Q, converging to a continuum in X N (G1 U G2) and a sequence
Hi,Hz,... such that for each positive integer m,

(12.39) H,, is a subframe of F, 14,
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(1240) UHm C G1 U Gg,
(12.41) Hum+1 refines Hp,,

(12.42)  each end section of H,, contains an end section of H 41,

(12.43) ®,,, agrees with H,,,
(12.44) b, NCy # ¢,
and

there exists a subarc ¥,,, of ®,, such that

12.45
( ) f(¥m) C (UHm)\X and f(¥,,) agrees with Hp,.

By the argument following (12.32), a proper subcontinuum of X
has Property 12.9, and this contradicts (12.24). Hence, Case 12.2a
is impossible if £ is countable.

Case 12.2b. Suppose L € U. Then there is a point x of L, such that
P, C L, and L, = L. Assume & is countable. The argument given
in Case 12.2a can be modified by replacing the subsets of Q,., with
subsets of P, and applying Lemmas 9.1 and 9.2 instead of Lemmas 8.1
and 8.2 to get a contradiction. Hence, (12.1) is true.

13. Triods and bridges. A continuum 7 is a triod if there is a
point v of T such that T\{v} is the union of three disjoint half-open
arcs.

Since S% does not contain uncountably many disjoint triods [36],

(13.1) only countably many elements of £ contain triods.

An element F of £ is bridged if there exists a sequence py,ps, ... of
points of L converging to a point p of E such that

the sequence of arcs [p1, f(p1)], [p2, f(p2)],... converges to a

(13.2) , :
continuum S that does not contain [p, f(p)].
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Since f is continuous, {p, f(p)} C S. It follows from (13.2) that
SN [p, f(p)] is not connected. Hence, S U [p, f(p)] separates S? [32,
Theorem 2, p. 506].

Note that

(13.3) L intersects only one complementary domain of S U [p, f(p)]-

To see this, assume L intersects two complementary domains A and
B of SU[p, f(p)]- Let C and D be disks such that C C A, D C B,
LNIntC # ¢, and L NInt D # ¢. For each point = of UE, by (11.6),
P,NC # ¢ and P, N D # ¢. Hence, by (12.1), there exist four
elements E1, Eq, E3, and Ey of E\({Dp} U{Dp, : n =1,2,...}) such
that E; NC' # ¢ and E; N D # ¢ for i =1,2,3, and 4.

For i =1,2,3, and 4, let F; be an arc in F; that is irreducible between
C and D. Since C C A, D C B, and D, # E1, Es, E3, or Ejy, for each
i, there is a point s; of F; in S. Assume without loss of generality that
C U DU F; U Fy separates sy from s4 in S2.

Since C U D C S2\S, there is an integer k such that [p,, f(p,)] N
(CUD) = ¢ for each n > k. Since {s2,s4} C S, there is an
integer n > k such that [p,, f(p,)] intersects both the sa-component
and the s4-component of S*\(C' U D U Fy U F3). It follows that
[Pr, f(Pn)] N (F1 U F3) # ¢, and this contradicts the fact that Fy C E;
and F3 C E3. Hence, (13.3) is true.

Observe that

(13.4) only countably many elements of £ are bridged.

To see this, assume the contrary. By [9, Theorem 3'], there exist a
bridged element E of £, a point p of E, and a continuum S satisfying
(13.2) with the following property. For each point g of [p, f(p)]\S
and each arc A that crosses [p, f(p)] at ¢, each component of A\{q}
intersects a bridged element of £. Since each element of £ is contained
in L, this contradicts (13.3). Hence, (13.4) is true.

14. Our principal theorem.

Theorem 14.1. Let M be a continuum in the plane R2. Suppose D
18 a decomposition of M whose elements are uniquely arcwise connected
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and f is a map of M that preserves the elements of D. Then f has a
fixed point.

Proof. Assume f moves each point of M.

As in Section 11, define the collection VW and let L be a subcontinuum
of M that is a maximal element of VW with respect to ——.

Let G1,Ga,... be the elements of a countable base for R? that
intersect L. For each positive integer n, let H, = {p € L : [p, f(p)] N
ClG,, = ¢}. Since f is fixed-point free and preserves the elements of
D, no element of D is contained in an arc. Hence, by (12.1), L is not
an arc. Therefore, L =U{H,:n=1,2,...}.

By the Baire category theorem, there is an integer n such that Cl H,,
contains a nonempty open subset H of L. Since H, N ClG, = ¢, it
follows that H N (L\ClG,,) # ¢. Let J be an open subset of R*\G,,
such that J N L is a nonempty subset of H.

As in Section 12, let £ be the collection of elements of D that lie in
L.

Let & = {FE € £ : E is not bridged and does not contain a triod}.
By (12.1), (13.1) and (13.4), £ is uncountable.

By (11.6), for each point p € UE’,
(14.2) L,=L.
Let p be a point of an element F of £.

For each point ¢ of P,, by (10.6), ¢ € [p, f(q)]-

Since E does not contain a triod, it follows that

(14.3) f(q) € P, for each point g of Py,
For each point g of JN E,

(14.4) lg, f(@)] N Gr = ¢.

To see this, let g1, q2, . - . be a sequence of points of H,, that converges
to g. For each positive integer i, the arc [g;, f(g;)] misses G,,. Thus
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FIGURE 15.

the limit set K of [g1, f(q1)], [g2, f(g2)], ... misses G,. Since E is not
bridged, K contains [g, f(q)]. Hence, (14.4) is true.

For each element E of &', let p(E) be a point of E.

By (14.2), there is an arc A(F) in P, that contains a set {g;(F) :
1 < j <12} such that ¢:1(F) < ¢2(F) < -+ < ¢12(E), the end points
of A(E) are ¢1(F) and ¢;2(F), and for each odd integer k, 1 < k < 11,
ar(E) € J and gi41(E) € Gn.

For each element E of &', let g be a homeomorphism of [0, 1] onto
A(F) such that gg(0) = ¢1(F). Let G denote the function space {gg :
E € &'} with the topology of uniform convergence [32, p. 89]. Let u
be the metric on G defined by u(g9g, gr) = maximum {p(gg(t), gr(t)) :
te€0,1]}.

Since G is an uncountable separable metric space, G contains a limit
point gg,. Note that A(Ep) is the arc in the element Ey of £’ associated
with the limit point gg, of G (see Figure 15).

By (14.3) and (14.4), f(gx(Ev)) € (gx(Ev),qr+1(Eo)) for each odd
integer k, 1 < k < 11.
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Let {Q; : 1 < j < 12} be a collection of disjoint disks in R? such
that

(14.5) g;(Ep) € Int Q; for each integer j, 1 < j <12,

(14.6)
Qr C J and Q41 C Gy, for each odd integer k, 1 < k < 11,

and

(Qr-1UQrUgr—1(Eo), qr(Eo)]) N fF(LNQk) = ¢

(14.7) .
for each odd integer k£, 3 < k < 11.

For each integer j, 1 < j < 12, let R; be a circular disk in Int Q);
centered on ¢;(Eyp) such that

(14.8) the g;(Eo)-component A; of Q; N A(Ey) contains R; N A(Ey).

Let S be the rectangular region {(z,y) € R? : 1 < z < 12 and
-1<y<1}

{(z,y) eR?*:j==zand -1 <y <1}
For each integer j, 1 < j < 11, let U; be the rectangular region

{(z,y) eR*:j<z<j+land —1<y<1}.

By (14.5), (14.6), and (14.7), there exists a homeomorphism & of R?
onto R? that sends {(z,y) € R?:1 <z <12 and y = 0} onto A(Ey)
such that
(14.9)

h((4,0)) = g;(Eo) and h(T;) C R, for each integer j, 1 < j <12,

For each integer j, 1 < j < 12, let T; be the vertical interval

(1410) h(S) n R1 = h(Ul) n R1 and h(S) n R12 = h(Uu) n R12
(recall (14.8)), and

(Qk U Q1 Uh(Uk)) N (LN Qrt1) = ¢

(14.11) .
for each even integer k, 2 < k < 10
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(recall (14.7)).

Let n be a positive number less than p(A(Ep), R*\(R; U Rj2 U
h(S))), the radius of Ry, the radius of Rjs, and the minimum of
{p(Rj, A(Eo)\A;) : j =1,2,...,12} (recall (14.8)).

Let gg, and gg, be distinct elements of G\{gg,} such that
/'L(gan {gE17gE2 }) <.

For i = 0,1, and 2, define g; = gEiggol.

Note that, for ¢ = 0,1, and 2,

(14.12) g,(A(Eo)) C Int (Rl UR2 U h(S)),

(14.13) 9i(q;(Ev)) € R; for j =1 and 12,

the g;(g;(Fo))-component of Q; N g;(A(Ep)) contains

14.14
( ) R; N gi(A(Eyp)) for j =1,2,...,12,

and
(14.15)
for all integers j and k, 1 <j<k <12, every point of R; N g;(A(Ey))
precedes every point of Ry N g;(A(Ep)) with respect
to the order on g;(A(Ejp)).

For i = 0,1, and 2, let 0;,; be the last point of g;(A(Ey)) that belongs
to Bd R1, and let ¢; 12 be the first point of g;(A(Ey)) that belongs to
Bd R;2 (recall (14.13)).

By (14.12),

(14.16) (U,’71, 0@',12) C Int h(S)\(Rl U ng) for i = 0,1, and 2.

Let V4 and V3 be the two arcs in h(Bd S) that are irreducible between
R; and Ry (recall (14.9) and (14.10)).

For i =1 and 2, let ¢; be the end point of V; in R, and let d; be the
end point of V; in Rys.



FIXED POINTS OF PLANE CONTINUA 173

By (14.9) and (14.10), V4 and V> each contain an end point of h(T5).
By (14.16), (04,1, 0i12) Nh(T5) # ¢ for i = 0,1, and 2 [37, Theorem 28,
p. 156]. Hence, there exist arc segments ® and ¥ in Bd R; U Bd Ry
such that {01 : 1=0,1,2} C ®, {0712 : ©=0,1,2} C ¥, and the end
points of ® and ¥ are ¢y, ¢z and dy,ds, respectively [37, Theorem 28,
p. 156].

Assume without loss of generality that og ; separates oq,; from oo
in ®. Then o¢ 12 separates o112 from oy 12 in ¥ [37, Theorem 28, p.
156].

For j =1 and 12, let X; be the arc segment in ® U ¥ with end points
01,5 and 02 5.

For j =2,3,...,11,let ¥; be an arc segment in h(T;) whose closure is
irreducible between [(71,1,01712] and [0’2,1,(72,12]. Note that [(70,1,00712]
intersects each X; [37, Theorem 28, p. 156].

Fori=1,2and j =2,3,...,11, let 0; ; be the end point of >; that
belongs to [0;1,0;,12).

Fori=1,2and j =1,2,...,11, by (14.9) and (14.15), 0; ; precedes
0i,j+1 with respect to the order on g;(A(Ey)).

For ] = 1,2,.. . ,6, let Bj = Egj_l.

Fori=1,2and j=1,2,...,6,let a;; = 0;25_1-

Let x denote the point g1(Ep).

For j =1,2,3, and 4,

(14.17)
every arc in P, that is ordered from B;; to B; intersects Bj».

To see this, assume there is an arc H in P,\Bj;. that is or-
dered from Bj;; to Bj. The simple closed curve ¥o; U Bjia U
[0'172j,(l17]'+2] U [(7212]', a2,j+2] separates Bj from Bj+1 in RQ. Since Pw
misses [a1,1, a1,6] U [a2,1, a2,6], the arc H intersects Xs;. Let v be the
first point of H that belongs to ¥;. Let u be the last point of H that
precedes v and belongs to Bj;1.

Let A be the disk in R? bounded by ¥2; U Bjt1 U [07,2j,a1 j4+1] U
[0272j,a27]-+1]. By (14.14) and (14.15), Ezj U B]'+1 U [0'172j,(l17]'+1] U
[0272j,a27j+1] is in ng U Q2j+1 U h(Ugj) Hence, ng U Q2j+1 U h(UQ])
contains A. The arc [u,v] misses Bjyo. Thus, [u,v] C A. Since
u € LNBjy1 CJand v € LNXy; C Gy, it follows from (14.3) and
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(14.4) that f(u) € [u,v], and this contradicts (14.11). Hence, (14.17)
is true.
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Furthermore,

(14.18) every arc in P, that is ordered from B4 to Bs intersects Bj.

To see this, let H be an arc in P, that is ordered from B4 to Bs. Let
v be the first point of H that belongs to Bs. Let u be the last point
of H that precedes v and belongs to By. By (14.17), [u,v] N Bs # ¢.
Note that [u,v] N By = {u} and [u,v] N ([a1,1, a1,4] U [a2,1, a2 4]) = ¢.
Since By U B4 U [ay,1,a1,4) Ulaz 1, az,4] separates Bz from Bs in R?, it
follows that [u,v] N By # ¢. Hence, (14.18) is true.

Moreover,

(14.19) every arc in P, that is ordered from By to By intersects Bs.

To see this, let H be an arc in P, that is ordered from B; to Bjy.
Let v be the first point of H that belongs to Bs. Let u be the last
point of H that precedes v and belongs to B;. By (14.17), with j = 4,
the arc [u, v] misses Bs. Since [u,v] N ([a1,2,a1,5] U [az,2,a2,5]) = ¢ and
B> U BsU|ay,2,a1,5]U[as,2, as 5] separates By from By in R?, it follows
that Bs N [u,v] # ¢. Hence, (14.19) is true.

Let z be the first point of A(Ey) that belongs to By. Let y be the
last point of A(Ey) that precedes z and belongs to By. Since L, = L
and A(Ep) N By # ¢, it follows from (14.17), (14.18), and (14.19) that
there exist a point u of By NP, and a point w of By N P, such that
(y,u) misses By and intersects By and Bs, and (u,w) misses By and
intersects Bz and Bs (see Figure 2 in Section 4).

Let C} be an arc segment in B such that C1C is irreducible between
y and [u,w].

Let v be the end point of C; opposite y. Let 2 be the complementary
domain of Cy U [y, v] that contains w.

Asin Section 4, for i = 1 and 2, let A; = [a;,1, a;,4]. By (4.4), C1U[y, v]
separates A; from Ay in R%. By (4.7), P, C €. Since A; U Ay C L,

this contradicts the fact that L, = L,. Hence, f has a fixed point.
]

15. Applications to arc-component-preserving maps.
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FIGURE 16.

Theorem 15. Suppose M is a plane continuum that does not contain
a simple closed curve. Then every arc-component-preserving map of M
has a fized point [19, Q. 4.24, 29, Theorem 12.11, p. 149].

Proof. Let D in Theorem 14.1 be the collection of arc components of
M. |

Corollary 15.2. If M is a uniquely arcwise connected plane contin-
uum, then M has the fized-point property [17].

Proof. Let D = {M}. O

These results do not extend from the plane to all 2-manifolds. Figure
16 is Young’s uniquely arcwise connected continuum [45] without the
fixed-point property embedded in a torus.

16. The Poincare-Bendixson theorem. Let ¥ be a continuous
flow on the plane R?. As in Section 2, for each real number ¢, let
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Ye(p) = (¢, p).
Suppose M is an invariant continuum under .

Note that

(16.1) M contains a closed orbit or an equilibrium point of .

To see this, let D be the collection of orbits of ¥ in M. Assume
M does not contain a closed orbit. It follows from (2.2) that no
element of D contains a simple closed curve. Thus, each element of
D is uniquely arcwise connected. By Theorem 14.1, the restriction of
each ¥; to M has a fixed point. For each positive integer n, let A,, be
the nonempty closed subset of M consisting of the fixed points of ¢y /on.
By (2.2), A1, As,... is a decreasing sequence. Let F' be the nonempty
set N{A, :n=1,2,...}. Every point of F is fixed under 1); for all ¢ of
the form 1/2™ with n > 1. By (2.2), every point of F' is fixed under
for all dyadic rationals ¢ = m/2". Since the dyadic rationals are dense
in R, each point of F is fixed under ¢, for all ¢. Hence, (16.1) is true.
]

We are now ready to prove the Poincare-Bendixson theorem:

Theorem 16.2. Fvery nonempty compact limit set of a planar
continuous flow ¥ that does not contain an equilibrium point is a closed
orbit [24, p. 248].

Proof. Assume the limit set L, (p) of ¥ is a nonempty compact set
that does not contain an equilibrium point.

Let P, denote the set {1 (p) : 0 < o < o0}. For each point g of P,
let P, denote {¢5(p) : & < B < 00 and 9, (p) = ¢}.

We assume that P, is a ray; for otherwise, P, contains a simple
closed curve J, and by (2.2), J = L, (p).

By (2.2) and the continuity of ¢, the limit set L, (p) is an invariant
continuum under .

By (16.1),

(16.3) L, (p) contains a closed orbit J;.
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FIGURE 17.

To complete this proof, we will show that

(16.4) i = Lu(p).

Suppose J; NP, # ¢. Then, since J; is an orbit, P, C J;. Thus,
L,(p) C Jy, and (16.4) follows from (16.3).

Therefore, we assume

(16.5) JiNP, = 6.

Let a; ¢ be a point of J;. Let 7 be one-sixth the period of J;.

For j =1,2,3,4, and 5, let a; ; denote the point ¥ (a1,0) on Jy (see
Figure 17).

For each point ¢ of R? and each positive number «, let A (g, o) denote
the arc {¢:(¢) : 0 <t < a}.

By the continuity of v, there exist seven disks Yp,Yi,...,Ys in R?
such that

16.6 ar; €IntY;  for j=0,1,2,3,4, and 5,
3] J
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(16.7) Yo C Y,
(16.8) Y; N Jy is an arc for j =1,2,3,4,5, and 6,

. the elements o 1 <9< are pairwise disjoint,
(16.9) he el f{Y] 1<j<6} irwise disjoi

: +(¥;) CYin orj=yu,1,2,09,%, an )
16.10 Y- (Y; Yy for 7 =0,1,2,3,4 d>5

(16.11)  A(g,7) misses U{Y; :2 < j <5} for each point ¢ of Y,

and

for j =1,2,3,4, and 5, if ¢ is a point of Yj, then A(q,7)

(16.12) . ) )
misses U{Yy:1<k<6andj#k#j+1}.

Let Z be an open set in R? that contains J;. To establish (16.4), it
suffices to prove the existence of a point w of P, such that P,, C Z.

Using polar coordinates, we define @ to be the open annulus {(r, ) €
R%:1<r <3}

For j = 1,2, and 3, let R; be the circle {(r,0) € R? : r = j}.

For j = 0,1,2,3,4, and 5, let S; be the interval {(r,0) € R? : 1 <
r <3 and 6 = jr/3}.

Let h be a homeomorphism of R? onto R? such that h(Q) C Z;
h(Rz) = Jy; and h((2,j7/3)) = a1,; and h(S;) C Y; for j =0,1,2,3,4,
and 5.

By (16.3) and (16.5), P, intersects exactly one component T' of
h(Q)\Ji. Note that T is an open annulus whose boundary contains
h(R1) or h(R3). Assume without loss of generality that h(R;) C BdT.

For j =0,1,2,3,4, and 5, let U; denote {(r,d) € R*:1 < r < 3 and
(Gj—1)m/3<0<(j+1)n/3}.

Since a1, € L, (p) and 9 is continuous, there is a point ¢ of P, in
h(Uy) close to ai o such that

(16.13) A(q,67) C T,
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(16.14) or(a) € h(Up),
and
(16.15) for j =1,2,3,4, and 5, the arc A(q,67) intersects h(S;)

and no arc in A(q,67) is ordered from Y to Yj.

By (16.13), (16.15), and [37, Theorem 28, p. 156], there is a subarc
of A(g,67) in the disk h(ClU;) that separates aj 2 from h((1,27/3))
in h(ClU;). Hence, by (16.14), (16.15), and [37, Theorem 32, p. 181],
there is a simple closed curve Jo in h(Up) U A(g, 67) that separates J;
from h(R;) in R2.

Let V be the open annulus cobounded by J; and Jo.

For j =1,2,3,4, and 5, let B; be the arc segment in ~(S;)NV that has
a1,; and a point ag ; of Jo as end points. Note that {as,1,a25} C Py,.

Let z be a point of P, in Yy close enough to a; o so that

(16.16) Yer () € Yo
and
(16.17) A(z,127) C V.

For j = 1,2, and 3,

every arc in P, that is ordered from B;; to B;
(16.18) .
intersects Bja.

To see this, assume there is an arc H in Pm\BjJrz that is ordered from
Bj 1 to Bj. Let z be the first point of H in B;. Let y be the last point
of H in Bj; that precedes z. Let I be the arc in J1\{a1,0} from a; ; to
a1,j+2. Let A be the subarc of I' with end points a1 ; and a; j41. Since
P, contains [as j,as j+2] and does not contain a simple closed curve, it
follows from (16.5) that H misses I' U B 2 U [aa,j, a2 jt2]. Hence, the
disk bounded by the simple closed curve AU B; U Bj 1 U [az,j, a2 j+1]

contains [y, z].
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Since z € B; C Y, it follows from (16.12) that A(y,7) C [y,2]. By
(16.10), A(y, 7)NYj42 # ¢. By (16.6), (16.8), and (16.9), ANY;4» = 6.
Since AUB; UBj11UJag,j, a2 ;1] separates (y, z) from B; o, it follows
from (16.9) that Yjio N [a2;,a2,j+1] # ¢. Hence, there is an arc in
[a2,j, a2 j+1] that is ordered from Yjio to Y41, and this contradicts
(16.15). Therefore, (16.18) holds.

Furthermore,

(16.19) every arc in P, that is ordered from By to Bj intersects Bj.

To see this, let H be an arc in P, that is ordered from B, to Bs. Let
z be the first point of H that belongs to Bs. Let y be the last point of
H that precedes z and belongs to By. By (16.18), [y, 2] N Bs # ¢. Let
T be the arc in Ji\{a1,0} from a11 to a1,4. Note that [y, 2] N Bs = {y}
and [y, 2]N(T'U[az2,1, a2,4]) = ¢. Since TUB;UB4U[a2 1, a2 4] separates
Bs from Bs in R?, it follows that [y,z] N By # ¢. Hence, (16.19) is
true.

Moreover,

(16.20) every arc in P, that is ordered from By to By intersects Bs.

To see this, assume there is an arc [y,u] in P,\Bs that is ordered
from By to By. Let I' be the arc in Ji1\{a1,0} from a;2 to a1 5. The
simple closed curve I'UB2UBsU[as 2, as 5] separates By from By in R?.
Since P, contains [az 2, a2 5] and does not contain a simple closed curve,
P, Nlazz2,a25] = ¢. By (16.5), P, N T = ¢. Hence, [y, u] N Bs # ¢.

Let z be the last point of [y, u] in Bs. Since u € By C Ya, it follows
from (16.12) that A(z,7) C [z,u]. By (16.10), A(z,7) NYs # ¢. By
(16.6)—(16.9), I'NYs = ¢. Since 'UByUBsU[az,2, a2 5] separates (z, )
from By, it follows from (16.9) that YsN[az 2, az2,5] # ¢. Hence, there is
an arc in [a272, a2,5] that is ordered from Y5 to Ys, and this contradicts
(16.15). Therefore, (16.20) holds.

As in Section 4, for i = 1 and 2, let A; be the arc in J; that goes from
a1 to A4 and contains a; 2.
By (16.10), (16.12), (16.16) and (16.17), there exist points y and u

of By N A(z,87) such that (y,u) misses By and intersects By and Bs
(see Figure 2 in Section 4). Furthermore, there exists a point w of
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B;N A(u,47) such that (v, w) N By = ¢. By (16.18) and (16.20), (u,w)
intersects By and Bs.

Let C} be an arc segment in B such that C1C is irreducible between
y and [u,w]. Let v be the end point of C; opposite y. By (4.4), the
simple closed curve C; U [y,v] separates A; from Ao in the annulus
ClV. Hence, J; and C; U [y, v] cobound an open annulus W in V.

Let Q be the complementary domain of C; U[y, v] in R? that contains
w. By (4.7), P, C Q. Thus, L,(p) C CI1Q. Since J; C L,(p) and
J1 N (Cy U [y,v]) = ¢, it follows that J; C Q. Note that v € BdQ and
(v, w) C Q\Jy. Therefore, w € W. Since P, N (J1 UCL U [y,v]) = ¢, it
follows that P,, C W. Since W is in the arbitrarily chosen open set Z,
(16.4) is true. This completes the proof of Theorem 16.2. o

APPENDIX

A summary of the proof of our principal theorem. Let M be
a plane continuum and D be a decomposition of M whose elements are
uniquely arcwise connected. Suppose f is a map of M that preserves
the elements of D.

To prove that f has a fixed point, assume the contrary. For each
point x of M, there exists a Borsuk ray P, in M that has a limit L,
with the properties described in Section 10. The Borsuk ray P, is the
path of the dog in Bing’s dog-chases-rabbit arguments [10, p. 123].

It is convenient to assume that M is embedded in a 2-sphere S2. In
Section 11, we use Zorn’s lemma to define a subcontinuum L of M such
that for each point x of L either P, ¢ L or L, = L.

We define £ to be the collection of elements of D that are contained
in L. The proof breaks down into two cases.

Case 1. Suppose & is countable. By definition, L is either the
intersection of a nested sequence Ly, ,Ly,,... of limits of Borsuk rays
(Case 12.2a) or the limit of one Borsuk ray (Case 12.2b).

In our proof, a complete argument is given that rules out Case
12.2a. We summarize this argument in the next eight paragraphs. This
argument can easily be modified to eliminate Case 12.2b.

IfL=n{L,, :n=12,...}, we define Q,, to be U{P,, : n =
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1,2,...} with the linear order induced by the order on each of the
P, ’s. For each positive integer n, we have C1P, DL, D CIP

Tpni1®

According to Lemmas 6.1 and 6.47, there exist a component A of
S?\L and a point y of P, such that y € A and P, C ClIA. The
set P, consists of y and all points of P,, that follow y. Similarly,
Q, is defined to be y and all points of Q, that follow y. Note that
Q, C ClA.

Borsuk’s proof [13] that every hereditarily unicoherent arcwise con-
nected continuum has the fixed-point property is based on a related
lemma. The limit of each ray in a hereditarily unicoherent arcwise
connected continuum is a point. Hence, for such a continuum Cl A is
S2.

To establish the existence of A, we first show that P,, cannot
enter a complementary domain 2 of L, leave Cl{2, and then return
to Q. Thus, if A does not exist, P,, runs through infinitely many
complementary domains of L without returning to any one. Since
L C L., it follows that P,, must keep doubling back. Hence, L
contains an indecomposable continuum and this contradicts Lemma

5.1.

There exists an arc segment Y in A contained in an element of D
that has one endpoint in L. The nonseparating plane continuum S?\A
is the intersection of a nested sequence of polygonal disks. Two of the
polygonal disks are drawn in Figure 10 in Section 7. In this figure,
T, (L) = S\A.

Let R be the annular region that is the complement of S?\ A relative
to a polygonal disk. The region R is divided into sections by a collection
of disjoint half-open arcs that run from L to the boundary of the
polygonal disk. This collection of sections is called a frame. One of
the dividing half-open arcs is in C1X. According to Lemma 7.7, we can
assume that the intersection of L and the closure of a section is always
a proper subcontinuum of L.

At most one ray in Q, intersects ¥. Therefore, instead of circling
around S?\A, the rays of Q, must run back and forth through the
consecutive sections of a frame as they get closer and closer to L. Prop-
erty 12.9 involves a sequence of frames on S?\ A with this condition. In
Bing’s terminology, this condition asserts that the dog and the rabbit
are repeatedly in one of the sections of the frame at the same time.
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Consequently, there exists a proper subcontinuum of S*\A that has
Property 12.9.

Using the Brouwer reduction theorem, we define a compact connected
set X in S?\A that is irreducible with respect to Property 12.9. Either
f(BdX) Cc BdX or BdX C f(BdX). Since f is fixed-point free, X
is not a point. Therefore, X is a nonseparating plane continuum and
the above argument for S>\ A can be modified to show that X has a
proper subcontinuum with Property 12.9. This contradiction of the
irreducibility of X rules out Case 1.

Case 2. Suppose £ is uncountable. We define disjoint open subsets
J and G,, of S? that intersect L and an uncountable subcollection &’
of £ with the following property. For each point z of J N (UE’), the arc
[z, f(z)] is in P, and misses G,.

For each point = of L N (UE'), we have that L, = L. Hence, each
element E of £ contains an arc A(E) that starts in J, ends in G,
and runs back and forth five times between J and G,,. The order
of each A(E) agrees with the order of a Borsuk ray. Since there are
uncountably many of these disjoint arcs, we can find three that run
back and forth in the parallel manner pictured in Figure 15 in Section
14. Two of these arcs are the sides of a zig-zagging strip S that contains
the third arc A(Ejy).

Let x be the first point of A(Ep). Since S is very narrow and the
rabbit cannot get too far ahead of the dog in S, each time P, passes
through S, it enters through the disk (); at one end of S and leaves
through the disk Q2 at the other end of S (see Figure 15). Thus,
A(Ey) is not in L,, and this contradicts the fact that L, = L. Hence,
Case 2 is impossible. Therefore, f has a fixed point.
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