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THE COINCIDENCE NIELSEN NUMBER
ON NON-ORIENTABLE MANIFOLDS

ROMAN DOBRENKO AND JERZY JEZIERSKI

ABSTRACT. The coincidence Nielsen theory is generalized
onto the pairs of maps between non-orientable manifolds. The
formula for the Nielsen number for a pair of self-maps of the
Klein bottle is given.

Introduction. The Nielsen fixed point theory [3, 10] was extended
[11, 3] into the coincidences of maps (f,g) : M — N between closed
oriented manifolds of the same dimension. This generalization used the
notion of coincidence index which is defined in orientable case [12]. In
this paper we drop the orientability assumption of M and N. Now we
cannot follow the procedure from [3] since there is no suitable index
theory. Instead of this, we introduce in Section 1 the semi-index of a
Nielsen class. The idea of this semi-index was inspired by the paper
of B.J. Jiang [9]. At first we define the reducibility relation on the
Nielsen class. Then we try to split this class onto pairs of points in this
relation. The number of remaining points is taken for our semi-index.
It is a nonnegative integer, a homotopy invariant, which allows us to
get the Nielsen number as before. Now any pair of continuous maps
between two smooth manifolds (f,g) : M — N has at least N(f,g)
coincidence points. On the other hand, we prove the Wecken theorem
under the assumption dim M = dim N > 3. Thus, in this case N(f, g)
is the best lower bound of the number of coincidence points.

In Section 2 we find a dependence between this Nielsen number of a
pair (f, g) and of its lifts to covering spaces. We apply this dependence
in Section 3 to compute N(f,g) for all pairs of self maps of the Klein
bottle.

The authors would like to thank the referee for the preprint [6] which
enabled us to simplify the last section.

1. The Nielsen number. Let u and v denote paths in a topological
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space X. We will call them homotopic and we will write u ~ v if
and only if u(0) = v(0), u(1l) = v(1) and they are fixed end-points
homotopic. If (f,g) : X — Y are continuous maps, then we denote the
coincidence set of these maps by ®(f,g) = {z € X : fz = gz}. We will
say that two coincidence points z,y € ®(f,g) are Nielsen equivalent
if and only if there exists a path w joining them such that fw ~ gw.
This is an equivalence relation, and we will denote the quotient set by

®'(f,9)-

Let E be a real vector space of finite dimension. We will denote
by a = [(a1,-.. ,ax)] the orientation of E determined by the ordered
basis (a1,...,ar). Let E = Ey ® Es, and let a = [(ay,...,a)],
B = [(b1,...,b1)] be fixed orientations of E; and Es, respectively.
Then a A 8 will stand for the orientation of E determined by the basis
(a,...,ak,b1,...,b1). This operation is associative: (¢ AB) Ay =aA
(BAY). Let ¢ : E — E' be a monomorphism, and let a = [(aq, ... ,ar)]
be an orientation of E. Then ¢ determines an orientation of ¢(E) by

¢(a) = [(¢(ar), ..., plax)].

By a (local) orientation of a smooth manifold M at the point z, we
will mean an orientation of the tangent space T,M. Let V and W
be two smooth manifolds. The pair of maps (f,g) : V — W will be
called transverse if and only if both f and g are smooth and, for any
coincidence point € ¢(f,g), the difference of the induced tangent
maps Ty f — Tpg : T,V — Tf,W is an epimorphism. Two smooth
maps f and g are transverse if and only if the graphs I'y = {(z, fz) €
VxW;z eV} Ty = {(z,9z) € VxW;z € V} are transverse as
the submanifolds of V' x W [7]. Then ®(f,g) is a submanifold of V,
dim ®(f,9) = dimV — dim W and §®(f,g) C 6V (here § denotes the
boundary of a manifold).

The following lemma is an easy consequence of the transversality
theorems [7]:

Lemma (1.1). Any pair of maps (f,g9) : V — W is homotopic to
a transverse pair. Moreover, if the restriction (f,g)|lsy : 6V — W is
transverse, then we may assume that this homotopy is constant on 6V .
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Let M, N be two closed smooth connected manifolds of the same
dimension, (f,g) : M — N a transverse pair, and let z,y € ®(f,9).
We fix local orientations:

ag(f)—of the graph I'y at the point (z, fz) and
ag(g)— of the graph I'y at the point (z, gz).

Since z € ®(f,g) and (f,g) is regular, so both graphs are transverse
one to another at the point (z, fz) = (z,gz), and we get the local
orientation ap = ap(f) A ap(g) of the manifold M x N at this point.

Definition (1.2). Under the above assumptions, we will say that z
and y reduce one another if and only if there exists a path w from z to
y such that

a) fw~gw.

b) if ai(f) denotes the translation of a(f) in I'y along the path
(w7 fw)7

a1(g) denotes the translation of ag(g) in I'y along the path (w, gw),

a denotes the translation of g in M x N along the path (w, fw),

then a1 (f) A ai(g) = —o.

We will say that the above path w reverses orientation in graphs.

Let A C ®(f,g) be any subset. It may be represented as ®(f,g) =

{ay,b1,... ,ak,bk;c1,... ,cs} where a;,b; reduce one another but so
does no pair ¢;,c;j, i # j. We call the elements {ci,... ,c,} free in this
decomposition.

Lemma (1.3). The number of free elements does not depend on the
decomposition of A.

Proof. Let us consider two decompositions i/ and B. For any a,b € A
we will write a Tb if @ and b form a pair in U/, a L b if @ and b form a pair in
B, a +> b if they reduce one another. Let us notice that the last relation
has the following odd-transitivity property: if ag <> ay,...,a5_1 ¢ ax
and k is odd, then ag <> ar. We will prove our lemma inductively with
respect to #A (# denotes cardinality).
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For #A = 0 the lemma is obvious, so we may assume that it holds for
#A < n and we assume that #A = n. If in both decompositions there
is no free element, then the lemma is evident so we suppose that a; is
a free element in Y. If a; is also free in B then we apply the inductive
assumption to A — a;. Otherwise, let us suppose that a; Las for some
as. Then as cannot be free in U/ so as T ag for some az. Then we look for
a4 such that az_Las. If such a4 exists, then the odd transitivity implies
a1 4> a4 so a4 cannot be free in U and a4 Tas for some as. Following
this procedure, we get a sequence aj lasTasl ... Llasg Tasgy; where
a; # aj for i # j, ay is free in U and agx41 is free in B. By the
inductive assumption the numbers of free elements in &/ and B contained
in A— (ay,...,a2,4+1) are also the same. |

Thus, we may define for a transverse pair (f,g) : M — N the
semi-index of a Nielsen class A as the number of free elements in any
decomposition and we will denote it by |ind |(f, g : A).

Lemma (1.4). Let (fo,90), (f1,91) : M — N be transverse pairs
and let (F,G) : M x [0,1] — N be a homotopy between them. Let
Ay € ®'(fo,90) correspond to Ay € ®'(f1,91). Then |ind |(fo, g0 :
Ap) = lind [(f1, 91 : A1).

Proof. For notational convenience, we assume that the considered
homotopy is given by (F,G) : [0,1] x M — N, and we may assume
that it is transverse (1.1). We may also assume that

F(t,z) = F(0,z), G(t,z) = G(0,z) fort<1/3
and
F(t,z) = F(1,z), G(t,z) = G(1,z) fort>2/3.

Then ®(F,G) is a one-dimensional submanifold of I x M orthogonal
to 61 x M.

At first we will consider a connected component of ®(f, g) with ends
(0,z), (0,2). We will show that the points z,z' € ®(fy,go) reduce
one another. Then we will show that if (0,z¢),(1,z1) are ends of
a component and (0,z(),(1,2}) are ends of the other one, then the
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points zg,zy € P(fo,90) reduce one another if and only if so do
zy,zy € ®(f1,01)-

The above information gives rise to the decompositions of Ay and A,
with the same number of free points.

Let A C ®(F, G) be a component parametrized by w(t) = (w1 (t), wa(t))
where w;(0) = wy(1) = 0. We are going to show that zp = wy(0)
and 21 = w2(1) € ®(fo,g0) reduce one another. Here we identify M
with 0 x M C I x M. We denote by 7; and v; the tangent and the
normal space to A C I x M at the point w(t). Let oy, 3; denote con-
tinuous families of orientations of v; and 7y, respectively. Let By be
directed inwards, then (3 is directed outwards. Since A is orthogonal
toM =0x M CIx M, o is an orientation of T, M. Let &; denote
the translation of o along ws. We will show at first that &; = —a;.
Let n; denote the orientation of the tangent bundle to I x wa(t) at
the point (0, w2 (t)) directed inwards. Then oy A B¢, & A my are trans-
lations of ag A By in I X M along homotopic paths w and (0,wsz) so
a1 A By = &y Am. But 1 = —np since B; is directed outwards and n;
inwards so &; = —o;g.

Now (Lar, fo)«ao and (1ar, go)«o are orientations of I'y, and I'y, at
the point (zo, fozo) = (2o, goo) and (1ar, fo)«, (1ar, go)«s are their
translations along the paths (ws, fowz) and (we, gows), respectively.
We denote o = (1, fo)«(@1) A (1ar,90)«(@1). Let b denote the
translation of (1as, fo)«(c0) A (Lar, go)« () in M x N along (ws, fows)-
We have to show that @« = —b. Let us consider the orientation
(]-I><M7 F)*(WO) A (].M, fo)*(ao) A (1M,go)*(a0) of the space I xMxN
at the point (0,zg, fozo). Since the paths (0,ws, fows), (w, Fw) are
homotopic in I x M X N, so the translations of the considered orientation
along these paths are equal. Translating along (0,ws, fows) we get
(Irxar, F)«(n1) A b; on the other hand, the translation along (w, Fw)
has the form (Lrxar, F)«(Bt) A (Lrscar, F)u(at) A (Lrxar, G)« (o) so for
t =1 we get

(Lrsear, F)w(Br) A (Lrsear, F)w(an) A (Trar, G)« (o)
(Lrxar, F)w(B1) A (Lrxar, F)«(61) A (Lrxr, G)«(G1)
(Lrxar, F)«(B1) A

This way we get the equality (1rxas, F)«(m) Ab = (1rsn, F)«(B1) A .
Now 7, = —p; implies a = —b.
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Now we consider two components A, A’ C ®(f,g) parametrized by
w(t) = (w1 (t),ws(t)), w'(t) = (wi(t),w)(t)) such that w; (i) = wi(7) =,
i =0,1. Let us denote x; = wa(i) z; = w)(%), ¢ = 0,1 and suppose that
the points zg,zy € ®(fo,go) reduce one another by the path o. We
will show that then z1,z] € ®(f1,91) reduce one another by the path

1 4
Wy =~ * 0 * Wy

Let us denote by 7,14, (7{,v;) the tangent and normal spaces to
ACIXxMxN,AN CcIxMxN, at the point w(t) (w'(t)). Let
oy, B be orientations of v; and ;. Let @y, 8; be such orientations of
T(a(t)) X M and T(O'(t))(I X O'(t)) that Qg = g a.Ild_B() = ,80. Let 0[2,,6{5
be orientations of v, 7{ such that oy = &1, = 1. Since $; and B}
have the same direction so after translating o along & = wy ! kO kwh we
obtain o). Thus the translation of T'f;(a1), (T'g1 (1)) in the graph T'y,
(I'y,) along (G, f&) ((6,96)) gives T'fi(a}) (Tgi(a})). Let us denote
a = Tfi(a)) NTgi(a)). On the other hand, let us denote by b the
translation of Tf1(oq) ATg1(a1) in M x N along (&, f&). It remains
to show that o = —b. To do this, we notice that the translation of
TF(B1)ATf1(c1)ATg1(cq) along (0,5, fo) is TF(B;) Ab. But the path
(0,5) is homotopic to w™! * (0,0) * w’, so we translate the considered
orientation in I x M x N along (w,Fw)~! x (0,0, foo) * (', Fw').
After the path (w, Fw)™ !, we get TF(By) A Tfo(ao) A T'go(p). The
assumption that z¢ and z{, reduce one another implies that after
(0,0, foor) we get —T'F(B1)AT fo(a1)ATgo(ay). At last, after (wh, Fw)),
we get —T'F(B1) AT f(ay) ATg(ey). Thus, b= =Tf1(a) ANTg1(af) =
—Q. [}

The above lemma allows us to extend the definition of semi-index
onto arbitrary continuous pairs (f,g) : M — N. We put

lind|(f,g: A) =|ind|(f, g : A")

where (f’,¢’) is any transverse pair homotopic to (f,g) and the class
A’ corresponds to A by this homotopy.

Definition (1.5). Let (f,g) : M — N be continuous. A Nielsen class
A € ®'(f,g) will be called essential if and only if |ind|(f,g : A) # 0.
Otherwise, it is called unessential. We define the Nielsen number of
(f,g) as the number of its essential classes, and we denote it by N(f, g).
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The above definition generalizes the definitions given in [12]. It
follows from

Lemma (1.6). Let (f,g) : M — N be a pair of maps between
orientable manifolds, and let A C ®(f,g) be a Nielsen class. Then
lind|(f,g: A) = |ind (f, g : A)| where the right side denotes the absolute
value of the ordinary coincidence index [12].

Proof. Let us fix orientations in M and N. We may assume that (£, g)
is transverse. Then A is finite and ind (f,g : @) = +1 or —1 for any
a € A. Tt follows from [3] that two points a,b € A reduce one another
if and only if ind (f, ¢ : @) = —ind (f, g : b). Thus, for a decomposition
A={ay,by,...,ap, bk :c1y... ,Cs}

S

ind(f,g:A):Zind(f,g:ci) =+s (or —s)

i=1

since ind (f, g : a;) = —ind (f, g : b;) and either all ind (f,g: ¢;) = +1
or all ind (f,9:¢;) = —1. O

Now it is evident that any pair of maps (f,g) has at least N(f,g)
coincidence points. On the other hand, we will prove:

Wecken Theorem (1.7). Let (f,g) : M — N be two continuous
maps between two smooth closed manifolds of the same dimension
k > 3. Then there exists a pair (f1,91) homotopic to (f,g) such that

#@(f1,91) = N(f,9)-

The proof needs some preparations. Let us recall at first “the
Whitney trick” [9]:

Whitney Lemma (1.8). Let R denote a smooth manifold without
boundary. Let P and @ be its smooth submanifolds such that their
dimenstons satisfy p+q =r. Let x,y € PNQ be transverse intersection
points. Let u and v be smooth arcs joining these points in P and @,
respectively, which are homotopic in R, and let u(I)Nv(I) =u{0,1} =
v{0,1} = {z,y}. Let ap(Bo) be a local orientation of P (Q) at the point
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x, and let ay; (B1) be its translation to the point y along the path u, (v).
Moreover, let us assume that oy A 81 is opposite to the translation of
ap A By in R along the path . Let p,q > 3. Then, for any open
neighborhood U of a(I) there exists a smooth isotopy constant outside
U carrying P onto a submanifold P’ such that P'NQ = PNQ —{z,y}.

Now we modify cancelling and creating procedures into the nonori-
entable case [10, 3].

Cancelling procedure (1.9). Let M, N be smooth manifolds with-
out boundary of dimension k > 3. Let f,g: M — N be such continuous
maps that ®(f,g) is finite and zo,z1 € ®(f,g) are transverse coinci-
dence points reducing one another. Then f is homotopic to a map f1
such that ®(f1,91) = ®(f, 9) — {zo, 1} and any two points in ®(f1,g1)
reduce one another if and only if they do so in ®(f,g).

Proof. Since zg and x; reduce one another, so there exists a path w
joining them such that fw ~ gw in IV, reversing orientation in graphs.
We may assume that w is a smooth arc avoiding other coincidence
points. Then the arcs v = (w, fw) and v = (w,gw) are homotopic
in M x N. Let us fix an open neighborhood U C M of the set
w(I) such that U N ®(f,g9) = {wo,z1}. Let m : M x N — M,
me ¢ M x N — N denote projections. It is easy to check that:
the manifolds P = WflUﬂFf, Q = ﬂflUﬂFg, R = U X N the
points x = (xo, fzo), ¥y = (@1, fz1) and the arcs u,v satisfy the
conditions of Whitney lemma. Thus, there exists a smooth isotopy
H:PxI— RCMx N with a compact support constant outside
U such that H(z, fz,0) = (z, fz) for z € M and H(z, fz,1) € Q for
x € U. Now we define F,G: M xI - N

moH (x, fx,t) forz € U
F(x,t)—{ 2H(, f,1)

fx forxe M -U

m H(x, fx,t) forzeU
G(ac,t):{gl (@ f.1)

gr forz e M —U.

It is easy to check that fi(x) = F(z,1) and g;(z) = G(z,1) are desired
maps. O
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Creating procedure (1.10). Let M, N be smooth manifolds with-
out boundary of dimension k > 2. Let (f,g) : M — N be such
smooth maps that ®(f,g) is finite. Let, moreover, o € ®(f,g) be
a transverse coincidence point. For any integer m there is a smooth
homotopy FF : M x I — N joining f with fi : M — N such
that ®(f1,9) = ®(f,9) U{z',z1,... ,2m} where each point x; re-
duces xo. Moreover, g and ' are in Nielsen relation and any points
Y,z € ®(f, g) reduce one another if and only if they do so in ®(f1,9).

Proof. Let us choose Euclidean neighborhoods zg € U C M and
fx € V .C N such that f(U) U g(U) C V. Let us fix their orientations
so that the degree of the map f — g : (U,U — z9) — (V,V — 0) equals
+1 (the linear structure is carried out from R™ to U and V). Let B,
denote the closed ball in U of radius equal to r centered at 0. We may
assume that xg € By — B3 and U N ®(f, g) = {zo}. We define smooth
map O : By — V by O(z) = fz — gz. Then we may follow the proof
of creating procedure in [9] to get the map © defined there. At last, we
put

O(z) + g(x) for z € By
filz) =

f(z) for x € M — By.
Now the zeros of © give new coincidence points all in Nielsen relation
with xg. [}

Proof of the Wecken Theorem. We may assume that the pair (f, g)
is transverse. Let ®(f,g) = {a1,b1,... ,ak,bg;C1,... ,¢s} be a decom-
position. We may apply the cancelling procedure to all pairs {a;, b;}
and we get a pair of maps such that no two coincidence points re-
duce one another. Let us notice that all unessential Nielsen classes

disappear. Let A = {c1,...,c1} be a Nielsen class. We apply cre-
ating procedure to the point ¢; and the number 1. Then A becomes
A = {ec,...,e1,¢h, ... 500} where ¢; and ¢} reduce one another.

Applying cancelling procedure to these pairs, we reduce A to the only
point cg. o

Remark (1.11). The above construction of semi-index could be easily
modified to get a homotopy invariant with the properties similar to
classical index (more exactly to its absolute value): let (f,g) : M — N
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be a transverse pair and let U C M be an open subset. We decompose
as before ®(f, g) = {a1,b1,... ,ax,bg; C1,... ,cs} and we may define the
semi-index of a transverse pair on the subset U C M as |ind |(f,g;U) =
5.

This definition may be extended onto any continuous pair of maps
such that ®(f,g) N U is compact, since the restriction (f,g) : U —
N is homotopic to a transverse pair by a homotopy with compact
coincidence set.

This semi-index has the following properties:

Coincidence points, (1.11a). If |ind |(f,g; U) # 0, then ®(f,g) NU #
0.

Homotopy invariance, (1.11b). Let (F,G) : M x I — N be a
homotopy between pairs (fo, go) and (f1,91). Let U C M x I be an open
subset such that UN®(F,G) is compact. Let Uy = {z € M; (z,t) € U}.
Then [ind |(fo, go; Uo) = ind |(f1,91; U1).

Subadditivity, (1.11c). If Uy,Us are open subsets of M such that
®(f,9)NU; and ®(f, g) NUs are compact, then |ind |(f, g : Uy UUs) <
lind |(f, g5 U1) + [ind |(f, g; U2).

The above inequality may be sharp; for example, if ®(f,g9)NU; = {z;},
®(f,g) NUs = {x2} where z;1 and x5 reduce one another.

Unfortunately, despite these formal similarities with the classical
index, the definition of |ind |(f,g;U) is not local (the reducibility
relation depends on the behavior of f and g on the whole M). We
will focus on the Nielsen classes only. In this case this formal analogy
is even stronger:

Additivity, (1.11d). If Uy,Us C My are open subsets and A; =
O(f,g) N Uy, Ay = ®(f,g) NUs are two different Nielsen classes, then
lind|(f, g; U1 N U2) = |ind [(f, g;U1) + [ind |(f, g; U2).

2. Covering spaces. Now we will discuss some relations between
the Nielsen number of (f,g) and of its lifts to covering spaces. The
main result of this section is Theorem (2.5).
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Let p: M — M, p' : N — N denote connected covering spaces of
n-manifolds M and N.

Lemma (2.1). Let us consider a commutative diagram

£.9)

i 99,
pJ Jp’
M (f,9) N
where (f, g) is transverse (then so is (f, J)). Let z,5 € <I>(f, J) and let
@ be a path from & to § such that f& ~ g. Then for x = p%, y = py,
w = p&, we have z,y € ®(f,g) and w is a path from x to y satisfying

fw ~ gw. Under these assumptions & reverses orientations in graphs
if and only if so does w.

Proof. We consider coverings

Iy, e MxN

Iy, Ty, MxN

We choose a local orientation a(f) of the manifold I'y at (z, fz) and
a local orientation a(g) of the manifold I'y at (z,gz). Then induce
the local orientation a(f) of the manifold ['; at (&, fZ) and the local
orientation «(g) of the manifold I'y; at (Z,¢Z). Then we translate
a(f),a(g) along (w,fw) and (w,gw), respectively. It induces the
translations of a(f), a(g) along (@, f&;) and (@, gw), respectively. The
same way we translate the local orientation @ = a(f) A a(g) of the
manifold M x N along (w, fw) which induces the translation of the
local orientation o = a(f) A (§) of the manifold M x N along (&, f@).
To get our thesis we compare final orientations at the points y = w(1)

and j =a(1). O

Corollary (2.2). If the points x,y € ®(f,g) reduce one another,
then p~H{z,y}N®(f, §) splits into pairs of points reducing one another.
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Proof. Let w be a path from z to y reversing orientations in graphs.
Let Z € ®(f,§) Np 'z and let & denote the lift of the path w starting
from this point. Since fw ~ gw, @(1) € ®(f,§) and f& ~ go. This
way we get a bijective correspondence between sets @(f, g)Np e
and ®(f,3) Np~ty. On the other hand, (2.1) implies that the points

Z = ®(0) and &(1) reduce one another. O

Lemma (2.3). Letp: M — M, p' : N — N be connected regular
coverings and let the diagram

" 1.9 N

M
pJ Jp’
M 1.9

—22 s N
commute. Then

(a) @(f,g9) = U(];@)p(l)(f, g) where the summation runs all pairs of
lifts.
(b) The sets p@(f, J), p@(f’,g') are either equal or disjoint.

(c) pp(f,§) = p®(f',§) if and only if these pairs are conjugated, i.e.,
(f',9") = B(f,9)a for some covering transformations a, 3 of p and p’,
respectively.

Thus, ®(f,g) = Uis g)p‘?(f, J) is a disjoint sum where the surmmation

runs one (f,g) from each conjugacy (Reidemeister) class.
Proof. We follow the proof of [10, Theorem 1.5]. O

Let M, N be nonorientable manifolds, and let p : M — M, p' :
N — N denote the two-folded covering spaces corresponding to the
subgroups of loops preserving orientation. Let « : M — M and
B: N — N be involutions of these coverings. Let us notice that both
o and f reverse orientation of orientable manifolds M and N. Let us
suppose that a continuous map f : M — N admits a lift f

f

M—1—N

o

f

M ——N
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Then for all & € M either f(ai) = 8f% or f(aZ) = fz. In the first
case, the lift f will be called odd and in the second case, it will be called
even. (For the explanation of these notions, consider M =N = Sn,
a = = antipodism.) In the rest of this section, only such two-
folded coverings will be considered. Then (2.3) implies ®(f,g) =
p<I>(f, g)u p@(f, Bg) if and only if both f and § are simultaneously
even or odd and ®(f,g) = p<I>(f, J) otherwise.

Under the above notations one can easily check:

Lemma (2.4). Let f : M — N be a continuous map. It admits a

lift ~
M—1 N

n;

f

M ———N
if and only if fypumi M C p;‘#ﬂ'll\?.
If the lift f exists, then
f is even if and only if Ju(mM) C p;#(mN) and

f is odd if and only if fu(mM) ¢ p'#(mN).

Now we are going to compare the Nielsen numbers of (f,g) and
of its lifts. Let us notice that if (f,g) admits a lift (f,§), then

it admits exactly four (f,9), (f,83), (8f,4), (8f,83). Moreover,
if f and § are simultaneously both even or odd, then the two first
pairs of lifts are conjugated and so are the two last. Then by (2.3),
®(f,g9) = p@(f,g) Up@(f, B3) is a disjoint sum. If one of f,§ is even
and the other is odd, then all four pairs of lifts form on Reidemeister

class and ®(f, g) = p®(f, ).
Let us denote by

average N(f,3) = (1/4)[N(f,3) + N(8f,3) + N(£,B3) + N(Bf,33)]-

Since the Nielsen numbers of conjugated pairs are equal,

average N(f,g) = (1/2)[N( f, g)+ N(f:ﬂg)]-
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Let us denote C(fg,g4): = {a € mi(M,z) : fgpa = gga} for
z € ®(f,9)-

Theorem (2.5). Suppose C(fu,g4)pi C ppmi(M,&) for any
z € ®(f,g). Then N(f,g) = average N(f,g)-

Proof. Let us assume at first that both f , g are simultaneously either
even or odd. Then ®(f,g) = p®(f,§) U p®(f,7) is the disjoint sum.
We will show that if a Nielsen class A C ®(f, g) satisfies A C p®(f, g),
then p~'A is the sum of two Nielsen classes of (f, g) both of the
same semi-index as A. The same is true for any class in pg( f, B3),
and it will imply our theorem in this case. We may assume that the
pair (f,g) is transverse; hence, A = {xo,... ,z%} is finite. Let us fix
Zo € p~lzo N @(f,§). We choose a path w; from zg to z; establishing
the Nielsen relation (i = 1,...,k). Let &; be its lift starting from
Zg. Then the homotopy between fw; and gw; lifts to a homotopy from
f@; to gw;. Tt implies that @ (1),...,@(1) are coincidence points
all in Nielsen relation with Zp. On the other hand, since f and g
are of the same parity, aZy € ®(f,§) and by a similar argument,
aZy,aw1(1),. .. ,adk(1) are coincidence points in Nielsen relation. We
will show that p~1A splits into two Nielsen classes:

p 1A= AUad = {xy,wi(1),...,wr(1)}U{aze, aw(1),... ,awk(1)}.

Suppose otherwise; then there exists a path w from Zo to aZy such
that f& ~ gw. It implies (p&) € C(fx,9#)z,- But (po) & pumi (M, Z)
since it lifts to the open path @. This contradicts the assumption of the
lemma. Moreover, Lemma (2.1) implies |ind |(f,g : A) = lind |(f,d :
A) = |ind|(f, g : aA).

Now let us assume that f is even and g is odd. Then it is easy
to see that p : ®(f,3) — ®(f,g) is a homeomorphism preserving
Nielsen relation. Lemma (2.1) implies that the semi-indices of the
corresponding Nielsen classes are equal. Thus, N(f,g) = N( 1, g) for
any pair of lifts. O

3. Klein bottle. Now we will apply the results of previous sections
to find the Nielsen number formula for self maps of the Klein bottle.
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Let C,D, E : R?> — R? be given by

C(l’vy) = (m + 17y)’D(m7y) - ($7y+ 1)7E(m7y) = (x + (1/2)7 _y)

and let G (Gy) be the subgroup of self-homomorphisms generated by
{C,D,E} ({D, E}). Then we may represent the Klein bottle B as the
quotient space R?/G and the torus T as R?/Gy. We will denote the
points of these spaces by [z,y]r € T, [z,y]sp € B. There are natural
covering maps py : R2 — T, p, : T — B given by py(z,y) = [z,9]r,
p1]2,y]r = [x,9]5. Let us denote p = p1py : R? — B. Then p and p»
are universal coverings and p; is a two-folded covering corresponding
to the subgroup of elements preserving orientation of B.

Let us notice that any point of B may be represented as [z,y]p for
some (z,y) € [0,1/2] x [0,1]; hence, any map on B is given by a map
defined on [0, 1/2] x [0, 1] satisfying f(0,y) = f(1/2,1—y) and f(z,0) =
f(z,1). Let us fix a point by = [0,0]p € B and the loops X (t) =
[t/2,0]5, Y(t) = [0,¢]p. Then m1(B,by) = F(X,Y)/{¥YX = XY~}
where F(X,Y') denotes the free group generated by X and Y. Now each
element of 71(B,by) may be uniquely expressed as X°Y? (a,b € Z).
Lemma (2.2) in [6] asserts that any map f : (B,by) — (B, by) induces

faX =XY"°

faY =Y?
where a,b,d € Z, a is odd or d = 0. Moreover, two maps are homotopic
if their numbers a, b, d are the same. We will need explicit formulae for

the representatives of all homotopy classes: when a is odd, then the
formula

(31) f[xay]B = [axa72bx+dy]37 OSIS 1/27 OSZ/SL
and when q is even, the formula
(3.2) flz,y]s = [az, 2bz] B, 0<z<1/2, 0<y<l1

gives maps which induce all possible homomorphims of homotopy
groups. Any self map of the Klein bottle can be lifted to a self map
of torus. We will need explicit formulae for these lifts. To do this, we
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define a real function X(¢) = [2(¢t — k) — 1| — 1 for ¢ € [k, k + 1]. This is
a continuous function satisfying

x(0) =0, X(t+1/2) +x(t) = -1, X(t+1) = x(t).

Let a be odd, and let f : B — B be given by f[z,y]p = [az, —2bx +
dy]p. We put

fl(;v,y) = (az,x(z)b + dy)
fz(x,y) = (az +1/2,—X(x)b — dy).

It is easy to check that the above formulae define lifts:

R2 fi R2

pJ Jp, 1=1,2.

f

B —— B

The same formulae define also two different lifts:

f

T—L% 7

B—' B
Let us notice that fl, fg : T'— T are homotopic to

fl [I, y]T = [ax, dy]T

3.3 -
(33) falz,ylr = [az, —dy|r

since the homology group homomorphisms fl*, fZ* : HhT — H\T
induced by these lifts are represented by the matrices

(3.4) <8 2) and (8 _Od)

and the torus is a K (m,1) space.

Now let a be even. Then the lifts of f[z,y]p = [az,2bz|p are given
by

filz,ylr = [az, 2bx] T, folz,ylr = [az + 1/2, —2bz]r
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so the corresponding homology homomorphisms fl*, fg* :H\T — H,T
are represented by

a, 0 a, 0
(3.5) <2b, 0> and <—2b, 0>'

The Nielsen number for self-maps of the torus is given in the following.

Theorem (3.6) [8]. Let (f,g) : T — T be continuous. If the induced
homology group homomorphisms f«,g.« : HiT — H1T are represented
by the matrices A and B, then

N(f,9) = |det (A- B)l. ©

Lemma (3.7). For any pair of self-maps (f,g) of the Klein bottle

N(f,g) = average N(f, 9).

Proof. We may assume that f and g are of the form (3.1) or (3.2).
Then they are fiber maps

B (f.9) B

Sl (f,_l?) Sl

where flz]s1 = laz]s1, glalsi = [a'z]st, ps[z,y]s = [z]s1 and ST =
[0,1/2]/{0,1/2} is a circle.

Let us suppose at first that f and g are homotopic. Then (f, ) is
homotopic to a pair of coincidence free maps; hence, so is (f,9) and its
lifts to torus. So in this case N(f,g) = N(f,g) =0.

Now we assume that f and g are not homotopic. We will show that
the assumptions of (2.5) are satisfied. Suppose otherwise; then we get
w € m B satisfying fuw = guxw and reversing orientation of B. The
last means that w = X*Y! where k is an odd number and implies that
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@ = pgupw € m ST is a nontrivial element satisfying f4@ = gu@. Thus,
the induced homomorphisms fx = gx which implies f is homotopic to
g, contradicting our assumption. Our lemma now follows from (2.5).
O

Now we will give more explicit formulae:

Let us denote
faX =XY" guX=XY"
faY =Y* gsY =Y

Let a and a' be odd. Then (3.4), (3.6) and (3.7) imply
N(f,g9) = average N(f,§) = 1/2(N(f,§) + N(f,89))

' '
:1/2<|det [a:)’a, dEd,} | + |det [GB,“’ dfd,] |>
=1/2(la—d'||d —d'| + |a —d'||d + d'|)
= |a — a/| max(|d|, |d'|).
Now let a be odd and let a’ be even. Then d’' = 0 so (3.5), (3.6) and
(3.7) imply
a—a,

N(f0) = N(Fa) =laet | 9] 1= la- 'l

Let now both a and o’ be even. Then d = d’ =0 so (3.4), (3.5), (3.6)
and (3.7) imply

N(fag) = averageN(fag) = 1/2(N(fag) +N(.f7/8g)

a—a, 0 a—a, 0 _
_1/2<det [2b—2b’, 0] |+ [det [2b+2b’, 0] |> =0

This way we get the final

Theorem (3.8). Let (f,g) be a pair of self-maps of the Klein bottle
preserving the base point by. Let the induced homomorphisms on the
fundamental group be given by

feX =XY" and gy X =X"Y"
faY =Y* gsY =Y
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Then N(f,g) = |a — o'| max(|d], |d'].
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