ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 23, Number 2, Spring 1993

DENTABILITY INDICES AND LOCALLY
UNIFORMLY CONVEX RENORMINGS

GILLES LANCIEN

ABSTRACT. We prove that if the dentability index (X)) of
a Banach space X is less than wy (first uncountable ordinal),
then X admits an equivalent locally uniformly convex norm.
We prove also that if its weak* dentability index §*(X) is less
than wi, then X admits an equivalent norm whose dual norm
is locally uniformly convex.

1. Introduction and notations. Two important questions in Ba-
nach space theory are: does a Banach space with the Radon-Nikodym
Property (RNP) have an equivalent locally uniformly convex (LUC)
norm? Does an Asplund space (or equivalently a Banach space whose
dual space has the RNP) admit an equivalent Fréchet-differentiable
norm? A complete reference on Asplund spaces and spaces with the
RNP is the book of R.D. Bourgin [1]. After M. Talagrand [12] proved
that C([0,w]), where w; is the first uncountable ordinal, has an equiv-
alent Fréchet differentiable norm, but does not admit any equivalent
norm with a strictly convex dual norm, R. Haydon answered negatively
the second question in [4] by constructing a scattered compact space
K such that C(K) does not admit a Gateaux-differentiable renorming,
nor a strictly convex renorming. On the other hand, R. Deville [2]
proved that if K is a scattered compact space and if its wi® Cantor
derived set K@) is empty, then C(K) admits a Fréchet-differentiable
renorming. Moreover, R. Haydon and C.A. Rogers [6] proved that,
under the same assumptions, C'(K) admits an equivalent LUC norm.

In this paper we prove that if the unit ball Bx of a Banach space
X is quickly dentable, then X admits an LUC renorming and that if
the unit ball of its dual space X* is quickly weak*-dentable, then X*
admits a dual LUC renorming. To be more precise, we shall introduce
two ordinal indices related to these notions.
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Dentability index of X, 6(X). Let C be a closed, bounded subset of
X; we call a slice of C' a set of the form: S(y,a) ={z € C:y(z) > a}
where y € X* and a € R. For € > 0, C = {z € C such that any slice
of C containing z is of diameter > ¢}. For a ordinal, we construct F*
inductively in the following way:

FY=F =By
Fot = (F2).
F> = m Ff if o is a limit ordinal.
B<a

(F%)q is a decreasing family of closed convex symmetric subsets of Bx.
We define

inf{a <w;: F¥ =@} if it exists

5(X,e) = { :

w1 otherwise.

And §(X) = sup,.(0(X,e).

Weak* -dentability indez, 6*(X). Let C be a closed, bounded subset
of X*; we call a weak*-slice of C' a set of the form: S(z,a) ={y € C:

y(z) > a} where 7 € X and a € R. For ¢ > 0, C{") = {y € C such
that any weak* slice of C' containing y is of diameter > €}. We denote

K = K = Bx-

€

KD — (KW

€ €
K = ﬂ K® if o is a limit ordinal.
B<a

The Kga)’s are weak* compact, convex and symmetric. Then
5 (X,¢e) = {inf{a <wy K = @} if it exists
’ w1 otherwise.

And §*(X) =sup,.(0*(X,¢).

Let us recall that a norm || || on a real vector space is locally
uniformly convex (LUC) if, for a sequence (z,) in X and for z € X,
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the two hypotheses ||z,|| = ||z|| = 1 and ||(z + z,)/2|| — 1 imply
||z — z,|| — 0.

2. Main results.

Theorem 2.1. Let X be a Banach space. If §(X) < wy, then X
admits an equivalent locally uniformly convexr norm.

Proof. For a positive integer n and o < §(X, 2" ™) we choose ay,,, > 0
in such a way that for any n > 1,

SO
oo
2
g ag, =L
n=1a<§(X,2—")

Then we denote 9o n(z) = aqnd(z, F5 . ), where d(z,Fs,) is the
distance from x to Fy*, for the original norm || || of X. And we

define - 12
f@= (el + Y ¥ )wa,n@c)) .

n=1a<§(X,2—"
Clearly, f(z) > |Ja||.

On the other hand, since for any n > 1 and any o < §(X,27"), 0 €
Fg, :d(z, Fe,) <|lz||- So f(z) < V2||z||. Let C = {z € X, f(z) <
1}, C'is || ||-closed, convex, symmetric and (1/y/2)Bx C C C By.
Let us denote by | | the gauge of C. | | is equivalent to || ||. O

Lemma 2.2. Let z be in X and {xy} be a sequence in X. If
f(z) = f(zg) =1, for any k, and f((z+xr)/2) — 1, then ||z—x|| — 0.

Since f is uniformly continuous in norm on By, the conclusion of
Theorem 2.1 follows immediately.

Proof of Lemma 2.2. Let x and {z}} be as in the hypotheses.
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T+

For any k in N:
+ Z > wan<$+mk>

o THTE .
P5) =17
n=1aq<§(X,27")

_(II%IHIO«“I) +Z ) (wa,n(xk);r%,n(x))Z

n=1qaq<§(X,2—")
< (1/2)(f2 () + 2 () + f2(2) =1

because of the convexity of the functions ¥ n, || - || and ¢ — . But
f2((z +x)/2) = 1. So

(||xk|+||x|> +Z 5 (zba,n(wk);wa,n(x))zﬂ_

n=1aq<§(X,27")

Since l3(N) is uniformly convex, this implies that

(lexll =lzl)® +>° Y- @an(@r) = Yan(@))® = 0.

n=1a<§(X,27™)

So, in particular, for any » > 1 and any a < §(X,27"), d(zg, F5t.) —
d(z,Fg..).

Now let € > 0; we want to show that for & large enough, ||z —z|| < e.
Take ng > 1 such that 2!="° < e. Since f(z) = 1, ¢ € Bx. So there
exists ap < 0(X,27"°) such that z € F}°, \Fgojol. We know that
d(xy, F;°,,) — 0. Thus there is a sequence {z}} C F,*° o such that

llze — k|| = 0. If (x+2},)/2 € F;‘O,j;l, we call § = (1/2)? a0+, no(a:) >
0. Then

i (T35 ) =02 5020e1@) + 5ram (o) =5
Thus,
(1) P(EE) <5+ 56 -
because the ¥,,’s and || || are convex. But since f is uniformly

continuous in norm on Bx, we have that f(z},) — 1 and f((z +
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z}.)/2) — 1. So, for k large enough, (1) cannot hold. Therefore, there
is a kg € N such that, for any k > ko, (z + z,)/2 ¢ Foor'. But

2710
(x +x,)/2 € F}°,  because x and zj, are in F,°, . Then there is a
slice T of F”°,  containing (z +x},)/2 and with diameter < 27"°. This

slice must contain either x or x},. Therefore ||z —z}|| < 2diamT < 27"
for any k > k¢. Now, since ||z — .|| — 0, there exists k; > ko such
that for any k > ki, ||z — zi]|| < e. O

Remarks. 1) If X is a separable Banach space with the RNP, then
0(X) < wy (the converse being false), which in turn implies that X has
the RNP.

2) Let us mention the following simple fact: §(X) < wy if and only
if X admits an equivalent uniformly convex norm (or equivalently X
super-reflexive). Where wy denotes the first infinite ordinal.

Proof. From the existence of an equivalent uniformly convex norm,
it follows easily that for any ¢ > 0, §(X,¢) < wp.

Let us now assume that X is not super-reflexive. Then X has the
finite tree property (see R.C. James [7]). So there exists € > 0 such
that for any n € N there is a dyadic tree (z5),co<n C Bx (where 257
denotes the set of sequences of 0 and 1 with length < n) satisfying: for
any s € 25" |zg0 — To~1|| > 26 and z, = (1/2)(85~0 + Ts~1)-
It is now easy to see that (z)s;co<n-1 C F!. Indeed, for s € 25771,
any slice containing x, must contain either x, g or xs~;1. Therefore,
this slice is of diameter > . Proceeding inductively, we obtain that
FI' # @. Thus, for any n, 0 € F*, because F is convex and symmetric.

€

Therefore, 0 € F*°. So §(X) > wy. O

Theorem 2.3. Let X be a Banach space. If 6*(X) < wy, then
X* admits an equivalent dual norm that is locally uniformly convez.
Consequently, X admits an equivalent Fréchet-differentiable norm.

Proof. We consider the function

o) =WlP+>Y. Y a2y, K))Y?

n=1a<d*(X,27")
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defined on X*, where the a, ,’s are chosen as in the proof of Theorem
2.1. Then the proof is identical. We only have to show that the norm
defined this way is a dual norm, or equivalently, that {y : f(y) < 1} is
weak™ closed. This follows from the weak* lower semicontinuity of the

functions d(-,KQ(f)n) and || - [[. o

It is well known that when X is separable, §*(X) < w; holds if and
only if X* is separable. The next proposition gives an example of a
nonseparable Asplund space, other than a super-reflexive space, and
satisfying 6*(X) < wy.

Proposition 2.4. For any set I':

5(l1(F)) S (5*(00(F)) < wi.

Proof. The first inequality is clear. We will need the following lemma.

Lemma 2.5. If j is a bijective isometry on a Banach space X, then
for any ordinal o and any € > 0, j*(KE(a)) =K.

The proof of this lemma is a straightforward transfinite induction.

Let us denote K = Bj,(r). I being infinite, we fix a countable
subset D of I For any y € [4(I') there is a bijective isometry j,
on cy(T") such that the support of jy(y) is included in D. This,
combined with Lemma 2.5, implies that for any € > 0 and any ordinal
a: K = U{(j*)_l(Kg(a) N By, (p))/j bijective isometry on co(T')}.
But, since ¢o(T') is an Asplund space, (Ks(a))a is strictly decreasing (as
long as K # &). Therefore, (Ke(a) N By, (p))a is strictly decreasing
(as long as Ksa) # &) and Kg(a) = @ if and only if Kg(a) N By, (p) = 9.
Since [l1(D) is separable, there exists an ordinal @ < wj; such that
Kéa) N Bll(D) =d. So 5*(Co(r)) < wip. O

Remark. Another consequence of Lemma 2.5 is that the renormings
of Theorem 2.1 and Theorem 2.3 preserve the bijective isometries on
X.
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3. Szlenk indices. Let X be a Banach space. We shall now
introduce two ordinal indices related to X that have been essentially
defined by W. Szlenk [11].

Szlenk index of X,Sz(X). Let C be a closed, bounded subset of

X*. For € > 0 we define C’gm = {y € C such that for any weak*-
neighborhood V of y, diam (V N C) > €}. We construct

K = K = Bx.
Kl = (sl

Kl = () KPP if a is a limit ordinal
B<a

Sz(X,e) = {inf{a <wy: Kla] =@} if it exists
w1 otherwise

Sz(X) = sup Sz(X,¢).
e>0

Weak-Szlenk index of X, Sz,(X). For C closed, bounded subset of X
and € > 0, C€<1> = {z € C such that for any weak-neighborhood V of z,
diam (VNC) > €}. Then we define F . Sz, (X,¢e) and Sz, (X) in the
usual way. It is clear that Sz, (X) < 6(X), but Sz,(X) < wy does not
imply 6(X) < w;. Indeed, the predual B of the James tree space has
the Point of Continuity Property and is separable, so Sz, (X) < wi;
but B does not have the RNP, so §(X) = w; (see R.C. James [8], J.
Lindenstrauss and C. Stegall [9], C.A. Edgar and R.F. Wheeler [3]).

In the dual case we also have Sz(X) < ¢*(X). On the other hand, if
X is separable, the following are equivalent: i) §*(X) < wy, ii) Sz(X) <
w1, iii) X* is separable. However, we do not know if §*(X) < w; and
Sz(X) < wy are still equivalent when X is nonseparable.

The question is now: What kind of renormings can we find on X,
under the weaker assumptions Sz(X) < wy and Sz, (X) < w1? In this
section we present the partial results allowed by the methods of Section
2.< 'g‘he main obstacle is the nonconvexity of the derived sets Kl“] or
F7,

Proposition 3.1. Let X be a Banach space. If Sz(X) < ws, there
is a weak* lower semicontinuous function f defined on X* satisfying:
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i) Iyl <1/2= f(y) <1land f(y) <1=|jyl| < 1.

ii) the weak® topology and the mnorm topology coincide on the sets
Se={yeX*:f(y)=a}, forany0 < a <1.

Proof. We choose a sequence {ai,}>2; of positive real num-
bers such that > >~ a1, = 3/4. Then, for any n > 1 and any
1 < a < Sz(X,27") we choose an, > 0 in such a way that:
Zl<a<Sz(X,2*”) Ga,n = 27" /4. Therefore, 377 Zl<a<Sz(X,2*") Qa,n
= 1/4 and 3777, 3 5. (x.2-n) Gan = 1. Now we consider f(y) =
Iyl + 2211 Za<sz(x72fn) Ya,n(y), defined on X*, where ¥q,,(y) =
aavnd(y,Kéoi]n). Since the Kéoi]n’s are weak® compact, the ¢, ,’s are
weak* lower semicontinuous. Thus f is weak* lower semicontinuous.
The inclusion {y : f(y) < 1} C By~ is clear. If ||y|| < 1/2, then for
anynin N, y € K [1,]" (we may assume that X is infinite dimensional).
Thus £(y) = |yl + 02y Cicacss(x.ar) Gand(y, Ki2) < 1. Only
the assertion ii) remains to be shown.

Claim. Let 0 < a < 1land y € S,. For all v > 0, for all n > 1, for all
a < Sz(X,27™), there exists W weak* neighborhood of y such that:

Vy eWNnS,, Ay, K™ —dy, K*)| <.

It is enough to show that for any 7" > 0 there is a weak* neighborhood
U of y such that:

Vn>1,Va< Sz(X,27"),Vy € UNS,, [Yan(¥y) — Yan(y) <.

Take (o1,m1), ..., () such that [[y|| + > i Ve n:(y) > a—7"/2.
Since || - || and the 1, ,,’s are weak™ lower semi-continuous, there is a
weak™* neighborhood U of y such that:

!/

Vo cU: ! __r
veus W Ihll- iy

and

v1<i<r, Yasn; (Y') > Vasn (y) — 1)
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Ify € UNSa [V + Xiei Yasn(y') > a—7+. Soif (a,n) ¢
{(a1,m1),..., (0, )}y Yan(y') <" while ¢qn(y) <4'/2. Therefore
[Yan(y') —Yan(y)| <7'. On the other hand, if y' € U and 9q, »,(y') >
Vaun: (y)+7', then ||yl||+22:1 Yoy (Y') > a,50y" ¢ S,. This finishes
the proof of the claim.

Now let ¢ > 0,0 < a <1 and yin S,. We need to find a weak*
neighborhood V' of y such that, for any y' € VNS, ||ly—¢'|| < e. Take
n such that 27" < . Since y € Bx~, there exists a < Sz(X,27") such

that y € K{a,]n Kéofnr”. So there is a weak® open neighborhood Wy of
y such that diam (Kgai]n NWp) < 27" Unless Kéof]n = {y} which is a
trivial case (the claim gives directly the weak* neighborhood we need),
we may assume that K[Oi]n\Wg # @. We denote 8 = d(y, Kéoi}n\Wo) >

0. Since the function d(.,Kgi]n\Wo) is weak* lower semicontinuous,
there is a weak* neighborhood W of y so that:

vy ewy  dy, KM \Wp) > 8/2.

Moreover, from the claim above, it follows that there is a weak*
neighborhood W3 of y such that:

VY €eWonS,  dy,K™) < Min{8/2,e -2}

Since d(.,Kgoi]n) = inf{d(.,Kgf]n\Wo), d(., Kgi]n N Wy)}, we have:

Vy e WiNnWanS, d(y, K™, nWy) <e—27"

So for all y' € Wi NWaN Sy, |ly —¥'|| < e. This concludes the proof of
the proposition. a

In the nondual case, although the distance functions to the derived
sets Féfi are not necessarily weakly lower semi-continuous, we obtain
a similar result.

Proposition 3.2. Let X be a Banach space. If Sz, (X) < wy there is
a weakly lower semi-continuous function f defined on X and satisfying

) lzll <1/2= f(z) <1 and f(z) <1=[lz][ <1
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ii) the weak topology and the norm topology coincide on the sets

Se={zeX, f(z)=a} forany0<a<1.

Proof. For a function ¢ : X — R™T, we denote by ¢ the weakly lower
semi-continuous regularization of ¢ : @$(z) = sup{infy/cv f(2'); V weak
neighborhood of z}. We choose the coefficients a4 ,, for n > 1 and
a < S8z,(X,27™) as in the proof of Proposition 3.1. Then we call:

Pan(z) =d(z, Fé?i)

g(z) = ||z|| + Z Z Ga,nPa,n(T)

n=1 a<Sz,(X,277)

and f(z) = §(=) = [|zl] + X711 Xacsz, (x,2-n) GainPan(€). It is easy
to check that the condition i) holds for g and for f = g.

Let 0 <a <landz € S,. Asin the dual case, we have: for all v > 0,
for all n > 1, for all @ < Sz,(X,27"), there is a weak neighborhood
W of x such that:

V' e WS, “ﬁa,n(wl) - ¢a,n(x)| <7.

Now let € > 0. We want to find a weak neighborhood V of x such that,
for any 2’ € VNS, ||z —2'|| <e. Wetaken > 1 and oo < Sz, (X,277)
such that 27" < ¢/2 and z € Féfl\F@jD. Then there is a weak
neighborhood U of z with diam (Féfi NU) < 27" As in the dual
case, we may assume Féf‘i\U # . We call hy = d(.,Féf‘ZL\U) and
ho = d(.,Féf‘i NU). It is clear that ¢o, = inf{ﬁl,ﬁz}. We may also
assume U = {&' € X : |yi(2') — yi(z)| < A\, Vi € {1,...,r}} where
yi € X*, ||lyill =1 and A > 0. Let

U'={a' € X :|yi(z') —yi(x)| < N/2,Vie {1,...,r}}.

For any @' € U', hi(a') > A\/2, so hi(x) > A/2. But we know that
there is a weak neighborhood W of z such that for any '’ € W N S,
Gan(z’) < Min{A/2,e/2}. Therefore: for all ' € W NU' NS,
ho(z') < €/2. But hy(z') < /2 implies ||z — 2'|| < e. Indeed,
if ||z — a'|| > e, by the Hahn Banach theorem, there is a weak
neighborhood W' of z’ such that for any z” € W', ||z — 2"|| > e.



DENTABILITY INDICES 645

So for any =" € W', ha(z") > £/2 because diam (Féf‘i nU) < g/2.
Therefore, hy(z') > ¢/2. O

Let us mention that R. Haydon obtained recently in [5] two results
connected with this section:

1) The scattered compact space K constructed in [4] is such that
C(K) does not admit a nonzero real valued Fréchet-differentiable
function with bounded support.

2) There is a scattered compact space K so that C'(K) is not strictly
convexifiable although it admits an equivalent norm such that the norm
and weak topologies coincide on its unit sphere.

We want to mention that the definition we use for Sz(X) is not the
definition originally introduced by Szlenk in [11]. The derivation he
considered is the following: Let X be a separable Banach space, C' a
closed bounded subset of X* and € > 0:

Cl={yeC:Hyn} CC,Hz,} C Bx such that

Yn vy Yy Tr — 0,yn(2,) > ¢ for all n € N}.

Let us call 0(X, ¢) and o(X) the ordinal indices associated in the usual
way to this operation. If X is a separable Banach space, it is clear that
o(X) < 8z(X). The equality is not true in general. Indeed, we have
that o(l;) = 1 because l; enjoys the Schur property while Sz(l;) = w;
since I] = lo is not separable. However, this counterexample is
essentially the only one.

Proposition 3.3. Let X be a separable Banach space. If X does not
contain any isomorphic copy of 1y, then Sz(X) = o(X).

Proof. For ¢ > 0, (K), will denote the family of derived sets
obtained with the original Szlenk-derivation. For the index Sz(X)
we will use the derivation C’y] ={yeC:Hy,} CCst.y, >y
and ||y, — y|| > € for all n > 0} which is equivalent to the derivation
defined in Section 2 when X is separable. We will show by transfinite

induction that KEM C K?/w' The conclusion of the proposition follows
clearly. This property is true for & = 0 and passes easily to the limit
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ordinals. Let us now assume that Kg[a] - ;"/16. Let y € KE[O‘H}, there

is a sequence {y,} C K such that Yn EN y and ||y, — y|| > € for any
n > 0. O

Lemma 3.4. There exists ng € N such that for n > ng ||yn|Kery|| >
e/4.

Proof of Lemma 3.4. Of course, we may assume that y # 0. Observe
that ||yn|kery|| = d(yn, Ry). Suppose d(y»,Ry) < ¢/4. Let y,, € Ry
such that ||y, —y,|| = d(yn, Ry). Since ||y, —yl| > €, ||y, —y|| > 3e/4.
Let € Bx such that y(zo) > 2||y||/3, then |(y),—y)(zo)| > /2. Thus,

[(yn. — y)(o)| > €/4. But this contradicts ys, N Y. o

End of the proof of Proposition 3.3. Consequently, we may assume
that there is a sequence {z,} in Bx N Kery such that, for any n in
N, yn(z,) > €/4. Since X 2 l1, we may also assume that z,, is weak-
Cauchy (see [10]). On the other hand, for all p € N, z, € Kery. So,
for all p € N, y,(zp) — 0. Therefore, we can construct an increasing
sequence of integers {nx} such that |y, (z,,)| < &/8. Then we call
zh = (Tn, — Tny_,)/2 and Yy = yn,. {7} C Bx, =} — 0 because {z,}

is weak Cauchy and y; (z},) > ¢/16. Soy € Kgaflé. O
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