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SOME EXAMPLES OF MIXING RANDOM FIELDS
RICHARD C. BRADLEY

ABSTRACT. Several classes of strictly stationary random
fields are constructed, with various combinations of “strong
mixing” properties. The purpose is to “separate” various
mixing assumptions that are used in the literature on limit
theory for random fields.

1. Introduction. Suppose (2, F, P) is a probability space. For any
two o-fields A, B C F define the following measures of dependence:

a(A,B):= sup |P(ANB)— P(A)P(B)|,
AcA,BeB

p(A,B) :== sup |Corr (f, g)l,
feL2(A),9€L2(B)

I J
B(A,B) := sup % Z Z |P(A; N B;) — P(A;)P(By)|

where this last sup is taken over all pairs of partitions {4y,...,As}
and {Bi,...,By} of Q such that A; € A for each ¢ and B; € B for
each j. The following inequalities are elementary:

4a(A,B) < p(A,B) <1, and

1.1
(1.1) 2a(A,B) < B(A,B) < 1.

Suppose d is a positive integer. For each [ := (ly,...,l) € Z¢
denote the usual Euclidean norm ||I|| := (12 + .-+ +2)"/2. For any

two nonempty disjoint subsets S, T C Z¢, denote the distance between
them by
dist (S,T) := inf |[s —t]|.
seS,teT

)

Now suppose X := (X¢,t € Z%) is a strictly stationary random field
on our probability space (2, F, P). For each real number r > 1, and
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each pair of elements j, k € {1,2,3,...} U {oco}, define the following
dependence coeflicients:

a;jk(X,r) :=supa(o(Xs,t € S),0(X;,t € T)),
pik(X,7) = supp(o(Xy,t € S),0(Xy,t €T)),
Biw(X,r) :=sup B(0(Xy,t € §),0(Xs,t €T)),

where all three sups are taken over all pairs of disjoint nonempty subsets
S,T C Z% such that dist (S,T) > r, cardS < j, and cardT < k.
Here o(---) denotes the o-field generated by (---), and “card” denotes
cardinality.

In the literature there are a large number of articles and books dealing
with limit theory for strictly stationary random fields satisfying various
“strong mixing” conditions. In some references, such as Guyon and
Richardson [8] and Rosenblatt [12], the condition used was

(1.2) Qoo,00(X,7) = 0 asr— oo.

Others, such as Neaderhouser [10] and Tran [14], used the weaker
condition

= (X,
(1.3) [sup M] —0 asr— oo.
k>1
This is equivalent to, for all k = 1,2,3,..., lim, ,o a0 (X,r) = 0.

However, the use of (1.3) in [10, 14] also involved an assumed rate of
convergence of its left hand side as 7 — oo. Sherman [13] assumed
(also with a rate of convergence) the similar but weaker condition

[ apr(X,r)

(1.4) sup

] —0 asr— oo.

k>1 k

For further work on limit theory for mixing random fields, see [3, 6, 7,
8, 9, 10, 12, 14, 16] and the references therein.

There are trivial inequalities such as ok (X,7) < og00(X,7), or
are(X,r) < agr(X,s) for s < r. From such trivial inequalities and
(1.1), one obtains “obvious relations” involving conditions (1.2), (1.3),
(1.4), and similar mixing conditions based on §; (X, r) and p; x (X, r).
The main purpose of this paper is to construct some examples to
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indicate that there apparently are not too many connections between
these mixing conditions aside from such “obvious relations.” For
example, Theorem 2 below will show that assumption (1.4) with (say)
exponential mixing rate does not imply (1.3).

However, here are a couple of not so obvious relations for strictly
stationary random fields. First, the condition lim,_, poo,00 (X, 7) =0
is equivalent to (1.2), by [4, Remarks 1, 2, 3]. Second, the condition
lim, 00 Boo,00(X,7) = 0 implies that there exists an r > 1 such that
Boo,00(X,7) = 0 by [2, Remarks 2 and 3]; this fact was based on
examples given by Dobrushin [6, p. 205] and Zhurbenko [16, p. 8,
Example 2.1].

In the statement of our theorems, for a given positive integer d, the
origin of Z¢ will be denoted simply by 0 and a “nonzero element of Z%”
will mean any element of Z? except the origin. In context this should
not cause any confusion.

Theorem 1. Suppose that d is a positive integer. Suppose that

Ly,Ly, L, ... is a sequence of nonzero elements of Z¢ such that for
all n > 1, ||Lpl| < ||Lnt1l|- Define the (strictly increasing) se-
quence of positive numbers r1,72,73,... by Ty := ||Lp||. Suppose that
C1,C2,C3, ... 18 a sequence of positive numbers such that ¢; < 1/8 and

foralln > 1, ci1 < ¢, /2. Suppose 0 < q < 1.

Then there exists a strictly stationary random field X := (X,,t € Z9)
with the following properties:

(1) The distribution of Xy does not have any atoms.
(2) For all n > 1, a(o(Xo),0(Xrm))) = qcn/2 and p(o(Xo),
U(XL(n))) =dq.-

(3) For each n > 1, each integer k such that 1 < k < 1/(8¢,), one
has that

ak,k(Xa T‘n)/k > an/2-

(4) For each n > 1, each k > 1, one has that

Bk,OO(Xa rn)/k S chn
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(5) For allr > 1, eo,00(X,T) > gq/(27).
(If ¢ =1, then, for allT > 1, 0t 00 (X, 7) = 1/4.)
(6) Forallr >1, p1.1(X,7) = poo,c0(X,7) =q.

Theorem 2.  Suppose that d, (Li,Le,Ls,...), (r1,72,73,...),
(c1,c2,¢3,...), and q are as in the hypothesis of Theorem 1. Then
there exists a strictly stationary random field X := (Xy,t € Z) with
the following properties:

(1) The distribution of Xo does not have any atoms.

(2) For all n > 1, a(o(Xo), 0(Xirm))) = qcn/2 and p(o(Xo),
U(XL(n))) =4q-

(3) For each n > 1, each integer k such that 1 < k < 1/(8¢,), one
has that

ark(X,rn)/k > qcn/2.

(4) For eachn > 1, each k > 1, one has that

/Bk,k(X; T‘n)/k S 8qcn

() Forallr > 1, a1 o0 (X,r) = q/4.
(6) Forallr >1, p1,1(X,7) = poo,c0(X,7) =q.

Theorem 3. Suppose d is a positive integer. Suppose g : [1,00) —
(0,1] is a nonincreasing function such that lim, .o g(r) = 0. Then
there exists a strictly stationary random field X := (X, t € Z%) with
the following properties:

(1) The distribution of Xo does not have any atoms.

2) For all L € Z% — {0}, a(0(Xo),0(Xz)) = (1/4)g(l[L]]) and
p(o(Xo),o(XL)) = g(lILI]).

(3) Forallr €[1,00), 40to0,00 (X, 1) < Poo,co(X,7) < g(7).
(

)
4) For all L e Z¢, B(o(Xo),0(XL)) = 1. Hence for all r € [1,00),
Bra(X,r) =
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Theorems 1, 2, and 3 will be proved in Sections 2, 3, and 4, re-
spectively. In what follows, we shall use the following notations: For
positive numbers a,, and b,, n = 1,2,3,..., the notation a,, ~ b, (as
n — oo0) means lim, . a,/b, = 1, and the notation a,, < b, means
that, for the sequence a, /b,, n =1,2,3,..., both the lim sup and the
lim inf are finite and positive. The indicator function of an event A is
denoted I(A). Subscripts of the form a, will be written a(b). We shall
conclude Section 1 with a series of remarks.

Remark 1. The hypothesis of Theorems 1 and 2 implies that r, :=
||Ln|| — oo as n — co. (There are only finitely many elements of Z<¢
within a given distance from the origin.)

Remark 2. Let us look at property (1) in Theorem 1. In the random
field X constructed for Theorem 1, the random variables X; will in fact
be positive, with a positive (but not continuous) density on (0, c0).
However, one can take Xy to have any prescribed distribution that
does not have any atoms; and, hence, Xy can have prescribed moment
properties such as, e.g., E|Xo/° < oo and E|X|>™® = oo for all
e > 0. One simply replaces each X; by h(X;) where h: (0,00) = R
is an appropriate strictly increasing function. (By taking h strictly
increasing, one has o(h(X};)) = o(X;) for each ¢, and hence the mixing
properties (2)—(6) in Theorem 1 are preserved.)

Remark 3. The point of property (2) in Theorem 1 is that the depen-
dence properties of X can involve (essentially) arbitrary “directions”
in Z¢. For example, one can take the vectors L,, such that ||L,|| ~ n
as n — oo and the unit vectors L, /||Ly|| are dense in the unit sphere
in R

Remark 4. Referring to properties (3) and (4) in Theorem 1, let us
consider for each r > 1 the two quantities
ak:,k:(XaT) ﬂk,oo(XaT)

1.5 sup ——7 and sup ==L
(1.5) k:;; k kzﬁ) k

Of course, the two related quantities supjsq k™o (X, r) and
SUPg>1 k='Bk k(X,r) are in between. By appropriate choices of the
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vectors L,, and numbers ¢,, (and regardless of the choice of gq), one can
get the two quantities in (1.5) to approach 0 together at essentially any
of the usual rates as r — co. For example, for # > 0 one can have

[both quantities in (1.5)] < (log7) % as r — oo,

by choosing ¢, := (1/4) - 2™ and L, such that ||L,|| ~ exp(2"/?) as
n — oo. Similarly, for 8 > 0 one can have

both quantities in (1.5)] <7~ % asr — oo,
[

by choosing ¢, := (1/4) - 2™ and L, such that ||L,|| ~ 2%/¢ as
n — oo. One can get the two quantities in (1.5) to decay together
at an exponential (or even faster) rate by taking, e.g., ||L,|| ~ n as
n — oo and letting ¢,, decrease at an appropriate rate faster than 27".

Remark 5. The point of property (5) of Theorem 1 is that such
conditions as supy>; k™' Bk,c0(X,7) = 0 (as 7 — o0) do not imply
Qo000 (X, 1) = 0.

Remark 6. Referring to property (6) in Theorem 1, a sufficiently
small positive value of lim,_, », poo,00 (X, 7) can imply some nice moment
properties and thereby facilitate the proofs of some limit theorems. (For
an example of this in a related context, see Peligrad [11]). In particular,
one has the following proposition:

Proposition. Suppose d is a positive integer and q1,q2,q3,--. S
a nonincreasing sequence of numbers in [0,1] such that lim,_, ¢, <
1/128. Then there ezists a positive constant C := C(d, q1,92,93,---)
with the following property: Suppose X := (Xit € Z9) is a strictly
stationary random field such that EXy = 0, EX{ < oo, and for all
n > 1, poooo(X,n) < gn; then, for every nonempty finite set S C Z4,
one has that

4
E ( > Xt> < C|[(card S)(EXg) + (card S)*(EX2)?).
tes

To prove this proposition, first let m > 1 be such that ¢, < 1/128,
and let C' := 24m*¢. Now, if the random field X is as in the proposition,
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then by simple arithmetic, the random field X* := (X,,;,t € Z%)
satisfies (in essence) the hypothesis of [3, Lemma 5]. Applying that
lemma to X* and then imitating the proof of [3, Lemmas 2, 6] one gets
the proposition. With a better proof, the 1/128 in the proposition can
be relaxed.

Remark 7. Let us say that a set S C Z¢ is a “coordinate half-
space” if it is of one of the forms {l := (l1,...,lq) € Z% : [; < m}
or {l := (Iy,...,lq) € Z* : I; > m} where j € {1,...,d} and m € Z.
Suppose that for each r > 1 one defines

acns(X,r) :=supa(c(X;,t € 9),0(Xy,t €T))
and
Pehs (X, 1) :=sup p(o(Xy,t € 5),0(X,t €T))

where each sup is taken over all pairs of coordinate half-spaces S, T C
Z? such that dist (S,T7) > r. One can verify that for our random
field X in Theorem 1, one has p.ps(X,r) = ¢ for all » > 1. (This is
just an elementary consequence of properties (2) and (6).) In the case
d > 2 one can use [4, Theorem 1(A) and Remark 2] to show that X
consequently also satisfies a.ps(X,r) > ¢/(27) for all r > 1.

Remark 8. For concreteness, Remarks 2-7 were focused on Theorem
1; but parts of Remarks 2-7 carry over to Theorems 2 and 3.

Remark 9. For a given [ := (Iy,...,ls) € Z% we took ||I|| to
be the Euclidean norm. Suppose that we had instead taken the
norm ||!||eo := maxi<;<q|l;|, and suppose we had used that norm in

the definitions of amn(X,7), Bmn(X,7), and pm »(X,7) and in the
statements of Theorems 1, 2, and 3. Then these theorems would still
hold verbatim, with the same proofs. The above remarks would also
carry over with respect to this norm. These comments are also true
for other “reasonable” norms, such as ||!||, := (Z‘;:l |1;|P)/P where p
is any fixed number in [1,00). Of course, throughout the rest of this
paper, we shall take || - || to mean our original Euclidean norm.

Remark 10. The random fields X constructed here for Theorems 1,
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2, and 3 each have the property that the tail o-field
ﬂO'(Xt,t € Zd - S)
S c Z% (card S) < oo

is trivial, i.e., contains only events of probability 0 or 1. The argument
is elementary—essentially just that of Kolmogorov’s 0-1 law. (Note
that if d = 1, it is the “double tail” o-field that is discussed here.)

2. Proof of Theorem 1. Let us start with a lemma.

Lemma 2.1. Suppose A1, Az, As,... and B1,B2,Bs,... are o-fields
and the o-fields A, V B,, n =1,2,3,..., are independent. Then

(1) p(\/gozlAna \/’?LOZIBTL) = SuPp>1 p(Ana Bn)a and
(il) B(ViLiAn, ValiBn) < 30070 B(An, Bn).

Part (i) is due to Csaki and Fischer [5]; a short proof of it can be
found in Witsenhausen [15, p. 105, Theorem 1]. Part (ii) can be found
in [1, p. 1318, Lemma 2.1].

Now let us turn our attention to a class of random sequences that
will be used as “building blocks” for the random field in Theorem 1.

Definition 2.2. Suppose 0 < ¢ < 1/2 and 0 < ¢ < 1. A random
sequence (indexed by Z) is said to have the S(c, q)-distribution if it has
the same distribution as the random sequence Y := (Y}, t € Z) defined
below: First let ((V;, W;),t € Z) be a sequence of i.i.d. random vectors
with the following marginal distribution:

P((Vo, Wo) = (0,0)) = (1 = )(1 — ¢)* +q(1 —¢),
P((Vo, Wy) = (0,1)) = P((Vo, Wo) = (1,0)) = (1 = g)e(1 —¢), and
P((Vo, Wo) = (1,1)) = (1 = g)c* +ge.
Now let the random sequence Y := (Y;,t € Z) be defined as follows:
forallt € Z, Yy := 2V, + W;_;.

Lemma 2.3. Suppose 0 < ¢ < 1/2 and 0 < ¢ < 1. Suppose
Y = (Yi,t € Z) is a random sequence with the S(c,q)-distribution.
Then this sequence Y has the following properties:
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(1) Y is strictly stationary and 1-dependent.

(2) The distribution of the random variable Yy is as follows:

P(Yy=0) = (1 ¢)?
P(Yy=1) = P(Yy=2) = e(1 - ¢),
P(Yo=3)=c* and
P(Y, ¢{0,1,2,3}) = 0.

(3) a(a(Yp),o(Y1)) > qc/2 and p(o(Ys),0(Y1)) = gq.

(4) For every integer k such that 1 < k < max{1,1/(8¢)}, one has
that k Loy, (Y, 1) > gc/2.

(5) Forallk=1,2,3,..., k7' (Y,1) < 4qc.

(6) Poo,oo(y, l) =4q.

Proof. Without loss of generality, we assume that the sequence Y is
accompanied by a sequence ((V;, W), t € Z) such that all conditions in
Definition 2.2 are fulfilled. For technical convenience, deleting a null
set from our probability space if necessary, we assume further that the
random variables V; and W, take only the values 0 and 1, and hence
the random variables Y; take only the values 0, 1, 2, and 3. We thus
have (by Definition 2.2), for all ¢t € Z,

(2.1) oY) = o(Ve, Wi—1).
By trivial arithmetic, one has, for all ¢t € Z,

PV;=0))=PW;=0)=1—c¢ and

(2:2) PV,=1)=P(W,=1)=c.

Properties (1) and (2) in Lemma 2.3 are elementary consequences of
(2.2) and Definition 2.2.

In order to facilitate the proof of properties (3)—(6), we need the
following facts:
a(o(Vo),o(Wo)) = ge(1 = ¢),
(23) ﬁ(a(%))U(WO)) = 2(]0(1 o C)) and
p(a(Vo),a(Wo)) = ¢
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The first two of these equations are elementary consequences of
Definition 2.2. To prove the third, first note that, since Vj can take
only two values (0 and 1), any o(Vp)-measurable random variable can
be represented in the form aVj 4+ b with a,b real. The same holds for
Wo. Hence p(o(Vp),0(Wy)) = |Corr (V, Wp)|, which equals ¢ by simple
arithmetic. o

Proof of (3). By (2.1) and (2.3),
a(o(Y),0(Y1)) =2 ao(Vo), 0 (Wy)) = ge(1 — ¢) = qc/2.
By (2.1), Definition 2.2, Lemma 2.1, and (2.3),

p(o(Yo),0(Y1)) = sup{p(a(V0),o(Wo)), p(e(W-1),0(V1))}
=p(e(Vo),0(Wo)) =¢. ©O

Proof of (4). For k = 1, this just follows from (3).
Suppose instead that 2 < k < 1/(8¢). Define the events

A={Y1=Y3=Y5=--- =Yy 1 =0}
and
Bi={Yoa=Y;=Ys ==Yy, =0}
By (2.2) and Definition 2.2 and an elementary calculation,
P(A)=P(B) = (1—¢)?~.

Also,

P(ANB) = P(Wy = 0, Vi, = 0, and (V;, W;) = (0,0)

Vi=1,2,...,2k—1)
(1-)? [(1—q)(1—e)* +q(l — )"
= (1= [(1-q)(L—c)+q*
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Now for 0 < y < x one has the arithmetic z2F~1 — y2k—1 =

(z—-y)- H?ZB pIy?* =277 > (z — y)(2k — 1)y?*~2. Hence

ark(Y,1) 2 P(AN B) — P(A)P(B)
=(1- A -q)(1—c)+ g = (1)
>(1=e)*M[(1-q)(1 =) +4q] - (1 —¢)]
(2 = 1)(1 = ¢)*F2
= (1—¢)*eq)(2k — 1)
(1 — 4ke)(cq)k

(since 4ck < 1/2). Thus, (4) holds. u]

Proof of (5). Suppose k is a positive integer. Suppose S is a subset
of Z such that (card S) < k. Denote its complement 7" := Z — S. To
prove (5) it suffices to prove that

(2.4) B(o(Ye,t € S),0(Ys,t € T)) < 4qck.

Define the sets S* :={t € Z:t+1 € Stand T*:={t € Z: t+1 € T}.
The sets S* and T™* are disjoint, and their union is Z. The sets SN .S*,
SNT*, TNS* TNT* form a partition of Z. By (2.1), Definition 2.2,
Lemma 2.1, and (2.3),

Blo(Ye,t€8), oYt eT) < Y Blo(Va),o(Wr))

teSNT*

+ Y Ble(W),0(W))

teTnsS*

+ ) Ble(Ve, W), {2, 6})

teSNS*

+ Y BUQ, 8} (Vi Wh)

teTnT*
= [card (SNT™) + card (T'N S*)]
+2qc(1—¢)+0
< 2k -2qc(1 —¢).
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Thus, (2.4) holds. This completes the proof of (5). O

Proof of (6). Suppose S is an arbitrary subset of Z such that S # ¢
and S # Z. Denote its complement T := Z — S. Defining the sets S*
and T* as in the proof of (5), we have by (2.1), Definition 2.2, Lemma
2.1, and (2.3),

plo(Vy),a(Wy)), te SNT*

_ ple(Wy),0(V2)), teTngs*

p(o(Yi,t € S),0(Y:,t € T)) =sup AoV WD {R.6Y). teSNs"
p({Qa(f)}aU(‘/taWt)), te TNT*

=4q
(since SNT™ or TN S* is nonempty). Thus (6) holds. o

Definition 2.4. Suppose d is a positive integer. Suppose L # 0 is
an element of Z?. The L-partition of Z¢ is the (unique) partition of
Z? whose members are sets of the form {... ,l— 2L, 1 — L, [,l+L,...}
with [ € Z9.

Of course, if d = 1 then the number of members of this partition is
finite. If, instead, d > 2, then the partition is countably infinite.

Definition 2.5. Suppose 0 < ¢ < 1/2,0 < ¢ < 1, d is a positive
integer, and L # 0 is an element of Z¢. A random field Z := (Z;,t € Z9)
is said to have the T (c, g, d, L)-distribution if it has the following two
properties:

(1) For each | € Z¢, the random sequence (Z;4,1,j € Z) has the
S(e, ¢)-distribution.

(2) Letting S1,S59,S53,... denote the members of the L-partition of
Z?, one has that the o-fields o(Z;,t € S1), 0(Z;,t € Sa), 0(Z;,t €
S3),... are independent.

In what follows, if d is a positive integer and r > 1 is a real number,
a random field Y := (V;,t € Z%) is said to be r-dependent if it has
the following property: For any two nonempty subsets S, T C Z% with
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dist (S,T) > r, one has that the o-fields o(Y;,t € S) and o(Y;,t € T)
are independent.

Lemma 2.6. Suppose 0 < ¢ <1/2,0< q <1, d is a positive integer,
L # 0 is an element of Z¢, and Z = (Z;,t € Z%) is a random field
with the T (¢, q, d, L)-distribution. Define the positive number r := ||L||.
Then the random field Z has the following properties:

(1) Z is strictly stationary and r-dependent.

(2) The distribution of the random variable Zy is as follows:

P(Zy=0) = (1-c)?
P(Zy=1)=P(Zy=2)=c(1—c),
P(Zy=3)=¢c* and
P(Zy ¢ {0,1,2,3}) = 0.

3) a(o(Zo),0(2L)) = q¢/2 and p(a(Zo),0(Z1L)) = q-

(4) For every integer k such that 1 < k < max{1,1/(8¢)}, one has
that k™ ag 1 (Z,7) > qc/2.

(5) Forallk=1,2,3,..., k16 (Z,1) < 4qc.

(6) Poo,oo(Z, 1) =q.

Proof. Properties (1)—(4) are elementary consequences of Definition
2.5 and Lemma 2.3. The proofs of properties (5) and (6) are similar to
each other, each using Lemma 2.1; we shall just give the proof of (5).
O

Proof of (5). Suppose k is a positive integer. Suppose S and T are
any two nonempty disjoint subsets of Z¢ such that (card S) < k. It
suffices to prove that

(2.5) B(o(Z,t € 8),0(Zs,t €T)) < 4qck.

Let Q1,Q2, Qs, ... denote the members of the L-partition of Z%. For
each i, define k(i) := card (S N Q;). It will be helpful to define the
random sequence Y := (Y;,j € Z) by Y; := Z;1; this sequence Y has
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the S(c, g)-distribution. We have
B(O’(Zt,t € S),O'(Zt,t S T))
< B(o(Zi,t € SNQ:),0(Z,t € TNQy))

by Lemma 2.1, Definition 2.5, and Lemma 2.3. Thus (2.5) holds. This
completes the proof of (5) and of Lemma 2.6. o

Proof of Theorem 1. Let U := (Us,t € Z%) be a random field
consisting of i.i.d. random variables uniformly distributed on [0, 1].

For each n > 1, let Z(™ := (Zt("),t € Z%) be a random field
with the T (¢cp, g, d, Ly, )-distribution. Assume that these random fields
U,zM, 23 7z3) . are independent of each other.

By the hypothesis of Theorem 1, we have that > >~ ¢, < oo and
also that for all n > 1, ¢,, < 1/8. By Lemma 2.6, we have that for each
n>1, P(Z{" =0) = (1-c,)* > 1—2c,. Hence by the Borel-Cantelli
Lemma (and the stationarity of each random field Z(™), one has that
for each t € Z4¢,

P(Zt(") # 0 for infinitely many n > 1) = 0.

Deleting a null-set from our probability space, if necessary, we assume
(just for technical convenience) that for all ¢+ € Z¢, the events {U; ¢

(0,1)} and {Zt(n) ¢ {0,1,2,3} for some n} and {Zt(n) # 0 for infinitely
many n} are all empty. (See Lemma 2.6 (2)).

Define the random field X := (X;,t € Z%) as follows:
Vtez!, X, :=U -+ 4"z,
n=1
Note that, by the above assumptions, one has that
(2.6) vtezZt o(X,) =0, 2z, 23 28 ).
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Now let us verify the properties of X listed in Theorem 1. Both the
strict stationarity of X and property (1) are elementary consequences
of Lemma 2.6 and the construction of X. O

It will be convenient to prove property (6) next.

Proof of (6). For each n > 1,

(2.7) p(o(Xo), o(Xr(my)) = p(o(Z5™), 0 (2(())) = q

by (2.6) and Lemma 2.6 (3). From the hypothesis of Theorem 1 (see
Remark 1) one has that r, := ||L,|| — oo as n — co. Hence for all
r > 1, p1,1(X,r) > q. However, by (2.6), Lemma 2.1 and Lemma 2.6
(6), one has that ps o0 (X,1) = ¢. Property (6) follows. O

Proof of (2). The second part of (2) follows from (2.7) and property
(6). The first part of (2) holds since, by (2.6) and Lemma 2.6, one has
for each n > 1,

a(0(X0), 0 (X)) > a(0(Z5"),0(Z[(y)) > aenf2. 1

The proof of property (3) is like that of the first part of (2). Also,
property (5) follows from (6) and [4, Theorem 1 (C), (D), and Remarks
2 and 3]. All that remains is to prove property (4).

Proof of (4). Suppose n > 1 and k > 1. By Lemma 2.1,

o0

(28) ﬂk,OO(X7 Tn) S Z ﬁk,oo(Z(m)arn)-

m=1

For each m < n (if n > 2), one has r,, < 7, by the hypothesis of
Theorem 1, and hence Bk,oo(Z(m)a rn) = 0 by Lemma 2.6 (1). For each
m > n, ﬂkyoo(Z(m),rn) < ﬁkVOO(Z(m), 1) < 4kgcy, by Lemma 2.6 (5).
Hence, by (2.8) and the hypothesis ¢;11 < ¢;/2 in Theorem 1, one has
that B eo(X,rn) < Y oo0_ 4kgen, < 8kgc,. Thus property (4) holds.
This completes the proof of Theorem 1. ]
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3. Proof of Theorem 2. Let us start with a definition.

Definition 3.1. For each integer M > 2, define the probability
measures 13y and vy on {—1,1}M as follows: For w := (w1, ... ,war) €
{_17 1}M’

par (w) = 1/2M

and 1/2M=1 ifwy - wy =1,
vy (w) ==

0 ifwy-...-wy =—1.

Lemma 3.2. Suppose 0 < g < 1, M > 2 s an integer, and
(W1,..., W) is a random vector which takes its values in {—1,1}M
and whose distribution is (1 — q)unr + quar. Then the following state-
ments hold:

(1) Forallj=1,...,M, P(W; = —1) = P(W; = 1) = 1/2.

(2) Any M —1 of the random variables W1, ... , Wy are independent.

(3) If S and T are nonempty disjoint sets whose union is {1,... , M},
then

a(c(Wy, k€ S8),c(Wi,keT))=q/4
and
plocWi, ke S),c(Wi,keT))=q.

Proof. Properties (1) and (2) are easy to verify first for the “extreme”
cases ¢ = 0 and ¢ = 1, and then (using these two “extreme” cases) for
the case 0 < ¢ < 1. ]

Proof of (3). First define the events A := {[],.¢Wr = 1} and
B := {[[cr Wr = 1}. By an elementary calculation,

(3.1) a(o(Wi,k€S),o(Wi,keT)) > P(AN B)—P(A)P(B) = ¢/4.

Now suppose that f and g are random variables with mean 0 and
variance 1, with f being a function of (W, k € S) and g a function of
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(Wi, k € T). By properties (1) and (2), the distribution (and hence
the moments) of f and g do not depend on ¢. Hence (computing as
though our probability space were {—1,1}M itself),

Efg= (1—Q)/fgdum+q/fngM
1/2
§0+q|:/f2dVM‘/92dVM:|
:q-]__

Hence p(c(Wy,k € S),0(Wg,k € T)) < q. This and (3.1) and (1.1)
force both equations in property (3) to hold. This completes the proof
of Lemma 3.2. u]

Definition 3.3. Suppose 0 < ¢ < 1, and M > 2 is an integer.
A random sequence (indexed by Z) is said to have the U(q, M)-
distribution if it has the same distribution as the random sequence
Y = (Yi,t € Z) defined as follows: First let V := (V;,t € Z)
be i.i.d. random vectors taking their values in {—1,1}  with the
distribution of Vj being (1 — q)pns + quar. For each t € Z, represent
Vi by Vi := (V40,...,Ve,m—1). Now define the random sequence
Y = (Y;,t € Z) as follows:

VteZ, Yi:=Vio+3Vic11+Wiao+-+3" 1 Vis oMo

Lemma 3.4. Suppose 0 < ¢ <1, and M > 2 is an integer. Suppose
Y := (Y, t € Z) is a random sequence with the U(q, M)-distribution.
Then this random sequence Y has the following properties:

(1) Y is strictly stationary and 1-dependent.
(2) Any M —1 of the random variables Y;,t € Z are independent (if
2

M > 3).
(3) a1,0(Y,1) =q/4.
(4) poo,oo(Y: 1) =4q.

Proof. Without loss of generality, assume that V; := (Vig,...,
Vi,m—1), t € Z, are such that all conditions in Definition 3.3 are fulfilled.
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For each u € Z, each s € Z — {0,1,... ,M — 1}, define the constant
random variable V, s by V, s := 0. Note that

(3.2) VteZ, o;)=0cVit—u u€Z).

We need the following claim:

Claim 1. Suppose that S and T are nonempty disjoint subsets of
Z such that dist (S,T) > 2. Suppose that u € Z. Then the o-fields
o(Vur,t €8) and 0(Vys,t € T) are independent.

Proof of Claim 1. Define the sets S* := {0,1,... ,M —1} N S and
T* :={0,1,... ,M — 1} NT. If either S* or T* is empty, then Claim
1 is trivial. Now suppose instead that neither S* nor 7™ is empty.
Then S* UT™* cannot be {0,1,...,M — 1} (for otherwise dist (S, T)
would be 1). Hence, by Lemma 3.2 (2), the o-fields o(V,+,t € S*) and
(Vi t,t € T*) are independent, and Claim 1 follows trivially. O

Now property (1) in Lemma 3.4 is an elementary consequence of
Definition 3.3, Claim 1, and (3.2).

Proof of (2). Suppose that t1,...,tp—1 are distinct integers. For
each u € Z, the random variables Vi ¢(1)—u;- -+, Vut(m—1)—v are in-
dependent by Definition 3.3 and Lemma 3.2 (2). Hence by (3.2) and
Definition 3.3, the random variables Y; (1), ... , Y;(a—1) are independent.
O

Proof of (3) and (4). First note that
a1,00(Y; 1) > a(0(¥o), 0 (Y, -, Yar 1))
(33) Z Oé(O'(V(-)’()), U(I/D,la v 7‘/0,M71))
=q/4

by (3.2) and Lemma 3.2 (3). On the other hand, for any two disjoint
nonempty subsets S and T C Z, one has

plo(Yy,t € 8),0(Ys,t €T)) =sup p(0(Vu,t—u,t€S), 0(Vyt—u, t€T))
u€eZ

<q
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by (3.2), Lemma 2.1, and Lemma 3.2 (3). Hence pos oo(Y,;1) < g. This
and (3.3) and (1.1) together force both properties (3) and (4) to hold.
This completes the proof of Lemma 3.4. o

For the next definition we use the terminology of Definition 2.4.

Definition 3.5. Suppose 0 < ¢ < 1, M > 2 is an integer, d is
a positive integer, and L # 0 is an element of Z¢. A random field
Z = (Zy,t € Z) is said to have the V(q, M, d, L)-distribution if it has
the following two properties:

(1) For each | € Z%, the random sequence (Z;;r,j € Z) has the
U(q, M)-distribution.

(2) Letting S1,S2,S53,... denote the members of the L-partition of
Z<, one has that the o-fields o(Z;,t € S1),0(Z;,t € Sa),0(Zs,t €
S3), ... are independent.

Lemma 3.6. Suppose 0 < g <1, M > 2 is an integer, d is a positive
integer, and L # 0 is an element of Z%. Define r := ||L||. Suppose
Z = (Z,t € Z%) is a random field with the V(q, M, d, L)-distribution.
Then the random field Z has the following properties:

(1) Z is strictly stationary and r-dependent.

(2) Any M — 1 of the random variables Z, t € Z¢ are independent
(f M = 3).

3) a1,00(Z,7) = q/4.
(4) Poo,0(Z,1) =gq.

Proof. By elementary arguments using Definition 3.5, Lemma 3.4,
and Lemma 2.1, one can verify properties (1), (2) and (4), as well
as a1.00(Z,r) > g/4. From this last fact and property (4) and (1.1),
property (3) is also forced to hold. O

Proof of Theorem 2. Let My, My, Ms,... be a sequence of positive
integers such that, for every n > 1,

(3.4) M, >1/(4qc,) and M, < M.



514 R.C. BRADLEY

For each n = 0,1,2,3,..., let Z(") := (Zt(n),t € Z%) be a random
field. Assume that these random fields have the following properties:

(3.5) The random field Z(©) has all of the properties in Theorem 1.

(3.6) For each n > 1, the random field Z(™ has the V(q, M,,,d, L,)-
distribution.

(3.7) These random fields Z(®), Z(1) Z(2) Z(3)  are independent
of each other.

Let h : RXxR X R X :-- — R be a one-to-one bimeasurable Borel
function. Define the random field X := (X;,t € Z%) as follows:

vtez?, X,:=nz" 2,22, ).
Note that
(3.8) vteZ?, o(X,) =020, z", 22, ..).

By an elementary argument using (3.5)—(3.7) and Lemma 3.6 (1),
the random field X is strictly stationary. Property (1) in Theorem 2
follows from (3.5) (see property (1) in Theorem 1) and the nature of the
function h. Property (6) follows easily from (3.5), (3.7), (3.8), Lemma
3.6 (4), and Lemma 2.1. Properties (2) and (3) follow from (3.5), (3.8)
and property (6). All that remains is to prove properties (4) and (5).

Proof of (5). For each n > 1, ay.00(X,7) > a1,00(Z2",r,) = q/4
by (3.8), (3.6), and Lemma 3.6 (3). Under the hypothesis of Theorem
2, 7y :=||Ly|| = o0 as n — oo. Hence for all 7 > 1, a1 oo (X,7) > ¢/4.
Now property (5) follows from (6) and (1.1).

Proof of (4). Suppose that n > 1 and k > 1. Our task is to prove
that

(3.9) k™ Brek (X, ) < 8qcn.

If k > M,/2, then (3.9) holds automatically because k=B 1 (X,7,) <
k=t <2/M, < 8qc, by (1.1) and (3.4).

Suppose instead that &k < M, /2. By (3.7), (3.8), and Lemma 2.1,

(310) /Bk,k(Xa Tn) < Z /Bk,k(Z(m)aTn)-
m=0
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For each m such that 1 < m < n (if n > 2), one has ﬂhk,(Z(m),rn) =0
by (3.6), Lemma 3.6 (1), and the fact that r,,, < r,, (from the hypothesis
of Theorem 2). For each m > n, one has that 2k < M,, < M,, by
(3.4), and hence B x(Z(™,r,) = 0 by (3.6) and Lemma 3.6 (2). Also,
Brex(Z©,r,) < 8qc,k by (3.5). Thus, by (3.10), one has (3.9). This
completes the proof of (4) and of Theorem 2. O

4. Proof of Theorem 3. We shall first prove the following lemma.

Lemma 4.1. Suppose that d and g are as in the hypothesis of
Theorem 3. Then there exists a strictly stationary random field Y :=
(Yz, t € Z%) with properties (1), (2), and (8) in Theorem 3.

Proof. Referring to Definition 2.5, for each nonzero element, L € Z9,
let ZD):=(Z®) te Z4) be arandom field with the 7(1/2, g(||Ll|), d, L)-
distribution. Assume that these random fields Z("), L € Z? — {0} are
independent of each other. Referring to Lemma 2.6, we assume without
loss of generality that for all L € Z? — {0}, for all t € Z?, the event

{z\™ ¢ {0,1,2,3}} is empty. Let
h:{0,1,2,3}2 0 L R

be a one-to-one bimeasurable Borel function. Define the random field
Y = (Y;,t € Z¢) as follows:

VteZ?, Y, :=h(z",Lez?—{0}).

(The notation h(- - - ) here is somewhat informal, but its meaning should
be clear.) Note that, under our assumptions,

(4.1) vtezt, oY) =o(2M,Lezt—{0}).

From Lemma 2.6, each of the random fields Z(%) is strictly stationary,
and hence the random field Y is strictly stationary by an elementary
argument.

From Lemma 2.6, each random variable Zt(L) is uniformly distributed
on the set {0, 1,2,3}. Hence, by an elementary argument, the common
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distribution of the random variables Y; does not have any atoms. That
is, the random field Y satisfies property (1) in Theorem 3.

Next let us prove property (3) in Theorem 3 for the random field Y.
Suppose 7 € [1,00). For each L € Z? such that ||[L|| < r, one has
that peo.00(ZH),r) = 0 by Lemma 2.6 (1). For each L € Z¢ such that
[|L|| > r, one has by Lemma 2.6 (6),

Pooce(Z1),7) < poc,cc(Z2),1) = g(|| L)) < 9(r)
(since g is nonincreasing). Using Lemma 2.1, we now have that
Poo,c0(Y,T) = sup pOO,OO(Z(L)a r) < g(r)

(where the sup is taken over all L € Z? — {0}). Taking note of (1.1),
we thus have property (3) for Y.

Finally, let us prove property (2) for Y. For each nonzero L € Z<,
a(0(Yo),0(Y2)) > a(0(25),0(27)) > (1/4)g(||L))
) = 0o ) L = g

by (4.1) and Lemma 2.6 (3). By property (3) (proved above) we have,
for each nonzero L € Z¢, p(o(Yy),o(Y1)) < g(||L|]). Now (1.1) forces
both equations in property (2) to hold for Y. This completes the proof
of Lemma 4.1. o

The next lemma is very elementary and very well known in various
guises. (It plays a role in, e.g., the examples given by Dobrushin [6,
p. 205] and Zhurbenko [16, p. 8, Example 2.1].)

Lemma 4.2. Suppose that (Vi, W), k =1,2,3,... are independent,
identically distributed random wvectors, such that the random variables
V1 and Wy fail to be independent. Then

Blo(Visk > 1),0(Wi k > 1)) = L.

Proof. Changing our probability space, if necessary, we assume
without loss of generality that there exists a probability measure @
on that space such that the two o-fields o(Vi, k > 1) and o(Wg, k > 1)
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are independent under ), and on each of these two o-fields the measure
Q coincides with P.

Let A and B be Borel subsets of R such that P(V; € A,W; € B) #
P(Vy € A)- P(W; € B). By the strong law of large numbers,

1 n
lim —E I(V, e AW,eB)=P(V; € AW, € B) as. —P and
n—)oonkzl

1 n
lim —E I(Vie AW,eB)=P(Vi€A)-P(Wy€B) as. —Q.

Hence the measures P and @ are mutually singular on o((Vx, Wg), k =
1,2,3,...). Lemma 4.2 follows by an elementary argument. ]

Proof of Theorem 3. Using Lemma 4.1, for each n > 1, let Y(®) :=
(Yt(n), t € Z%) be a strictly stationary random field with properties (1),
(2) and (3) in Theorem 3. Further, assume that these random fields
YW y®@ y®) . are independent of each other and have the same
distribution.

Let f : RXxR xR x--- — R be a one-to-one bimeasurable Borel
function. Define the random field X := (X;,t € Z%) as follows:

viezd, X, =P v® v ).
Note that

(4.2) vteZd, o(X,) =0, n>1).

By elementary arguments, the random field X is strictly stationary
and satisfies property (1) in Theorem 3. By (4.2) and Lemma 2.1, for
each r > 1,

Poo,o0 (X, T) = poo,oo(Y(l),r) < g(r).

By (4.2), for each nonzero L € Z¢,
a(o(Xo),0(XL)) = alo(Y ), (VD)) = (1/4)g(|ILI).

Now (1.1) forces the random field X to satisfy both properties (2) and
(3) in Theorem 3. Now for each L € Z¢ (including 0) we already have
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that the random variables YO(I) and Y ) fail to be independent. Hence
the random field X satisfies property (4) in Theorem 3 by (4.2) and
Lemma 4.2. This completes the proof of Theorem 3. |

Acknowledgment. The topic of this paper was suggested to the
author by Lanh Tran, Ed Carlstein, and Michael Sherman. The author
thanks these people for their encouragement and helpful comments.

Note added in proof. Dobrushin [6] identified some strictly
stationary random fields (in particular, some Gibbs fields) that satisfy
(1.3) but not (1.2). An extensive treatment of mixing conditions
and limit theory for random fields is given by A.V. Bulinskii, Limit
theorems under weak dependence conditions, Moscow University Press,
1989 (in Russian). An analog of the Proposition in Remark 6, with the
assumption limg, < 1/128 weakened to limg, < 1, was established
by W. Bryc and W. Smolenski, On the convergence of averages of
mizing sequences, preprint 1991. The author thanks I.G. Zhurbenko
and W. Bryc for pointing out these things.
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