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LIMITS OF WEIGHTED SPLINES BASED ON
PIECEWISE CONSTANT WEIGHT FUNCTIONS

L. BOS AND K. SALKAUSKAS

Weighted splines using piecewise constant weight functions as in-
troduced by Salkauskas [7] have proven useful in the interpolation of
rapidly varying data by C! piecewise cubics and have been successfully
exploited by, for example, Foley [2, 3, 4], both in combination with
Nielson’s v-splines [6] and in a bivariate analogue of tensor product
interpolation.

In [8], the authors have shown that for any weight function which
is piecewise constant on some partition (not necessarily that deter-
mined by the interpolation points), there exists an interpolant which
minimizes the weighted semi-norm. As it turns out, it is also a piece-
wise cubic. We show here that for a broad class of weight functions
there exist unique optimal interpolants which can be represented as
uniform limits of piecewise cubic interpolants based on piecewise con-
stant weight functions.

The existence proof is similar to the approach taken by Meinguet
[5] in the construction of optimal multivariate interpolants in a semi-
Hilbert space.

Theorem 1. Suppose that we are given a data-set, (z1, f1),...,
(N, fN) with z1 < --- < zn. Let w(z) be a positive locally integrable
weight function such that

0<m<w(x)<M<oo onlzy,zn]

w(z) =1, Vz¢lz,zn],

and
1/w(z) € L[z, zN].
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Further, let X := {v € CY(R) : Dv is absolutely continuous and
D%y € Ly(R)} and

(1) (U, V) ::/RwD2uD2v

be a semi-inner product for X. Then there is a unique o € X which
interpolates the data for which (o,0), is a minimum. Moreover,
D?%0 = 0 outside [r1,TN].

Proof. We first decompose X into a direct sum X, @ P;. Specifically,
let P: X — Py be the projector defined by linear interpolation at x;
and zp, so that in Lagrange form

(Pv)(z) :=li(z)v(z1) + In(z)v(zy).

Clearly, the kernel of I — P is just P;. We set Xo = Im (I — P). It
is not difficult to see that Xy is in fact a Hilbert space. From this, it
follows that an optimal interpolant p € X has the form u + P f, where
u € X interpolates the reduced data y; := f; — (Pf)(z;),i=1,...,N.
Note that y; = yy = 0. All u € X satisfy u(z;) = u(zy) = 0, so that
u only need to interpolate at zo,...,zy_1. Suppose for the moment
that there are representers for function evaluation in Xj; i.e., there
are K; € Xy such that (K;,u), = u(z;) for all u € Xo. Then it is
well known (see Davis [1]) that u has least norm in Xy if and only if
u € span {K;}. Equivalently, we wish to find K; € X, such that

(2) (Ki,v)w = (v — P)|ges,, 1=2,...,N—1,

for all v € X. It seems easiest to show the existence of such K; by
making use of distribution theory. Therefore, introduce the space of
test functions D := {¢ € C>°(R) : ¢ has compact support}. Now, for
any ¢ € D, the condition (2) is equivalent to

(3) (D*(wD?K;), ) = (0a,,¢) — (%) (621, 0) — IN (i) (Sans #)-

Of course, 0, is the Dirac delta function, and for T, a distribution,
(T, ) := T(p). Now such K;’s can be constructed from a solution of
the distributional differential equation

D*(wD*E;) = 6,
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in the following manner. This equation is known to be satisfied by a
function E; such that

w(z)D?*Ey(z) = |z — x;|/2,

and thus a solution is

(4) Ei(z) = %/ /t |sw_(s°’;"| ds dt.

It is not hard to see, in view of our assumptions about w, that E; ¢ X.
However, the function

(5) Hi(z) := Ei(z) — ly(zi) Er(2) — In(2:) En(2)

can be shown to be in X. To see this, consider [p w(D*H;)*dx =
{= —}—f;lN +f;;}w(D2Hi)2 dz. Since w(z) =1 for x ¢ [z1,zy], the
first and last integrals vanish. To see this, suppose * > xy. Then,
from (4) and (5), it follows that

D*Hy(x) = (1/2)(z—w:) = (1/2)(z—21)la (2:) - (1/2) (z—2n)ln (2:) = 0,

since l; and [y define the projector P onto P;. A similar argument
shows that D?H;(x) = 0 for z < z;. Consequently,

TN
/ w[D*H;)? dz = / w[D?H;)? dz < oo,
R T1

so H; € X. A simple calculation now reveals that H; satisfies (3), from
which it follows that

K;,:=H; — PH; € X

also satisfies (3) and D?K; vanishes outside [z1,zy]. Note too that
K(z1) = K(zy) = 0.

We thus have shown that
(Ki7 ‘p)w = (10(371) - ll(wl)(p(wl) - lN(wl)(p(mN): 1= 27 . 7N_17

for all test functions ¢ € D, and this can be extended to all v € X by
a density argument.
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The problem of finding a u € Xy of least norm, satisfying the
(hyperplane) equations

(Kj, u)w = u(z;) =y

is solved by a linear combination 3 N.'a;K;(z) satisfying

Y, aiki(xy) = g5 But (KiKj)w = Kj(z:) — (PK;)(w;) and
(PKJ)(JJZ) = P(HJ - .F)Ll'])u::,;z = (PH] - Pij)|z:a:i = 0. It fol-
lows that Vandermondian [K;(z;)] is in fact a Gram matrix of N — 2
linearly independent functions and, hence, positive-definite. To see the
independence, suppose that there are constants [3;, not all zero, such
that K := Y, ," BiK; = 0. Then (K, v) =0 for all v € X,. Choose v
so that v(z;) = ;. Then (K,v) = > 32 # 0. Hence, there is a unique
interpolant of minimal semi-norm, of the form ¢ = u + Pf, and its
second derivative vanishes outside [z, zy]. As in the unweighted case,
o is orthogonal to every interpolant in X of zero data. o

Theorem 2. Given a data set (z1, f1),...,(zN, fN) withz) < -+ <
xN, suppose that w(z) is a weight function satisfying the conditions of
Theorem 1. Suppose further that w,(z), n = 1,2,..., is a sequence
of weight functions, piecewise constant on finite partitions of [z1,Zn],
such that m < wy(z) on [z1,zn]| and that limy, oo {SUP, ¢y, 2 n] 1W(T) —
wp ()|} = 0.

If o(z) is that element of X which interpolates the given data
{(zi, f;) : 1 < i < N} for which |o|y is a minimum and S,, the corre-
sponding minimizer with weight w,(x), then

Sn — o uniformly on [z1,zN].

Proof. First, given ¢ > 0, choose M so that n > M = |w(z) —
wp(z)| < em on [z1,zy]. Then, for n > M,

‘(Sna Sn)w - (Sn7 Sn)wn|

{é?wwmwww—wwa

< [ (0*5u@)Plu(@) - wn(o)] do
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< / (D28, (a))2em da

1

IN

s/zN (D*S,,(z))*w, () d (as m < wy(z))

1

TN
< E/ (D?0(x))?wn () dz (by the minimality of S,,).

1

But on on
/ (D20 (2))2wn (z) dz — / (D20 (2))?w(2) dx,

and so we see that

|(Sn, Sn)w - (Sn; Sn)wn| — 0.

Now, by the minimality of S,, (Sn,Sn)w, < (0,0)w,, and by the
minimality of o, (0,0)w < (Sp,Sn)w. But, also, (0,0)w, = (0,0)w
and, thus, we must have (S,,S,)w — (0,0),. Further, the optimality
of o implies that (6,0 — Sp)w = 0 and so (Sn,Sp)w = (0 — (0 —
Sp),o0 — (60— Sp)w = (0,0)w + (0 — Sn,0 — Sp)w, and we see that
(6—5n,0=5n)w = (Sn,Sn)w—(0,0)w — 0. Therefore, as w(z)/m > 1
on [z1,znN], (60 = Sn,0 — Sp)1 < (1/m)(o — Sn,0 — Sp)w — 0. (Here,
(,-)1 denotes the semi-inner product with weight function 1.) This
shows convergence in an L, sense. To show pointwise convergence,
consider

Ey(z) = (1/12){]z — 11> = b(t)lw — 21> — In(t)]z — an[*}

where l; and [y are, as before, the linear Lagrange interpolating
polynomials for the points z; and xy, respectively. It is easily seen
that, in fact, E; € C?(R) C X for any ¢t € R. Moreover, an integration
by parts reveals that

(h,E;)1 = /zN D?h(z)D*E;(z) dz = h(t)

for t € [z1,zy], and h € Xy. (E; is essentially a representer of function
evaluation at ¢ in Xy.) Thus, as o and S,, are interpolants of the same
data,

(0 =S = (0 = Sny E)1|> < (6 = Snyo — Sp)1(Ey, E)1 — 0.



488 L. BOS AND K. SALKAUSKAS

The convergence is uniform on [z1,zN] for (E:, Et); is evidently uni-
formly bounded on [z, zx]. u]

A natural question arising at this point concerns the choice of weight
function. We will now show that if the data originates from a function f
which is spline-like in a sense defined below, and if its second derivative
is known, then there is a weight function w such that the optimal
interpolant o = f. This w can be approximated by piecewise constant
weight functions w,, converging uniformly to w. It is known [8] that the
corresponding optimal interpolating splines are piecewise cubics which,
by Theorem 2, converge to f.

The following definition is motivated by noting that the second
derivative of a C? cubic spline is a continuous linear spline with the
same knots. We will say that a function is spline-like if its second
derivative has the same sign pattern as the second derivative of such a
cubic spline. More precisely, we make the

Definition. Suppose z; < --- < zy, and f € C%[z;,zy]. Then f is
spline-like on this partition if and only if D?f(z;) = D?f(zn) = 0 and
there exists a continuous linear spline A with knots xy,...,zx such
that A\/D?f > m > 0, and is continuous on [z, zN].

It follows that A\/D?f can be extended to a weight function w
satisfying the conditions of Theorem 1 by defining

w(z) := {)\(w)/DQf(x% z € [z1, 2N,

1, z ¢ [z1,zN].

Of course, at any point where D? f(z) = 0, we must have \(z) = 0 and,
in general w must have removable singularities.

Theorem 3. The optimal interpolant of the data (x;, f(z;)), i =
1,..., N, corresponding to the weight function w above is f.

Proof. We extend f by its tangent lines at z; and zx (and continue
to refer to it as f) to a function f € X, and recall that f is optimal if
and only if it is orthogonal in the weighted semi-inner product to every
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interpolant of zero data at the given points. Let z € X be such an
interpolant. Then

i+l

/Rw(x)D2f(x)D2z(a:) dz = Z_ /z w(z)D?*f(z)D?*2(x) dz

— /w o \z)D?z(z) dz

i=1 i

I
—~
>~
—
&
-]
N
~—
1

_ /gvHl DX\ (z)Dz(z) dz}

i

={\an)Dz(zn) — Mz1)Dz(x1)}
)/z Dz(z) dx

i

— D\(z)

(ZiTit1

:0’

since D?f(x1) = D?f(xx) = 0 implies that A(z1) = A(zx) = 0, and
[oH Dz(x) do = 2(@i41) — z(2:) = 0 by hypothesis. Hence, f satisfies

the orthogonality condition and is therefore optimal. a
We note that similar results hold for clamped splines.

Example. For the purpose of illustrating the above results, we have
chosen the arbitrary function, constructed from a hand-drawn sketch,
and constrained by the precise data points shown in Figure 1. This
function is spline-like, but its natural spline interpolant shown in Figure
2 displays undesirable oscillations. Figure 3 shows an approximation
to the second derivative, obtained from second divided differences,
and a suitable A(z). Figure 4 is a plot of the corresponding weight
function. Near 1.2 it is small but nonzero. A sequence of C! piecewise
cubic interpolating splines with piecewise constant weight functions
which approximate w(z), approaching the given function, is shown in
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Figure 5. The initial piecewise constant approximation was formed by
taking 4 equally spaced knots from 0 to 1, 10 additional equally spaced
knots from 1 to 3.5 and then the two knots 4 and 5 for a total of 16.
On each subinterval so formed, w(z) was approximated by the average
of its endpoint values. An improved approximation was obtained by
placing two additional knots at 1.12 and 1.37 and a third approximation
by placing a further two knots at 1.18 and 1.31. The solid curve is the
original function and the broken curves are the splines.

FIGURE 1. Original function and data points.
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FIGURE 2. Natural spline interpolant.

FIGURE 3. Second derivative of original function and associated piecewise
linear.
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FIGURE 4. The weight function w = A\/D?f.

FIGURE 5. The original function and a sequence of interpolating splines with
piecewise constant weight functions.
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