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BLOCH TYPE SPACES OF ANALYTIC FUNCTIONS
KEHE ZHU

1. Introduction. Let D be the open unit disk in the complex plane
C. The Bloch space of D, denoted B, consists of analytic functions f
on D such that

sup{(1 — |z|})|f'(2)| : z € D} < +o0.
Functions in the Bloch space have been studied extensively by many

authors. See [1] for a recent survey of the theory of Bloch functions.

In this paper we study a class of generalized Bloch spaces. Specifi-
cally, for each a > 0, we let B, denote the space of analytic functions
f on D satisfying

sup{(1 — |z[)?|f'(2)| : z € D} < +o0.

These spaces are not new. They are a certain type of Besov space [12].
When « > 1, the space B, can be identified with the space of analytic
functions f with

sup{(1 — [2|*)*7!|f(2)| : z € D} < +o0;

see Proposition 7. Such spaces are studied in [13] and [16]. When
0 < a < 1, the space B, can be identified with the analytic Lipschitz
space Lip;_, consisting of analytic functions f on D such that

f(2) = f(w)] < Clz —w|'™*

for some constant C' > 0 (depending on f) and all z,w € Dj; see [21]
or Theorem B of [10]. Thus our results here unify the theory of Bloch
functions, Lipschitz functions, and functions studied in [13] and [16].

Although most results in the paper are new (in the sense that this
is the first time they appear in the literature), this paper is expository
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in nature. This is because most arguments used here are standard and
well known to experts.

Our approach here is functional analytic. We will make extensive
use of the technique of reproducing kernels. Many arguments involving
reproducing kernels can also be handled by the Cauchy integral or the
so-called fractional integrals introduced by Hardy and Littlewood [11].

2. Basic properties of B,. Recall that for each a > 0 the space
B, consists of analytic functions f on D with the property that

1flle = [£(0)] +sup{(L — [2[*)*[f'(2)] : z € D} < +o0.

Proposition 1. For each o > 0 the space B, is a Banach space with
the above norm.

Proof. The proof is standard and elementary. We omit the details.
mi

We will also be interested in the generalization of the little Bloch
space By consisting of functions f in B such that

lim (1—|z2|?)f'(2) = 0.
|z|—=>1—
Thus for each o > 0 we let B, o denote the subspace of B, consisting
of functions f with

lim (1—|z[*)*f'(z) = 0.

|z| =1~

We will see later that the above condition for an analytic function to
be in B, is equivalent to the condition that (1 — |z|?)*f’(z) extends
continuously to the boundary of the unit disk. This is even true locally:
if f is analytic and (1 — |2|2)*f'(2) has a finite (uniform) limit at a
boundary point, then the limit must be 0.

It is clear that each B, contains all functions that are analytic in

a neighborhood of the closed disk D. In particular, Ba o contains all
polynomials.
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Proposition 2. B, is the closure of the set of polynomials in the
norm topology of B.. In particular, Bao is a separable Banach space
by itself.

Proof. Again the proof is standard. It breaks down into two steps.
First, one shows that each function in B, can be approximated
in norm by functions which are analytic in a neighborhood of D.
Specifically, one shows that ||f — f|la = 0 (r — 17) if f is in By,
where f.(z) = f(rz). Then one shows that each function f, can be
approximated in norm by polynomials. Specifically, one shows that
each f,. is approximated in norm by its Taylor polynomials. We omit
the actual arguments. u]

Proposition 3. For any a > —1 and z € D we have

1) = (@) [ G

if f is an analytic function on D with

dA(w)

L a1l aae) < +.
where dA is the normalized area measure on D.
Proof. See 4.2.1 of [18].

Corollary 4. Suppose a >0, z € D, and f € B,. Then

— |lw®)* ' (w
10 = f0)+ [ CEEE) dagw),

(1 — zw)lte

Proof. By Proposition 3,

_w2a Iw
f'(z):(oz—i—l)/D (1(1|—zﬁ)))2f+‘(" )dA(w), z € D.
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Taking the line integral from 0 to z, we get

f(z) = f(0) = /D (= Jwl)?f(w) L — 1| dA(w).

w (1 — zw)lte

It is easy to see (using Taylor expansion, for example) that

[ B gy g

w

Thus the desired result follows. O

Proposition 5. For each nonnegative integer n and each compact
set K contained in D, there exists a constant C' > 0 (depending on o
only) such that

sup{|f")(2)| : z € K} < C|f]]a

for all f in B,.

Proof. The desired result follows easily from Corollary 4 and the fact
that derivatives can be taken inside the integral sign. Note that |w|™!
is dA-integrable, so that there is no problem with convergence in the
case n = (. u]

Proposition 6. For s > —1 and t real, let

(1 - Jw?)*

I = _—
S’t(z) b ‘1 _ zw‘2+s+t

dA(w), z € D.

We have
1) I+(2) is bounded in z if t < 0;
2) I, i(2) ~ —log(l —|2]?) as 2| = 17 if t =0;
3) Lii(z)~(1— |21?)~t as |2] — 17 if t > 0.

Proof. See 4.2.2 of [18]. u]
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Proposition 7. Suppose a > 1. Then f is in B, if and only
if (L= [212)*"1f(2) is bounded on D; f is in Ba,o if and only if
(1—12]*)2"1f(2) > 0 as |z2] = 1.

Proof. First assume that f is in B,. By Corollary 4,

£(2) = £(0) + /D A=) f(®) 41),  eD.

w(l — zw)lte
It follows that

w)

dA
1)~ 10 < 5l [ o2, s,

The factor |w| in the denominator does not change the growth rate of
the integral for z near the boundary. Thus, Proposition 6 implies that
there is a constant C' > 0 such that

£(2) = £O)] S Clflla(1 = |2)~"D,  zeD.

This shows that (1 — |2]|?)*~1f(z) is bounded on D.
Conversely, if (1—z|?)* | f(z)| < M for some constant M > 0, then

f(z) = oz/D (1~ wP)*" f(w) dA(w), z € D,

1 zd)ott

by Proposition 3. Differentiating under the integral sign, we obtain

fI(Z) — O{(Oé + 1)/ ’U_}(l — ‘w|2)a_1f(w)

5 1= 2oyt dA(w), z € D.

By Proposition 6 there exists a constant C' > 0 such that

for all z € D. This clearly shows that f is in B,.

Carefully examining the above proof, we have actually shown that,
for o > 1, the norm || ||, on B, is equivalent to the norm

[1£1l = sup{(1 — |2*)*7[f(2)| : z € D}.
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Since B g is the closure of the polynomials in B, under the norm || ||a,
and the closure of the polynomials in B, under the above norm || ||
consists of analytic functions f with (1—1z|?)*"!f(2) — O as |2| — 17,
we conclude that f € B, if and only if (1 — |2]2)*71f(z) — 0 as
|z| = 17. o

Proposition 8. Suppose a > 0, and suppose that n > 2 is an integer.
An analytic function f on D belongs to B, if and only if
sup{(1 — [2*)*"" 7 fW(2)| : z € D} < +o0.

Similarly, f belongs to By if and only if (1 — |z|2)etn= 1M (2) — 0

as |z| = 1~.

Proof. If f is in B,, then
_ 2\« g/
=10+ [ UleBr s

p W(l—zw)lte

dA(w), z € D,

by Corollary 4. Differentiating under the integral sign n times and
applying Proposition 6 we easily conclude that

sup{(1 — |z|?)*T" 1 ™ (2)| : z € D} < +o0.

To prove the inverse, we may as well assume that the first n + 1
Taylor coefficients of f all vanish (since subtracting a polynomial from
f neither alters the assumption nor does the conclusion). In this case,
the function

(o +2)(1 — [¢)* 1 (2)

)= ) (a2

is bounded on D. By Proposition 3,

l2)atn—1 £ (g
F(2) = (a+n) /D a (|1 |_)Zuj,—)a+f+1 w) dA(w), z€D.

Integrating from 0 to z, we get
F7V(z) = £70(0)
_ 2\a+n—1 £(n)
LS ] R S P
D

w (1 — zw)etn
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Since f(»~1(0) = 0 and

/ (PP ) gy =0
b w

we have

f(n—l)(z) - /D (L= )= f ) (w) dA(w), z € D.

(1 — z@)otn

Repeating the above argument n — 1 times we will get

f’(z):/ (Llf)dfl(w), zeD.

p (1 — zw)>+2

By Proposition 6 there is a constant C' > 0 such that

1@< lelle [ e

< COllplloo(1 — [2*)

for all z € D, and hence f is in B,.

Note that the above proof actually shows that the norm || ||, on B,
is equivalent to the following norm

1£11 = £ O]+ £ O] + -+ [~ (0)]
+sup{(L — [z W (2)| : » € D}.

It is easy to see that the closure of the polynomials in B, under the
above norm consists of analytic functions f with (1—|[z|?)*+?=1f(")(2)
— 0 as |z| — 17. This implies that an analytic function f belongs to
Bao if and only if (1 — |z[2)*+" =1 f(")(2) — 0 as |2| — 17, completing
the proof of Proposition 8. u]

Proposition 9. Suppose that 0 < a < 1. An analytic function f on
D belongs to B, if and only if

sup{w:z;éw}<+oo.
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In particular, if 0 < a < 1, the space By is contained in the disk
algebra.

Proof. See Theorem B in [10]. O

As a consequence of Propositions 7 and 9 we see that if f is in B,
then

/D FEI = [2P)* 1 dA(z) < +oo.

In fact, if a > 1, Proposition 7 shows that the integrand is a bounded
function; if 0 < a < 1, Proposition 9 shows that f is bounded on D and
hence the integral converges since (1 — |z|?)! is area integrable for all
t > —1; if @ = 1, the desired integrability follows from the well-known
fact that each function in B grows at most as fast as —log(1 — |2]?).

3. Duality. Let L. denote the Bergman space of analytic functions
f on D such that

171l = /D I£(2)] dA(2) < +oo.

The space L. is a Banach space with the above norm. We prove in this
section that if f € L} and g € B, then

lim [ f(rz)g(rz)(1 —|2*)* ' dA(2)

r—1- Jp

exists. (If o > 1 this is clear in virtue of Proposition 7.) Moreover, we
will show that the above pairing induces the following dualities:

* __ 7l 1x _
~.0 =L, L," = B,.

The case o > 1 follows from Proposition 7 and a result in [16]. The
case o = 1 is proved in [2]. Thus the main interest here is the case
0 < a < 1; even this case can be deduced from the case 1 < a < 2
by considering f’ instead of f. Nevertheless, this section is justified by
at least two considerations: it gives a unified approach to some known
duality results and it develops several results along the way which are
of independent interest.
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To prove the above dualities we need to introduce an auxiliary
operator. For any a > 0 let ), denote the operator defined by

Qaf(z) = Oé/D % dA(w), z €D.

Note that @, is not a projection; it does not reproduce analytic
functions unless o = 1.

We will also need to use several subspaces of L>(D). Cy(D) is the
space of complex-valued continuous functions on D which vanish on the
boundary. C(D) is the space of complex-valued continuous functions on
the closed unit disk D. BC(D) will be the space of bounded complex-
valued continuous functions on D.

Proposition 10. For each o > 0 the operator Q, maps L (D)
boundedly onto B,. Q also maps BC(D) onto B,.

Proof. Let g € L*°(D), and let f = Qng. Thus

F(2) = a/D (ﬂ dA(w)

1 —z@)lte

and

7'(2) =a(a+1>/}3(1”ﬂd,4(w>, 2 eD.

1 — zw)2te

By Proposition 6 there exists a constant C' > 0 such that

dA(w
76 < atat gl | e < Clgllatt = )

for all z € D. It is also clear that |f(0)] < @||g]lcc- Thus ||f||ea <
(C + a)]|g|| and hence Q, maps L°° (D) boundedly into B,,.

Next we show that @), maps BC(D) onto B,. First observe that if
p is a polynomial then there exists g € Cy(D) such that p = Q9. In
fact, for any nonnegative integer n,

(1 — |w|?)2w™ _ 2a(a+1)---(a+n) ,
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Given f in B,, we can write

£ = 10+ £ @+ T2 4 )

with f; still in B,. By the above observation, we can find a function g
in Cy(D) with

f(0)+ f'(0)z + @zz = Qayg(2).

By Corollary 4, we also have f; = Q,g1 with

1— 2|22 f! (2
91(2)2( ||2f1()
az
belonging to BC(D). Thus f = Q,(g+g1) and hence @, maps BC(D)
onto B,. |

Proposition 11. For each a > 0 the operator Q, maps C(D)
boundedly onto Ba,o. Qo also maps Co(D) onto Ba,p.

Proof. The “onto” parts follow from the proof of Proposition 10.

It remains to show that @, maps C(D) into B,o. By the Stone-
Weierstrass approximation theorem, each function in C(D) can be
uniformly approximated by finite linear combinations of functions of
the form z"z™ (n,m > 0). Since @, maps L>°(D) boundedly into B,
and By is closed in By, it suffices to show that (), maps each function
of the form z"z™ (n,m > 0) into B,,o. But this is clear since an easy
calculation using polar coordinates shows that (), maps each function
of the form 2™z™ to a monomial. o

Corollary 12. For each o > 0 there exists a constant C' > 0 such
that

CH flla < inf{llglloo : f = Qag,9 € LZ(D)} < Cf]la
for all f in By and

C Y\ flla < inf{llglloo : f = Qag,9 € Co(D)} < Cfla
for all f in Bayo.
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Proof. This follows from consideration of the quotient norm and the
open mapping theorem. o

We need to introduce another operator before we prove the duality
results. For each a > 0 we let T, denote the operator defined by

Tuf(2) = 3(1 - |22 /D (1’”&(1 =)t dA(w).

— zw)*

Proposition 13. For each a > 0 the operator T, maps B, boundedly
into L>(D); T, maps Ba, boundedly into Co(D). Moreover, there
exists a constant C > 0 (depending on o only) such that

CHIflla < ITaflleo < Cliflla

for all f in By. In particular, for an analytic function f on D we
have f € By if and only if T f € L (D) and f € Ba, if and only if
Taf € Cy (D)

Proof. Given f in B,, there exists g in L*°(D) such that f = Qag.
By Fubini’s theorem and Proposition 3,

Tof(z) = 3a/D %(1 — |w|?)*t dA(w)/D %

=317 [ gwaawa [ T,

=31 - By [ S

Thus,

dA(u)
T, <39l (1= 1212)? | ———— = 3||g||wo
7.7 < 3llglo1 = ) [ 22 = 3lal

for all z in D and hence ||Tx f|lo < 3|9l for all g in L*°(D) with
Qa9 = f. It follows from Corollary 12 that there is a constant C' > 0
such that ||Tq f||leo < 3C||f||a for all f in B,. Therefore, T,, maps B,

boundedly into L*> (D).
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On the other hand, Proposition 3 and Fubini’s theorem easily imply
that f = QuT,f for all f in B,. In fact,

Tt =30 [ s [ CE e e ) it
(1~ [w)? dA(w)

- a/D Fu)(A = |u*)*7" dA(u)3 /D (1 — wa)*(1— zw)+e
—o [ T AW da

Thus T, f € L*°(D) implies that f € B, by Proposition 10, and there
is a constant C' > 0 such that

Flle = |QaTuflla < Cl|Taflloo

for all f in B,. Also Proposition 11 shows that T, f € Cy(D) implies
that f S Ba,O-

It remains to show that T,, maps B, o into Co(D). By the symmetry
of the disk, the operator T, maps each polynomial to a polynomial
times the function (1 — |2|?)2. In particular, 7,, maps each polynomial
to a function in Cy(D). Since T, : B, — L*°(D) is bounded, Ba,o
is the closure of the set of polynomials in B,, and Cy(D) is closed in
L*> (D), we conclude that T, maps By, into Cy(D). O

We can now prove the main result of this section.

Theorem 14. For each a > 0 the Banach dual of L can be identified
with By (with equivalent norms) under the pairing

(f,9) = lim | f(rz)g(rz)(1—|2)*""dA(z),  fe€L), g€ Ba.
D

r—1-

Proof. Recall that g € B, implies that

[ 19211~ 12y A (z) < oo
D
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We break the proof of the theorem down into several simple steps.

Step 1. Suppose that f € Ll is bounded and g € B,. We show that

/Df(Z)@(lIZIQ)“ldA(Z) < C[lf1lze 119/l

for some constant C' > 0 independent of f and g. Writing g = Q. for
some ¢ € L*°(D) and applying Fubini’s theorem, we have

/ ()31 — |#2)* 1 dA(z)
_a/f |z|a1dA()/DE”l(l_”)ﬂ

wz)lte
o [ S anie [ AP G G
=a [ Gwaaw) [ SEST S aac),

Using Proposition 3, we see that

[ £ 0 = =P aae) = [ i) daw)

and hence

[ @0 - e dae)

< 1z e lloo-

Taking the infimum over ¢ and applying Corollary 12 we get a constant
C > 0 such that

‘/Df(Z)@(IZIZ)“ldA(Z) < Ol exllglla

Step 2. We show that if f is in L! and g is in B, then

lim f(rz)@(l — 2] dA(2)

r—1= Jp

exists and the absolute value of the above limit is less than or equal to
C|Ifllz31|9l/a> where C is a constant independent of f and g.
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Given g in B, Step 1 shows that
/f g@)(1— |22 LdA(z),  fe H®(D)

extends to a bounded linear functional on L} with ||Fy|| < C||g]|a-
So we may assume that F, is defined on the whole space L} (but not
via the above formula). le fin Ll and g in B,. Let f.(2) = f(rz),
0 <r < 1. Each f, is in H* (D) and I[fr — flley = 0asr — 17. It
follows that

lim [ f(rz)g(z)(1 - |2)* " dA(z) = lim Fy(fr) = Fy(f)

r—=1= Jp —1-

exists with [Fy(f)| <[[Fyl[||fllzy < Cllgllallfllzy-

Step 3. We show that if F is a bounded linear functional on L} then
there exists a function g in B, such that

F(f) = lim Df(m) 9(z)1 = 2% tdA(2),  fe L.

r—1-

By the Hahn-Banach extension theorem, F' extends to a bounded
linear functional on L!'(D,dA) without increasing the norm. Since
(LY)* = L, there is a function ¢ € L>°(D) such that

F(f) = /D f(2)e(2) dA(),  felLl.

Using an equality proved in Step 1 we see that for each f in LL,

F(f) = lim fr( )o(z) dA(2)

r—1-

= lim f(?"Z)Qa@( Qap(2)(L — [2*)* 1 dA(2).

r—1-

Let ¢ = Qup. Then g is in B, by Proposition 10 and

F(f)= lim [ f(re)g(z)(1 —|2*)*"" dA(2)

r—1- Jp

for all fin L!.
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Step 4. By the rotational invariance of the measure (1—|z|?)*~1 dA(z),
we have

/ f(rz)g(2)(1 = [z L dA(z / f(s2)g(s2)(1 — |21 dA(2),
where s = /r. This clearly implies that

lim f(rz)@(l — |z|2)°‘71 dA(z)

r—1- Jp

= lim f(rz)g (rz)(l— |z|)* L dA(2),

r—1- Jp

completing the proof of Theorem 14. u]

Theorem 15. For each a > 0 the Banach dual of By can be
identified with L: (with equivalent norms) under the pairing

(f,9) = lim 5 f(r2)g(rz)(1 = |21*)* "1 dA(2),  f € Bao,g € Ly

r—1-

Proof. In view of Theorem 14, we only need to show that each
bounded linear functional F' on B, arises from a function g in L}
in the following fashion:

F(f)= lim [ f(re)g(rz)(1—2*)*""dA(2), [ € Bao.

r—1- Jp
By Proposition 13, the operator Ty : Bq,g — Co(D) satisfies

C M flla <M1 Taflloo < Cllfla

for some constant C' independent of f. Let X be the image of Ba
under the mapping T,. Then X is a closed subspace of Cy(D) and
FoT;': X — Cis a bounded linear functional. Extending the
above bounded linear functional to the whole space Co(D), and using
the well-known Riesz representation theorem, we obtain a finite Borel
measure g on D such that

FoT, (g) = / o(z)da(z),  peX.
D
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This clearly implies that, for each f in B, o,

F(f) = /D To f(2) di(2).

Applying Fubini’s theorem, we get

o w2 a—1 w
P =3 [ (1 P2t [ S daw)

(1—zw)*

=3t [ (1 |z|2)2dﬂ(z)/D C _(|“’| i)y

r1- 1—rzw)t

= lim | f(2)g(r2)(1 — |2]*)* ! dA()

r—1- Jp
= lim | f(rz)g(rz)(1 —|2*)*"" dA(2),
r—1- Jp

where the analytic function g defined by

o) =3 || LB )

(1—-wz)*

belongs to L. In fact,

=3 [ dul2) = 3lall

This completes the proof of Theorem 15. o

Remark 1. In terms of Taylor coefficients the pairing that induces the
duality between L! and B, can be written as follows:

lim [ f(rz)g(rz)(1—|2|>)*"1dA(z) = lim Z anbnr?",

r—=17Jp r—1- a+n+l

where a,, and b, are the Taylor coefficients of f and g, respectively. It

is easy to see that
T'(a)n! 1

FNa+n+1) no
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as n — +oo. Taylor coefficients of functions in B, will be further
studied in Section 5.

Remark 2. By Proposition 2, each function in B, o can be approxi-
mated in norm by a sequence of polynomials. It is then natural to ask
whether each function in B, o can be approximated in norm by its Tay-
lor polynomials. As an application of Theorem 15, we can show that
the answer to the above question is negative. In fact, it is fairly easy to
see [19] that if X is a separable Banach space of analytic functions on
D, then every function in X can be approximated in norm by its Taylor
polynomials if and only if the operators S, are uniformly bounded on
X, where S, is the operator that sends each analytic function on D to
its nth Taylor polynomial. It is shown in [19] that the operators S,
are not uniformly bounded on L. Since the adjoint of S,, on By is
just S,, on Ll under the pairing given in Theorem 15, we see that the
operators S, are not uniformly bounded on B, for each o > 0. It
follows that for each a > 0 there exist functions in B, ¢ whose Taylor
polynomials do not converge in norm.

4. Lipschitz type theorems. It is well known [18] that an analytic
function f on D belongs to the Bloch space B if and only if

f(z) = f(w)] < CB(z, w)

for some constant C' > 0 and all z,w in D, where 8 is the Bergman
distance on D. The purpose of this section is to extend the above result
to all the spaces B,. Specifically, we will prove that for each a > 0
there exists a distance d, on D such that an analytic function f on D
belongs to B, if and only if

17 (2) = f(w)| < Cda(z,w)

for some constant C' > 0 and all z,w in D.

Proposition 16. For a > 0 and z,w in D, let

do(z,w) = sup{|f(2) = f(w)| : (1 = |u|*)*|f'(w)] < 1,u € D}.

Then d,, ts a distance on D.
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Proof. That d, is well defined (i.e., do(2,w) # +o00) follows from
Proposition 5. The triangle inequality is obvious. That d,(z,w) = 0
if and only if z = w follows from the fact that the function f(z) = 2
belongs to each B,,. ]

Note that the distance d, can also be written as
do(z, w) = sup{|f(2) — f(w)] : [[flla <1}
since adding a constant to f does not alter the difference f(z) — f(w).
Theorem 17. For any a > 0 and z € D, we have
lim da(z,w) _ (1—|z]%) 7.

w—z |z—w‘ o

Proof. By the definition of d,,
da(zw) _ |f(z) — F(w)

|z —w| ~ |z — w

for all ||f|lo <1 and z,w € D. Let w — z. We obtain

do(z,
limint 222 S 410y,
w—z |z — w|
forall z € D and ||f||o« < 1. For z € D—{0} let f. be the anti-derivative

of
=2

22\ ¢
g(w)z(l—ww> , w € D,
with f,(0) = 0. For z = 0, let f,(w) = w. It is elementary to check
that ||f.|l« =1 and f.(z) = (1 — |2[?)~®. Thus,

da ) —
liminfM >(1— |z
w—z |z — w|

for all z € D. It remains to show that

da ) —
limsupM <(1—|zH @
w—sz |Z - |
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for all z € D.

Fix z € D and let 7 = (1 — |z|)/2. It is clear that the closed disk with
center z and radius r is contained in D. For |w — z| < r we have

F(w) = f(2) + f'(2)(w — 2) + fo(w)(w — 2)?,
where
1 £(¢) d¢
2mi |¢—z|=r (C - Z)2(C - ’LU) ‘

By Proposition 5, there exists a constant C' > 0 (depending on z) such
that |f2(w)| < CJ|f]]« for all jw — z| < r. It follows that

f2(w)

1f(2) = F(w)| < | (2)] [w = 2] + C[|flla|w — 2|
for all f € B, and |w — z| < r. This implies that
f(2) = F(w)] < |z —w|(1 = |2*) " + Clz — w|*
for all ||f||la <1 and |w — z| < r. Taking the supremum over all such
f, we get
do(2,w) < |z —w|(1—|2/*)"*+ Clz — w|?

for all jw — z| < r. Letting w — z we obtain

da )
lim sup M

w—z ‘Z - ‘

<@@-]zP)™ o

Theorem 18. Suppose a > 0 and f is analytic on D. Then f is in
B, if and only if there exists a constant C > 0 such that

\f(z) = f(w)] £ Cdu(z,w), z,w € D.

Moreover, we have

sup{(1.— Jo2)°1/(2) = € D = sup { L IO

for all f € B,.
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Proof. 1t follows from the definition of d, that

|f(2) = f(w)]

M = sup { FRERD

2 £} <sup{(L-]sP)°1f ()] : 2 € D)
On the other hand, for any z € D, we clearly have

M > fim @ =L@ G) = fw)] |2 = w]

w=z  dy(z,w) woz  |z—w|  de(z,w)

Applying Theorem 17 we obtain M > (1 — |z]?)|f/(z)] for all z € D.
It follows that

ap { L) S0

do(zo0) - a w} > sup{(1 — |2[)*|f'(2)| : z € D},

which completes the proof of Theorem 18. o

Recall that if f is in B, then f(z)(1—|2|*)*~!isin L'(D,dA). Using
Proposition 3, we can write

101w = [ | opmges | f00 ) dAw).

(1—zu)'te  (1—wu)lte
It follows from the duality between L. and B, (Theorem 14) that there
is a constant C' > 0 such that

1 1
(1—za)i*e ~ (1—wa)*

CVdy(z,w) < / dA(u) < Cdy (2, w)

for all z and w in D. This gives an asymptotic formula for the
distance function d4(z,w). In particular, we can use Proposition 6 to
obtain the growth rate of d,(0,z). Specifically, d,(0,z) is bounded
on Dif 0 < a < 1; do(0,2) ~ —log(l — |2]?) if @« = 1; and
da(0,2) ~ (1 —|2]>)1"* if @ > 1. d4(0,2) is the maximal boundary
growth rate a function in B, can achieve.

When o = 1, the distance d; is precisely the Bergman distance on
D, which is given by

1 |1 — 20|+ |z — w|
d ==1
1(zw) 2 0g|1—zu‘1|—|z—w\’

z,w € D.
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We are unable to find a precise formula for any of the other distances
dg-

When 0 < a < 1, an analytic function f on D belongs to B, if and
only if there exists a constant C' > 0 (depending on f) such that

f(2) = f(w)] < Clz —w|'™*

for all z and w in D. It is further true that there exists a constant
C > 0 (independent of f) such that

/() = f(w)]

|z — w|l—«

C*Lmagfmn+wp{ :z#w}SCme

for all f in B,. This naturally suggests that the distance d, is
comparable to the distance d/, defined by d. (z,w) = |z — w|'~*.
However, this is not true by Theorem 17. Thus we have an interesting
example of two distances on the disk that are not mutually equivalent
but induce the same Lipschitz space of analytic functions.

In the rest of this section we show that the generalized Bloch spaces
B, can also be described using Riemannian distances. Fix o > 0 and
suppose that y(t), a < ¢t < b, is a continuous and piecewise smooth

curve in D. Let
L= [ 2O
“ o X=P@P)>

For z and w in D we define

Aa(z,w) =inf{Ly(y) : v(0) = 2,
~(1) = w,~ is continuous and piecewise smooth}.

It is clear that A, is a (Riemannian) distance for each a > 0. A\; (= dy)
is the Bergman (or hyperbolic) distance on D.
Theorem 19. Suppose a > 0 and f is analytic on D. Then f is in
B, if and only if there exists a constant C' > 0 such that
1£(2) = f(w)] < CAa(z,w),  zweD.

Furthermore, we have

sup{(1 — |z|*)*|f'(2)| : z € D} = sup {% 1z £ w}
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for all f € B,.

Proof. First assume that
|f(2)7f(w)‘ S C)‘a(sz)v Z,w € D.

We may assume that C' is the smallest constant satisfying the above
condition. Fix z € D and let v(s) be a geodesic (parametrized by arc-
length) in the underlying Riemannian metric that starts at z. Since
Aa(7(0),7(s)) = s, we have

IF(v(0) = F(y(s))[ < Cs,  0<s<e.

Dividing both sides by s and then letting s — 0 in the above inequality,
we obtain |f'(z)|]7'(0)] < C. By the minimal length property of
geodesics,

s—Aawmn@»—AfaQQ%FFﬁ, 0<s<e.

Dividing by s and then letting s — 0 we see that |y'(0)| = (1 — |z|?).
It follows that (1 — |2|?)®|f'(z)] < C and hence f € B, with

sup{(1 — |z[))*|f'(2)| : z € D} < sup{% vz w}

On the other hand, if f is in B, then
C = sup{(1 — |2[*)*|f'(2)| : z € D} < +o0,

and hence |f'(2)] < C(1—|z[*)"@ forall z € D. If y(¢),0 <t <1,is a
smooth curve from z to w, the fundamental theorem of calculus shows

that L
wi=| [ frewa

< [Ireoinoa
o/ 1_|7 at

= CL,(
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It is easy to see that this also holds if v is continuous but only
piecewise smooth. Taking the infimum over all piecewise smooth curves
connecting z to w, we conclude that

|f(2) — f(w)] < CAa(z,w), z,w € D.

This completes the proof of Theorem 19. o

Remark . It follows from the above theorem and the definition of
dy, that dy(z,w) < Ay(z,w) for all z and w in D. We conjecture that
do = Ay for all @ > 0. This is of course known when o = 1. We also
know that d, and A\, are “locally” the same. This can be seen from
Theorem 17 and the following equality

lim 225 g peye e p)
w—z |z — w‘
which can easily be proved using geodesics (as used in the first para-
graph of the proof of Theorem 19). More information on local behavior
of distances and Lipschitz spaces induced by Riemannian distances can
be found in [20].

5. Taylor coefficients of functions in 5B,. In this section we
study Taylor coeflicients of functions in B,.

Proposition 20. If f(z) = > .7 anz" belongs to By, then a, =
O(n®~') as n — +oo; if f is further in By, then a, = o(n®"') as
n — +o0o.

Proof. Given f € B,, there exists g € L*(D) such that f = Q,g,

that is,
f(z)=a /D _gf%@, :eD.

Recall that

a Zala+1)---(a+n n—n
_Shalet ()

1— zw)lte n!
( n=0
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This clearly implies that

an = alatl)-(atn) /D g(w)w"™ dA(w)

n!

_ ol +(;)'+' 1;?‘ 1) (4 1) /D g(w)@" dA(w).
The desired results now follow from the following easily checked facts:
1) (a(a+1)--(a+mn))/(n+1)! ~n>"1asn — +oo;
2) (n+1) [pg(w)d"™ dA(w) is bounded in n if g € L>°(D);

3) (n+1) [pg(w)w™ dA(w) = 0asn — +oif ge Co(D). O

The next (probably well-known) result will show that the above
estimates are best possible, and it will also show that B, contains lots
of interesting functions.

Theorem 21. Let {\,} be a sequence of positive integers satisfying

An
1<)\§>\—+1§M<+oo, n>1.

n

Suppose a > 0 and f(z) = Y00, anz™. Then f € By if and only if

n=1
an = 0O(X¢71) as n — +oo0; f € Bayo if and only if ap, = o(A71) as
n — +00.

Proof. The “only if” parts follow from Proposition 20.
Suppose |a,| < CA2~1 for all n > 1. Tt is easy to see that

2f'(z)| <C Y Az, z€D.
n=1

Since Apt1/An > A, we have A,11 — Ay, > (A —1)A,. Thus
(o + 1P (A 2)77 22 g X2
AT 4 Pt e [z
> )‘zilo‘n%—l - )‘n)|z|)‘"+1
> A, [z

A
> oAl
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It follows that
Z)\a|z|/\n < M Zka_1|z‘k'
k=1

Since

Zka Hz|F < & z €D,
(1= [22)

for some constant Cy > 0, we can find another constant Cy > 0 such
that |2f"(2)|(1 — |2]?)®* < Cs for all z in D. This shows that f belongs
to By.

That a, = o(A2"!) implies f € B, can be proven in a similar
fashion; we omit the details. o

In the rest of this section we will obtain partial results about the
following problem: Characterize those functions f(z) = Y .~ anz" in
B, with the property that a,, = o(n®* 1) as n — +00. See [1] and [2]
for the question and results in the special case o = 1.

Proposition 22. Let f(z) =Y .° jan,z" be a function in By. Then
an = o(n®" 1) as n — +oo if and only if there exists a function ¢ in

BC(D) such that f = Qap and

n—+oo 27

l 2 X X
lim —/ o(reMe ™ dt =0
0
uniformly for r € (0,1).

Proof. First assume that f = Q4 with Taylor coefficients a,,. Then

f(z):a/D(LLf)dA(w), zeD.

1—zw)lte

Developing (1 — zw)~(1*®) into its Taylor series, we get

an = alat 1)n' (a+n) /D o(w)w" dA(w)

ala+1)---(a+n)n+1 [* 2m ity —in
= ( () 1(' ) /1‘+1d1‘/ p(re't)e ™t dt.
n+ ) ™ 0 0
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Since
afa+l)--(at+n) 4

(n+1)! mn

we see that a, = o(n®!) as n — +oo if

]_ 2 . .
lim — / o(reMe ™ dt =0
0

n—+oo 27

uniformly for r € (0,1).

Conversely, if a,, = o(n®™ 1), we show that f = Q. for some function

¢ in BC(D) with the desired property. Without loss of generality, we
may assume that f(0) = f'(0) = f”/(0) = 0. In this case, we can let

o) = OB )

and use Corollary 4 to obtain f = Q4. It remains to show that ¢ has
the desired property.

Let

When n > 1,

27 _ 2\ . .
An(’f‘) o A (1 r ) f/(rezt)efz(nfl)t dt

" or r

=a(l+7r)%a,nr" %1 —r)“.
By elementary calculus
nr" (1 —7)% = O(n'~%), n — 400

uniformly for r € (0,1). Since a, = o(n®*"'), we conclude that

Apn(r) = 0 as n — +oo uniformly for r € (0,1). =

Corollary 23. Suppose that ¢ € BC(D) has radial boundary
values almost everywhere and f(z) = Qap(z) = Yoo yanz™. Then
a, = o(n*1) as n — +oo.
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Proof. 1t is easy to show that if ¢ € BC(D) has radial boundary
values almost everywhere then

1 2m . .
— o(re™e ™ dt — 0, n — 400
21 0

uniformly for r € (0,1). u]

Corollary 24. Suppose that f(z) = .," o a,2" is in By and m > 1
is an integer. If the function (1 — |z|2)*T™ 1 f(™)(2) has radial limit
almost everywhere, then a, = o(n®*1) as n — +oo.

Proof. If we apply the operator Q,, to the function (1-z|2)+™ f(m)(2),
the resulting function is “more or less” f; see Proposition 3 and Corol-
lary 4. We leave the easy details to the interested reader. ]

Recall that H>°(D) is a Banach algebra. Let M be the maximal
ideal space of H* (D), and let C(M) be the space of complex-valued
continuous functions on M. It is well known that C(M) can be
identified with the closed self-adjoint subalgebra of L>° (D) generated
by H>(D). The following question was asked in [6] in the case
a = 1: Is it true that Q,C(M) = B,? This question was answered
negatively in [7], where the function f(z) = Y o- ;2™ was shown to be
in B — PC(M) (note that B = B; is the Bloch space and P = @ is
the Bergman projection). We will see a little later that every Lacunary
series f(z) = Yo7 | a,2** belongs to B — PC(M) provided that {a,}
is a bounded sequence which does not approach 0. We will actually
establish the corresponding result for all o > 0.

Theorem 25. Suppose that a > 0 and f is in By. The function
(1—12]%)2f'(2) belongs to C(M) if and only if there is a function ¢ in
C(M) such that f = Qqp-

Proof. The proof in the general case is similar to that in the a =1
case given in [7]. We omit the details. O

Corollary 26. Suppose {\,} is a sequence of positive integers
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satisfying
An
1<)\§)\—+1§M<+oo, n > 1.

If{a,} is a sequence with a, = O(A\*"1) but a,, # o(A2" 1) asn — +o0,
then the function f(z) = Y oo | anz™ is in By, but (1 — [2]2)*f'(2) is
not in C(M).

Proof. If the function (1—|z|?)*f'(z) is in C(M), it must have radial
limit almost everywhere. By Corollary 24, a, = o(A2 1), which is a
contradiction. O

The above corollary shows that Q,C(M) is a proper subspace of B,
for each o > 0.

6. Multipliers. In this section we characterize the pointwise and
coefficient multipliers of the generalized Bloch spaces B, .

Recall that if X is a Banach space of analytic functions on D, we say
that an analytic function f is a pointwise multiplier of X if fg € X for
all g € X. We let M(X) denote the space of all pointwise multipliers
of X. See [8] for basic properties of pointwise multipliers. Here we
will need to use two general properties of multipliers: Any pointwise
multiplier of X actually induces a bounded multiplication operator on
X and the space M (X) is always contained in X N H* (D).

Theorem 27.
1) M(B,) = M(Bao) = H*(D) if a > 1;
2) M(Ba) =Ba, M(Bao) = Bao if 0 < a < 1;

3) M(Ba) = M(Bay) = {f € H*(D) : (1 —[2])f'(2) log(1 — |2[?)
is bounded on D} if a = 1.

Proof. Part 1) follows from Proposition 7 and the general fact that
M(X) c H*(D). Part 2) follows from Proposition 9 and the general
fact that M (X) C X. Part 3) is proved in [3] and [17]. u]
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Corollary 28. For each 0 < a < 1, the spaces B, and B, are
Banach algebras.

Note that By N H*°(D) is also a Banach algebra.

Suppose that X is a Banach space of analytic functions and that {c,}
is a sequence of complex numbers. Let T" be the operator on the space
of analytic functions defined by

oo oo
T< E anz"> = E Cpan2™.
n=0 n=0

We say that {c,} multiplies X if the above operator T' maps X into
X. In this case T is actually a bounded linear operator on X by the
closed graph theorem.

Theorem 29. Suppose that {c,} is a sequence of complex numbers
and that T 1is the corresponding operator defined above. For any o > 0
the following conditions are equivalent:

1) T maps B, boundedly into By;
2) T maps By, boundedly into By,o;
3)

4) The series h(z) = >~ | c,2™ converges to the analytic function

h on D with the property that

T maps L} boundedly into L};

- T

sup

27
/ W (re')| dt < +oo.
re(0,1) 2 Jo

Proof. The equivalence of 3) and 4) follows from Theorem 3 in [16].
The equivalences of 1), 2) and 3) now follow from Theorems 14 and
15 and the following easily checked facts: The adjoint of T' on L is
simply T on B, and the adjoint of 7" on B, ¢ is simply 7" on L} under
the pairing

(f,9) = lim Df(TZ)W(lflAZ\Q)“*ldA(Z)- o
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7. Hankel operators on the Bergman space. In this section we
show how the generalized Bloch spaces B, can be used to study Hankel
operators on the Bergman space. The results and methods here are
motivated by those in the special case a = 1; see [5, 12] and [18].

Let L? denote the Bergman space of analytic functions f on D with

11 = [ / |f(z>2dA<z>] R

The space L2 is a Hilbert space with the inner product

(frg) = /D £(2)9(2) dA(2).

All unspecified norms and inner products in this section will denote
those in the space L? = L?(D, dA).

Given a > 0 and a function ¢ on D we define a linear operator hfpa)

from L2 into L? as follows:

pef) = [ A e tda),  fetk

(1— zw)?

(@)
7

The operator hy’ will be called the Hankel operator on L2 with symbol

)

@. Clearly hg(pa is densely defined (its domain contains H* for example)

provided that

/D p(w)|(1 = |w?)* " dA(w) < +oo.

Throughout this section we assume that the symbol of any Hankel
operator under consideration satisfies the above condition.

Let L_g denote the space of all conjugate analytic functions in L2. It
is clear that if hfoa) is a bounded operator from L? into L? then the

range of hfpa) is contained in L2. Conversely, if there exists a constant
C > 0 such that

(h £,9)| < ClIf Il 1g]]

for all f and g in H°°, then the operator hfpa) is bounded on L2.
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Theorem 30. Suppose that « > 0 and ¢ is analytic on D. Then

hf,,a) is bounded on L2 if and only if ¢ is in B,. Moreover, there exists a

constant C > 0 such that C71||p]|a < ||h‘(;)|| < C|¢||a for all ¢ € B,.

Proof. First assume that ¢ € B,. We show that h(a) is bounded on
L2. Given f and g in H*® we can apply Fubini’s theorem to obtain

01.9) = [ a@aae) [ G0 o)t aaw)

(1 —zZw)?
S e — et daq) [ EEVIA)
—/so(w)f( )1~ ) dA(w) [ FETS

= [ Fwwiel)t - )" dAw).
By Theorem 14, there exists a constant C' > 0 such that

(ke £,9)] < Cllellal | £lls < Cllellal 1£1]llgll

for all f and g in H*. This shows that h(%a) is bounded on L2 with
15711 < Cllgla-

Next we assume that h;a) is bounded on L2 and show that ¢ is in

B, Recall that for f and g in H*°, we have

18°1.9) = [ fwa(wiplo)(1 = uf)* ! daw).
Let f =g =k,, z € D, in the above equality, where
1 —|z|?
k. = D
W) ==z ¥€

are the normalized reproducing kernels for L2; we have

ke e) = [ ko)1 ) dA(w)
D
Since each k. is a unit vector in L2, the funtion A on D defined by

h(z) = 3(k:, hiVk.) = 3 / p(w)k. (w)*(1 — |w]?)* ! dA(w)

D
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is in L (D) with ||h||c < 3||hga)||. Using the operator T, defined in
Section 3 we can write h = T, and deduce ||Th¢||co < 3|\hg¥)\|. By

Proposition 13 we have ¢ € B, with ||¢||o < C| |hgx)|| for some constant
C > 0 independent of . This completes the proof of Theorem 30. o

Theorem 31. Suppose that o > 0 and ¢ is analytic on D. Then the

)

Hankel operator hf; is compact on L2 if and only if ¢ is in Bay.

(@)
@

rank operator. In particular, hi—,a) is compact when ¢ is a polynomial.
According to Proposition 2, for each ¢ in B, o there exists a sequence of

polynomials {p,} such that ||¢ — ps||la — 0 as n — +00. By Theorem
30 we then have th‘) - hl(;i)H < COll¢ = pnlla = 0 as n — +o0, and

Proof. If ¢ is a polynomial, it is easy to see that h;’ is a finite

hence hgl) is compact.

On the other hand, if hg)‘) is compact on L2, then
Top(z) = 3(ks, RSV k) = 0, || =17

since k, — 0 weakly in L2 as |z| — 1~. By Proposition 13, we have
¢ € Ba,o, completing the proof of Theorem 31. O

Remark . Using the techniques developed in [12] we can also char-

acterize those Hankel operators h((;) with ¢ analytic which belong to
the Schatten classes S,: For a > 0, p > 1, and ¢ analytic on D the
following conditions are equivalent:

1) hl(;,a) belongs to the Schatten class S;
2) (1—|z|?)™*+e1p(™)(2) belongs to LP(D,d)), where d\(z) = (1 —
|2|2)~2 dA(z) and m is any positive integer satisfying p(m +a—1) > 1;
3) ¢ € QuLP(D,dN).
We omit the details here.

8. Further remarks and questions. In this final section we make
some further remarks and pose some natural questions.
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First we note that almost all the results in the paper can be general-
ized to the open unit ball. The methods are the same but one needs to
use the corresponding versions of Propositions 3 and 6 in the context
of the open unit ball, which can be found in [15] for example.

It is interesting to note that all spaces B, have the same space L. as a
predual (independent of ) and L} has all the spaces B, o as preduals;
the dependence on « is reflected in the duality pairing. It is possible
that other types of duality results can be proven for the spaces B, and
Ba,o- For example, it was proved in [4] that under the M6bius invariant
pairing the dual of By is the Besov space Bj, and the dual of By is B
under the same pairing.

It is well known that the Bloch space is the area version of BMO
on D. It is also known that the Bloch space is the space of analytic
functions on D with bounded mean oscillation in the Bergman metric.
It would be interesting to realize each B, as some type of BMO (in
terms of the metric d, or A\, introduced in Section 4 for example).

Most questions asked in [2] also make sense for the spaces B,. For
example, one can consider the problem of characterizing the cyclic
vectors for B o or the weak-star cyclic vectors for B,.

Zeros of functions in B, (for a > 1) are studied in [13]. In particular,
certain types of infinite products with prescribed zeros are constructed
in [13]. It would be interesting to know when such a product in B, is
actually in By g.

In Section 4 we conjectured that d, = A\, for all & > 0. It seems
difficult to find a precise formula for either d, or A, when o # 1. It is
easy to show that the distance d, can be described using only functions
in Ba,O:

do (2, w) = sup{|f(2) — f(w)] : |[flla <1, f € Bao}-

Finally, we mention that the Bloch space is maximal among “decent”
MGobius invariant Banach spaces [14]. We believe that the spaces B,
also have a certain maximal property, but we are unable to formulate
and prove such a result.

Acknowledgment. The author wishes to thank Boris Korenblum
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