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PRIME SUBMODULES OF NOETHERIAN MODULES
R.L. McCASLAND AND P.F. SMITH

0. Introduction. Let R be a ring. A proper left ideal L of R is
prime if, for any elements a and b in R such that aRb C L, either
a € Lorbe L. For example, any prime two-sided ideal is a prime
left ideal. Prime left ideals have properties reminiscent of prime ideals
in commutative rings. For example, Michler [13] and Koh [7] proved
that the ring R is left Noetherian if and only if every prime left ideal
is finitely generated. Moreover, Smith [14] showed that if R is left
Noetherian (or even if R has left Krull dimension) then a left R-module
M is injective if and only if, for every essential prime left ideal L of
R and homomorphism ¢ : L — M, there exists a homomorphism
6 : R — M such that 6| = ¢.

Several authors have extended the notion of prime left ideals to mod-
ules (see, for example, [2, 3, 4, 6, 8, 9, 10, 11]; in particular, [3] has
a good bibliography). In this paper, we continue these investigations
both in some generality and also in case M is a Noetherian module.

Let M be a left R-module. Then a proper submodule N of M is prime
if, for any r € R and m € M such that rRm C N, either rM C N or
m € N. It is easy to show that if N is a prime submodule of M then
the annihilator P of the module M/N is a two-sided prime ideal of R.
We consider which prime ideals P of R are the annihilators of modules
M/N with N prime in M. A special class of prime submodules of M
are the strongly prime submodules. Let K be a proper submodule of
M, and let @ denote the annihilator of M /K. Then K is called strongly
prime if (i) @ is a prime ideal of R and the ring R/Q is a left Goldie
ring, and (ii) M/K is a torsion-free left (R/Q)-module. We investigate
which prime ideals @) arise in this way.

We also are interested in chain conditions on (strongly) prime sub-
modules of M. It is shown that if R satisfies the ascending chain con-
dition (respectively, descending chain condition) on prime ideals then
any finitely generated left R-module M satisfies the ascending chain
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condition (descending chain condition) on strongly prime submodules.

Now suppose that the ring R satisfies a polynomial identity. Let M
be a left R-module. Then every prime submodule is strongly prime.
The results on chain conditions then apply to prime submodules of M.
One interesting consequence is that if M is a Noetherian module then
M satisfies the descending chain condition on prime submodules.

We briefly consider minimal prime submodules of a left module M
over an arbitrary ring R. It is shown that if M is Noetherian then M
contains only a finite number of minimal prime submodules. Since every
prime submodule contains a minimal prime submodule it follows that
the prime radical of a Noetherian module M is a finite intersection of
prime submodules. Several attempts have been made to characterize
the prime radical of a module M. Even for commutative rings, R,
progress has been limited to a number of special cases (see, for example,
3, 4, 9, 10, 11]).

1. Prime submodules. Let R be a ring and M a left R-module.
Let N be a submodule of M. Then we define

(N:M)={reR:rM C N}.

Note that (N : M) is an ideal of R, in fact (N : M) is the annihilator
of the left R-module M/N. The submodule N of M is called prime
if N # M and, given r € R and m € M such that rRm C N, either
m € Norr € (N : M) Itisnot difficult to see that N is a prime
submodule of M if and only if (IV : K) = (INV : M) for all submodules
K of M properly containing N. Clearly, any prime (two-sided) ideal of
the ring R is a prime submodule of the left R-module R.

Following [5, p. 31], a left R-module M will be called fully faithful if
every nonzero submodule of M is faithful.

Proposition 1.1. A submodule N of a left R-module M is prime if
and only if P = (N : M) is a prime ideal of the ring R and the left
(R/P)-module M/N is fully faithful.

Proof. Elementary. ]

If R is a simple ring, then every nonzero left R-module is faithful.
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Therefore, simple rings R have the property that every proper sub-
module of every left R-module M is prime. The converse is also true
(see [6, Theorem 4.2, 7, Theorem 2]). For a general ring R, any max-
imal submodule of a left R-module M is a prime submodule of M.
However, it is not at all difficult to give examples of modules which
have no prime submodules. For example, if Z denotes the ring of ra-
tional integers then, for any prime p, as a Z-module, the Priifer group
Z(p*°) has no prime submodules. Moreover, the zero submodule is the
only prime submodule of the Z-module Q of rational numbers.

Let R be a ring and ¢ : M — M’ a homomorphism of left R-modules
M,M’'. For any nonempty subset X of M’', o 1(X) = {m € M :
@(m) € X}. The proof of the next result is elementary and is omitted
(see [2, Proposition 2.2]).

Proposition 1.2. Let R be any ring, M and M' left R-modules, and
p: M — M' an R-homomorphism. Let N be a prime submodule of M’
such that o(M) € N. Then ¢~ Y(N) is a prime submodule of M.

Let R be a ring. Then N(R) will denote the intersection of all prime
ideals of R. Proposition 1.2 has the following immediate consequence.

Corollary 1.3. Let R be any ring and M a left R-module such that
Hom g (M, R/N(R)) # 0. Then M contains a prime submodule.

Before proceeding, we give two further sources of examples of prime
submodules of a module. First we recall some definitions. Let R be
any ring, and let M be a left R-module. Let N be a submodule of
M. A submodule K of M maximal with respect to the property that
NN K =0 is called a complement of N in M. A submodule K of M
will be called a complement in M if there exists a submodule N of M
such that K is a complement of NV in M. It is not difficult to prove
that K is a complement in M if and only if K has no proper essential
extension in M. In consequence, every submodule of M is essential in
a complement in M. Following [12, 6.9.3], we call a nonzero module M
compressible if every nonzero submodule contains an isomorphic copy
of M. The next result is known (see, for example, [2, 1.12(1) and
Proposition 2.7]), but its proof is included for completeness.
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Proposition 1.4. Let R be any ring. Let M be a left R-module and
N a proper submodule of M.

(i) If M/N is a compressible module, then N is a prime submodule
of M.

(ii) If N is a prime submodule of M and K is a submodule containing
N such that K/N is a complement in M/N, then K is a prime
submodule of M.

Proof. (i) Let L be a submodule of M properly containing N
such that L C N for some r € R. There exists a monomorphism
¢ : M/N — L/N. Now r¢(M/N) = 0 implies ¢(r(M/N)) = 0
and hence r(M/N) = 0, i.e., rM C N. It follows that N is a prime
submodule of M.

(ii) Let L be a submodule of M properly containing K such that
rL C K for some r € R. Because K/N is a complement in M/N,
we know that K/N is not essential in L/N. Thus there exists a
submodule L' of L such that N C¢ L' and K N L' = N. Now
rl' CrLNL C KNL CN. It follows that rM C N C K, because
N is prime. Hence, K is a prime submodule of M. O

Note that Proposition 1.4 generalizes [6, Lemma 3.5]. A consequence
of Proposition 1.1 is that if M is a left R-module and P is a maximal
ideal of R such that M # PM then every proper submodule K of M
containing PM is prime and satisfies (K : M) = P (see [8, Proposition
3]). We now address the question: Given a prime ideal P of R and a
left R-module M, does there exist a prime submodule N of M with
P = (N : M)? Note that if such a submodule N exists then M # PM.
In fact, we can say more:

Lemma 1.5. Let A be an ideal of a ring R and let M be a left
R-module. Then there exists a proper submodule N of M such that
A= (N:M) if and only if AM # M and A= (AM : M).

Proof. The sufficiency is clear. Conversely, suppose that A = (N : M)
for some proper submodule N of M. Then AM C N, and, hence,
AM # M. Moreover, clearlyy, A C (AM : M). On the other
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hand, (AM : MM C AM C N, so that (AM : M) C A. Thus
A= (AM : M). O

A left R-module M will be called weakly Noetherian if, for every el-
ement a in R and element m in M, the submodule RaRm is finitely
generated. For any ring R, every Noetherian module is weakly Noethe-
rian. If R is a commutative ring, then any R-module is weakly Noethe-
rian. On the other hand, if the (not necessarily commutative) ring R
has the property that every ideal is finitely generated as a left ideal, in
particular if R is left Noetherian, then every left R-module is weakly
Noetherian. Let R be any ring. It is easy to check that if a left R-
module M is weakly Noetherian, then so too is any submodule of M
and any homomorphic image of M.

Let M be a left R-module, and let P be a prime ideal of R. Then we
shall denote by M (P) the following subset of M:

M(P)={m e M : Am C PM for some ideal A  P}.

It is clear that M (P) is a submodule of M and PM C M(P). Note
the following fact about M (P).

Lemma 1.6. Let P be a prime ideal of a ring R. Let M be a
left R-module such that there exists a prime submodule K of M with
(K:M)=P. Then M(P) C K.

Proof. Let m € M(P). There exists an ideal A of R such that A Z P
and Am C PM. However, PM C K, and hence Am C K. Because
AZ P, me K. It follows that M(P) C K. o

Now we show that in many situations M (P) itself is a prime submod-
ule of M.

Proposition 1.7. Let P be a prime ideal of a ring R. Let M
be a left R-module such that the left (R/P)-module M/PM is weakly
Noetherian. Let N = M(P). Then N = M or N is a prime submodule
of M such that P = (N : M).

Proof. Suppose that N # M. Let r € R, m € M satisfy
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rRm C N. If r € P, then rM C N. Suppose that r ¢ P. Let
A = RrR. Then M/PM weakly Noetherian implies that Am + PM =
Rmy + --- + Rmy + PM, for some positive integer k and elements
m; € Am, 1 < i < k. Foreachl1l < i <k, m; € Am C N, and,
hence, there exists an ideal B; € P such that Bm; C PM. Let
B = B;N---N Byg. Note that B is an ideal of R and B Z P because P
is prime. Moreover, BAm C Bmy+---+ Bmy+PM C PM. However,
P prime implies BA ¢ P. Thus, m € N. It follows that N is a prime
submodule of M.

Let C = (N : M). Clearly P C C. Suppose that P # C. Let c € C,
c¢ P. Let x € M. Then RcRxz C N. By the above argument, z € N.
It follows that M = N, a contradiction. Thus, P = C. O

Proposition 1.7 raises the question: When does M = M(P)? We
know that M # M (P) if M contains a prime submodule K such that
P=(K:M) (Lemma 1.6).

Proposition 1.8. Let P be a prime ideal of a ring R. Let M be a left
R-module such that the left (R/P)-module M /PM is finitely generated
and weakly Noetherian. Then the following statements are equivalent.

(i) M(P)# M.

(ii) M(P) is a prime submodule of M.

(iii) There exists a prime submodule K of M such that P = (K : M).

(iv) P=(PM : M).

Proof. (i) = (ii) = (iii) by Proposition 1.7.

(iii) = (iv) by Lemma 1.5.

(iv) = (i). Let N = M(P). Suppose that N = M. There exist
a positive integer k and elements m;, 1 < ¢ < k, in M such that
M =Rmy+---+Rmi+ PM. For each 1 < i < k, there exists an ideal
A; € P such that A;m; C PM. Let A= A;N---N Ag. Note that A is

an ideal of R, AZ P and AM C PM. It follows that A C (PM : M),
and, hence, P # (PM : M). Thus, N # M. O

Proposition 1.8 has the following immediate consequence.
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Corollary 1.9. Let P be a prime ideal of a ring R, and let M be
a left R-module such that the module M/PM is Noetherian. Then M
contains a prime submodule K such that P = (K : M) if and only if
P = (PM : M). In this case, K = M(P) is one such prime submodule.

Consider statement (iii) in Proposition 1.8 for a moment. Let R be
a commutative ring and M a finitely generated R-module. Suppose
that P # (PM : M). Let c € (PM : M), ¢ ¢ P. Then cM C PM
gives, by the usual determinant argument, (c® + p)M = 0 for some
positive integer k and element p in P. Thus, Mp = 0, where Mp
is the localization of the module M at the prime ideal P. Thus,
P # (PM : M) implies that Mp = 0. Conversely, if Mg = 0, for
some prime ideal @ of R, then it is easy to check that @ # (QM : M).
The support of the module M is defined to be the set of prime ideals
P of R such that Mp # 0. Thus, the support of M consists precisely
of all prime ideals P of R such that M contains a prime submodule N
with P = (N : M). In particular, if, in addition, M is faithful, then
every prime ideal of R belongs to the support of M. Thus, Proposition
1.8 generalizes [8, Theorem 2].

Let specp(M) denote the collection of all prime submodules K of M
such that P = (K : M), together with the module M. If N € specp(M)
and N # M, then we shall call N a proper member of specp(M).
Compare the next result with [9, Lemma 1].

Proposition 1.10. Let P be a prime ideal of a ring R. Let M be a
left R-module.

(i) Let K;, i € I, be any collection of submodules of specp(M).
Then N1 K; also belongs to specp(M).

(ii) Now suppose that M/PM is weakly Noetherian. If {L;:i € I}
is any chain in specp(M), then UrL; also belongs to specp(M). If,
in addition, M is finitely generated, then specp(M) contains mazimal
proper members.

Proof. (i) Let K = N;K;. Then K is a submodule of M and
PM C K. Let A be an ideal of R and m an element in M such that
Am C K. If A C P, then AM C K. Suppose that A € P. For each
1€ I, Am C K;, and, hence, m € K;. It follows that m € N;K; = K.
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Hence, K € specp(M).

(ii) Let L = UrL;. Then L is a submodule of M and PM C L.
Suppose that a € R, m € M and aRm C L. There exist a positive
integer k and elements m; € RaRm, 1 < i < k, such that RaRm C
Rmy +---+ Rmy + PM. There exists j € I such that m; € L; for all
1< i< k. Thus,aRm C Lj, and, hence,aM C L; C Lorm € L; C L.
It follows that L is a prime submodule of M. Now suppose that L; is
proper foralli € I. Let b € (L: M). If b ¢ P, then the above argument
gives M C L, and, hence, M = L. Thus, (L : M) = Por L = M.
Thus, L € specp(M). If M is finitely generated, then L # M so that L
is proper. By Zorn’s Lemma, specp(M) has maximal proper members.
[}

Let R be any ring and M a left R-module. Suppose that N is a prime
submodule of M. Then we shall call N irreducible if N # K N L, where
K and L are prime submodules of M properly containing N.

Proposition 1.11. Let R be any ring and M a Noetherian left R-
module. Then every prime submodule of M is a finite intersection of
irreducible prime submodules. Moreover, if N is an irreducible prime
submodule of M, then M/N is a uniform module.

Proof. Suppose that not every prime submodule of M is a finite
intersection of irreducible prime submodules. Let P be a prime sub-
module maximal with respect to the property that P is not a finite
intersection of irreducible prime submodules. In particular, P is not
irreducible, so that P = K N L, for some prime submodules K and L,
both properly containing P. By the choice of P, both K and L are
finite intersections of irreducible prime submodules, and, hence, so too
is P, a contradiction.

Now suppose that N is an irreducible prime submodule of M. Note
first that the module M/N is nonzero. Suppose further that there exist
submodules X and Y of M such that N = X NY. Let P = (N : M).
We define submodules X’ and Y’ of M as follows:

X'={me M :Am C X for some ideal A of R with A ¢ P},
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and
Y'={meM:Am CY for some ideal A of R with A  P}.

Clearly, X C X' and Y CY'. If m € X'NY’, then there exist ideals B
and C of R, neither contained in P, such that Bm C X and Cm CY.
Thus, (BNC)m C X NY = N, and, hence, m € N. It follows that
N = X'NY’. But, by Proposition 1.7, X’ and Y’ are prime submodules
of M or are equal to M. In any case, N = X' or N = Y’. It follows
that N = X or N =Y. Hence, M/N is uniform. ]

2. Strongly prime submodules. Let R be a ring. An element ¢
in R is called regular if cr # 0 and rc # 0 for every nonzero element
rin R. If A is a proper ideal of R, then C'(A) will denote the set of
elements ¢ in R such that ¢+ A is a regular element in the ring R/A.
Clearly, ¢ € C(A) if and only if, for any r € R, cr € A or rc € A implies
r e A

Let R be a prime left Goldie ring. Let M be a left R-module. Then
the singular submodule of M is given by

Z(M)={m & M :ecm =0 for some c € C(0)}.
Recall that M is called a torsion module if M = Z(M), and M is called
torsion-free if Z(M) = 0.

Let R be any ring. Let M be a left R-module. A proper submodule
N of M will be called strongly prime if there exists a prime ideal P of
R such that

(i) the ring R/P is left Goldie,
(i) PM C N, and
(iii) for any ¢ € C(P) and m € M, cm € N implies m € N.

Note that, in this case, P = (N : M). For, let A = (N : M). Clearly,
P C A. If P # A, then there exists ¢ € AN C(P), by [5, Proposition
5.9 or 12, 2.3.4 and 2.3.5]. In this case, cM C N implies that M = N,
a contradiction.

Proposition 2.1. Let N be a strongly prime submodule of a left
R-module M. Then N 1is prime.
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Proof. There exists a prime ideal P of R satisfying (i), (ii) and (iii).
Let A be an ideal of R and m an element of M such that Am C N.
Suppose that A ¢ P. Then there exists ¢ € AN C(P), as above. Now
cm € N gives that m € N. It follows that IV is prime. ]

The converse of Proposition 2.1 is true for commutative rings R. In
fact, the converse is true for a wider class of rings and we shall consider
such rings at the end of this section.

Let P be a prime ideal of a ring R such that R/P is a left Goldie
ring. Let M be a left R-module. For any submodule N of M such that
PM C N, let clp(N) denote the submodule T of M containing N such
that T'/N is the singular submodule of the left (R/P)-module M/N,
ie.,

clp(N)={m e M :cm € N for some c € C(P)}.

Before we proceed to the next result, note that, for any submodule
K containing PM, the submodule K/PM is a complement in the left
(R/P)-module M/PM if M/K is a torsion-free left (R/P)-module (see
[5, Proposition 3.27]). Compare the next result with Proposition 1.4

(ii).

Proposition 2.2. Let P be a prime tdeal of a ring R such that
the ring R/ P is (prime) left Goldie. Let M be a left R-module. Let
T = clp(PM). Then the following statements are equivalent for a
submodule N of M.

(i) N is a strongly prime submodule of M such that P = (N : M).
(ii) The module M/N is a nonzero torsion-free left (R/P)-module.
(ili) T C N and N/T is a proper complement in M/T.

Proof. Elementary. ]

Corollary 2.3. Let P be a prime ideal of a ring R such that the ring
R/P is a (prime) left Goldie ring. Let M be a left R-module. Then the

following statements are equivalent.
(i) clp(PM) is a strongly prime submodule of M.
(ii) There exists a strongly prime submodule K of M such that
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P=(K:M).
(i) M/PM is not a torsion left (R/P)-module.

Proof. (i) = (ii). Let T = clp(PM). Let A = (T : M). Clearly,
P C A. If P # A, then there exists c € AN C(P). If m € M, then
cm € T, and, hence, m € T'. It follows that 7" = M, which contradicts
the fact that 7' is strongly prime. Thus, P = (T : M).

(ii) = (iii). We know that PM C K C M, and M/K is torsion-free
as a left (R/P)-module. (iii) follows.

(i) = (i). T/PM is the singular submodule of M/PM, so that,
by (iii), 7" # M. The left (R/P)-module M/T is a torsion-free left
(R/P)-module, so that T is strongly prime by Proposition 2.2. O

Let P be a prime ideal of a ring R such that R/P is a left Goldie
ring. Let M be a left R-module. Let Specp(M) denote the set of all
strongly prime submodules K of M such that P = (K : M), together
with the module M. By Proposition 2.1, Specp (M) C specp(M). Any
member of Specp (M) other than M will be called proper. The following
analogue of Proposition 1.10 can be proved by adapting its proof.

Proposition 2.4. Let P be a prime ideal of a ring R such that R/P
is a (prime) left Goldie ring. Let M be a left R-module.

(i) Let K;, i € I, be any collection of submodules in Specp(M).
Then N K; also belongs to Specp(M).

(ii) Let {L; : i € I} be any chain in Specp(M). Then UrL; also
belongs to Specp(M). If, in addition, M/PM s finitely generated,
then Specp(M) contains mazimal proper members.

Let R be a prime left Goldie ring. Let M be a torsion-free left R-
module. Let €2 denote the collection of submodules N of M such that
the module M/N is torsion-free. Then Q is a lattice, where we define

KANL=KNL, and KV L=cl(K+L),

for all K and L in Q. The ring R has a simple Artinian classical left
quotient ring @ (see, for example, [5, Theorem 5.12, or 12, 2.3.6]).
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Consider the left @Q-module M’ = Q ®g M. Any @Q-submodule of M’
has the form N' = Q®gr N, where N € Q. The mapping N — N’ from
the lattice Q to the lattice A of Q-submodules of M’ is an isomorphism
with inverse ¢ : A — Q defined by

o(K'Y={meM:1®@me K'}.

Theorem 2.5. Let P be a prime ideal of a ring R such that the
ring R/P is a (prime) left Goldie ring. Let Q denote the classical left
quotient ring of R/P. Let M be a left R-module. Let M' denote the left
Q-module Q ®p/p (M/PM). Then Specp(M) is a lattice isomorphic
to the lattice of Q-submodules of the left Q-module M’'. Moreover,
Specp(M) is a complete complemented modular lattice.

Proof. Let T = clp(PM). Because T'/PM is the singular submodule
of the left (R/P)-module M/PM, the module M/T is a torsion-free
left (R/P)-module and Specp(M) consists of all submodules N of
M such that T C N and M/N is a torsion-free left (R/P)-module
(Proposition 2.2). Thus, by the remarks immediately preceding the
theorem, Specp (M) is a lattice isomorphic to the lattice of submodules
of the left Q-module M’. The Q-module M’ is semisimple, so that its
lattice of submodules is complete, complemented and modular. The
result follows. O

Let R be a ring. The prime ring R will be called left bounded if, for
each regular element c in R, there exists an ideal A of R and a regular
element d such that Rd C A C Rc. A general ring R will be called left
fully bounded if every prime homomorphic image of R is left bounded.
The relevance of this notion to our present discussion can be seen from
the next result.

Lemma 2.6. Let R be a ring and P a prime ideal of R such that the
ring R/ P is left bounded left Goldie. Let M be a left R-module. Then

the following statements are equivalent for a submodule N of M.
(i) N is a prime submodule of M such that P = (N : M).
(ii) N is a strongly prime submodule of M such that P = (N : M).
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Proof. (ii) = (i) by Proposition 2.1.
(i) = (ii). Suppose that N is a prime submodule of M. Suppose that
¢ € C(P) and m € M satisfy em € N. Because R/P is left bounded,

there exists an ideal A of R such that A ¢ P and A C Rc+ P. Then
Am C N and, hence, m € N. It follows that NV is strongly prime. O

Note further that, with the notation of Lemma 2.6,
M(P) = clp(PM).

This fact is easy to prove because, for any ideal A of R, A ¢ P if and
only if the set ANC(P) is nonempty (see, for example, [5, Proposition
5.9 or 12, 2.3.4 and 2.3.5]). A ring R is called a left FBN-ring if R is
left fully bounded and left Noetherian. Lemma 2.6 has the following
immediate consequence.

Corollary 2.7. Let R be a left FBN-ring. Let M be a left R-module.
Then a submodule N of M is prime if and only if N is strongly prime.

Another class of rings for which prime submodules of modules are
strongly prime is the class of rings with polynomial identity (PI-rings).
It is well known that if R is a PI-ring and P is a prime ideal of R, then
the ring R/P is (left and right) bounded and (left and right) Goldie
[12, 13.6.6]. Thus, Lemma 2.6 has the following consequence.

Corollary 2.8. Let R be a PI-ring. Let M be a left R-module. Then
a submodule N of M is prime if and only if N is strongly prime.

We make one final observation in this section.

Proposition 2.9. Let R be a PI-ring. Let M be a finitely generated
left R-module. Then N is an irreducible prime submodule of M if and
only if M/N is a compressible uniform module.

Proof. Suppose first that M/N is a compressible uniform module.
Then N is a prime submodule of M by Proposition 1.4, and clearly N
is irreducible.
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Conversely, suppose that N is an irreducible prime submodule of
M. Without loss of generality, we can suppose that N = 0. Let
P = (0 : M). Without loss, we can suppose that P = 0, and thus R
is a prime Goldie ring and M a nonzero finitely generated torsion-free
left R-module. By Proposition 1.11, M is uniform. Now [5, Corollary
6.20] gives M isomorphic to a left ideal A of R. Let K be a nonzero
submodule of M. Note that A # 0 implies AK # 0. There exists k € K
such that Ak # 0. Define 6 : A — K by 6(a) = ak, a € A. Clearly, 0
is a homomorphism. Suppose that 6(a) = 0 for some 0 # a € A. Let
b € A. Because A is uniform, there exists ¢ € C'(0) such that ¢b € Ra
(see, for example, [5, Proposition 5.9]). Then ak = 0 gives cbk = 0
and, hence, bk = 0. It follows that Ak = 0, a contradiction. Thus, 6 is
a monomorphism. It follows that M is compressible. u]

3. Chain conditions. Let R be a ring and M a left R-module. A
proper submodule N of M will be called virtually mazimal if M/N
is a direct sum of isomorphic simple modules. By [1, Proposition
9.4], any proper submodule K containing N is also virtually maximal.
Moreover, for the submodule N, if P is the annihilator of the simple
direct summands of M/N, then it is clear that P = (N : M) = (N : L)
for any submodule N C L C M with L # N. It follows that N is a
prime submodule of M. We record this fact as follows.

Lemma 3.1. Let M be a left R-module. Then any virtually mazimal
submodule of M is prime.

Now we prove a partial converse of Lemma 3.1 in the case of finitely
generated Artinian modules M.

Proposition 3.2. Let R be a Pl-ring, and let M be a finitely
generated Artinian left R-module. Then every prime submodule of M
1s virtually mazimal.

Proof. Let N be a prime submodule of M. Let P = (N : M). Note
that M/N is a faithful left (R/P)-module. By [12, 13.6.6], the ring
R/P is a left bounded left Goldie ring. Now [5, Proposition 8.7] gives
that R/P embeds as a left R-module in a finite direct sum of copies of
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M/N. It follows that the ring R/P is left Artinian, and, hence, R/P is
simple Artinian. Thus, the left (R/P)-module M/N is a direct sum of
isomorphic simple modules. Therefore, IV is virtually maximal. ]

Proposition 3.2 is not true in general. In fact, we have the following
result. Recall that a ring R is called a left V -ring if every simple left
R-module is injective.

Proposition 3.3. Let R be a simple ring such that, for every
essential left ideal L of R, the left R-module R/L is Artinian and has
the property that every prime submodule is virtually mazimal. Then R
is a left V-ring.

Proof. Let U be a simple left R-module. Let A be an essential left
ideal of R and ¢ : A — U a nonzero homomorphism. Let B = Ker ¢.
Note that A/B is simple. If B is not an essential submodule of A, then
A contains a minimal submodule. Thus, R has a minimal left ideal
and, hence, R is semiprime Artinian whence a left V-ring. Suppose
now that B is essential in A. Then B is an essential left ideal of R [1,
Proposition 5.16]. Moreover, B # A so that 0 is a prime submodule
of R/B. By hypothesis, R/B is semisimple. There exists a maximal
left ideal P of R, containing B, such that R/B = (A/B) & (P/B). It
follows that the mapping ¢ can be lifted to R. Hence, U is injective.
Thus, R is a left V-ring. o

The first Weyl algebra R = A;(C) is a simple Noetherian domain
such that R/L is Artinian for each essential left ideal L of R (see [12,
1.3.5 and 6.6.15])). However, R is not a left V-ring.

A partial converse of Proposition 3.2 is proved next.

Proposition 3.4. Let R be a left Noetherian Pl-ring. Let M be a
finitely generated left R-module such that P = (PM : M) for every
prime ideal P of R. Suppose further that every prime submodule of M
1s virtually mazimal. Then M is Artinian.
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Proof. Let P be any prime ideal of R. By Proposition 1.8, there
exists a prime submodule K of M such that P = (K : M). Now M/K
is a direct sum of isomorphic simple modules, so that P must be the
annihilator of these simples. Hence, P is left primitive, so that R/P is
a simple Artinian ring by [12, 13.3.8]. Thus, R/P is Artinian for every
prime ideal P of R. It follows that R is left Artinian (see, for example,
the proof of [5, Proposition 3.20]), and, hence, M is Artinian. mi

The condition that R be left Noetherian can be dropped in case R is
commutative, and we have the following result.

Theorem 3.5. Let R be a commutative ring. A finitely generated R-
module M is Artinian if and only if M is Noetherian and every prime
submodule of M is virtually mazimal.

Proof. Without loss of generality, we can suppose that M is a faithful
R-module. Suppose first that M is Artinian. Then R embeds in M™
for some positive integer n. It follows that R is an Artinian ring, and,
hence, R is a Noetherian ring. It follows that M is Noetherian. By
Proposition 3.2, every prime submodule is virtually maximal.

Conversely, suppose that M is Noetherian and every prime sub-
module is virtually maximal. If P is any prime ideal of R, then
P = (PM : M) (see the remarks after Corollary 1.9). Thus, we can
apply Proposition 3.4 to obtain that M is Artinian. a

Now we consider more general chain conditions on strongly prime
submodules.

Theorem 3.6. Let R be any ring which satisfies ACC (respectively,
DCC) on prime ideals. Let M be any finitely generated left R-module.
Then M satisfies ACC (respectively, DCC) on strongly prime submod-
ules.

Proof. We prove the result in the DCC case; the ACC case is
similar. Suppose that R satisfies DCC on prime ideals. Suppose that
M is a finitely generated left R-module which does not satisfy DCC
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on strongly prime submodules. Let Ny O Ny O N3 O --- be any
infinite properly descending chain of strongly prime submodules of M.
Then (N; : M) D (Ny : M) D --- is a descending chain of prime
ideals of R. By hypothesis, there exists a positive integer k£ such that
(Nk : M) = (Nk+1 : M) = (Nk+2 : M) =

Without loss of generality, we can suppose that P = (N; : M) for all
i > 1. This means that N; € Specp(M) for all i > 1. Let @ denote
the classical left quotient ring of the prime left Goldie ring R/P. Let
M' = Q®pr/p(M/PM). Because M is finitely generated, it follows that
M' is a finitely generated left @-module and, hence, M’ is Artinian.
By Theorem 2.5, it follows that Specp(M) is Artinian, a contradiction.
Thus, M satisfies DCC on prime submodules. o

Theorem 3.6 has a particularly pleasing consequence in case R is a PI-
ring. It is well known that any commutative Noetherian ring satisfies
DCC on prime ideals. This is also true for any left Noetherian Pl-ring
(see, for example, [12, 13.7.15]). We now extend this fact to modules.

Theorem 3.7. Let R be a Pl-ring, and let M be a Noetherian left
R-module. Then M satisfies DCC on prime submodules.

Proof. Suppose that the result is false. Let Ny O Ny O N3 D ---
be any infinite properly descending chain of prime submodules of M.
Let N = NN;. It is clear (or see [9, Lemma 1]) that N is a prime
submodule of M. Without loss of generality, we can suppose that
N =0. Let P=(0: M). Then P is a prime ideal of R and R/P is
a prime bounded Goldie ring. By [5, Proposition 8.7], R/P embeds in
M™ for some positive integer n and, hence, R/ P is left Noetherian. By
[12, 13.7.15], R/ P satisfies DCC on prime ideals. Now apply Theorem
3.6 and Lemma 2.6 to obtain a contradiction. o

For commutative rings, we can go further. Let R be a ring and M a
left R-module. Let N be a prime submodule of M. Then we define the
height of N to be the maximal positive integer k, if such exists, such
that there exists a chain of prime submodules of M as follows:

N =Ny DN; DNy D---D Ng.
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We shall denote the height of N in M by htp(N). In particular, if P
is a prime ideal of the ring R, then htg(P) is the height of P in R. Let
M be a finitely generated module. Then g(M) will denote the minimal
number of elements required to generate M.

Theorem 3.8. Let R be a commutative ring, and let M be a finitely
generated R-module. Let P be any prime ideal of R such that A C P,
where A is the annihilator of M. Let R' denote the ring R/A. Then

htp:(P/A) < sup{hty (N) : N € specp(M)} < g(M)[htr(P) + 1].

Proof. Suppose that htg(P) =n < co. Let N € specp(M). Let
(1) N=NygDNi DNy D---
be any descending chain of prime submodules of M. Then
(N: M) =(No: M) 2 (Ny:M)2(Na:M)2(Ng:M)2 -

is a descending chain of prime ideals of R. Because htg(P) = n, the
collection {(N; : M) : © > 1} contains at most n+1 distinct prime ideals.
If @ = (N; : M) for some i > 1, then specg (M) is lattice isomorphic
to the lattice of submodules of the vector space V. = F ® (M/QM)
over F, where F is the field of fractions of the integral domain R/Q.
Because M can be generated by g(M) elements, it follows that V' can
be spanned by g(M) vectors, so that V has dimension at most g(M)
over F'. Thus, any descending chain in specQ(M ) contains at most
g(M) terms. It follows that the number of “steps” in (1) is at most
(n+1)g(M). Thus, htp(N) < g(M)[htg(P) + 1].

Now suppose that sup{htp;(N): N € specp(M)} =k < co. Let
PZPonlD"'DPk+12A,

where P;, 1 < ¢ < k+1is a prime ideal. There exists a prime submodule
Ly such that (Lgyy : M) = Py, by Proposition 1.8. Now consider
the finitely generated faithful (R/Pj41)-module M/Ly 1. By another
application of Proposition 1.8, there exists a prime submodule Ly, /L1
of M/Lj41 such that P, = (Lg/Lg41 : M/Lgyy) for some submodule
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Ly of M containing Liyq. It is easy to check that Lj is a prime
submodule of M and P, = (Ly : M). In this way we can produce
a chain Liy; C Lg C --- C Ly of prime submodules of M such that
P,=(L;: M) for all 0 < i < k+ 1. However, P = Py means that
Ly € specp(M) and htp(Lg) > k + 1, a contradiction. It follows that
htg/(P/A) < k. The result follows. O

4. Minimal prime submodules. Let R be any ring. Let M be
a left R-module. A prime submodule N of M is called minimal if, for
any prime submodule K of M such that K C N, K = N. Let L be a
prime submodule of M. Let

A ={K : K is a prime submodule of M and K C L}.

If {K; : i € I} is any chain in A, then it can easily be checked that
NrK; also belongs to A (see [9, Lemma 1]). By Zorn’s Lemma, A
contains a minimal member which is clearly a minimal prime submodule
of M. Thus, every prime submodule of M contains a minimal prime
submodule of M. If the module M is finitely generated, then M has
maximal submodules which are prime and, hence, M contains minimal
prime submodules. Note the following elementary fact, whose proof is
left to the reader.

Lemma 4.1. Let R be a ring, and let M be a left R-module. Let
K C N be submodules of M. Then N is a prime submodule of M
if and only if N/K is a prime submodule of M/K. Moreover, if N
is a minimal prime submodule of M, then N/K is a minimal prime
submodule of M/K.

Theorem 4.2. Let R be a ring, and let M be a Noetherian left
R-module. Then M contains only a finite number of minimal prime
submodules.

Proof. Suppose that the result is false. Let A denote the collection of
proper submodules N of M such that the module M/N has an infinite
number of minimal prime submodules. The collection A is nonempty,
because 0 € A and, hence, has a maximal member K. Clearly, K is
not a prime submodule of M. Thus, there exists a submodule L of



1060 R.L. McCASLAND AND P.F. SMITH

M properly containing K and an ideal A in R such that AL C K
but AM ¢ K. Hence, K C K + AM. Let V be a submodule of
M containing K such that V/K is a minimal prime submodule of
M/K. Then AL C K C V. By Lemma 4.1, AM C Vor L CV.
Again, by Lemma 4.1, V/(K + AM) is a minimal prime submodule of
M/(K + AM) or V/L is a minimal prime submodule of M/L. But
by the choice of K, both the modules M/(K + AM) and M/L have
only finitely many minimal prime submodules. Thus, there are only
a finite number of possibilities for the module V' and, hence, also for
V/K, a contradiction. Thus, M has only a finite number of minimal
prime submodules. O

Let R be aring and M a left R-module. Then the prime radical rad M
of M is defined to be the intersection of M and all prime submodules
of M. Because every maximal submodule of M is a prime submodule,
it is clear that rad M is contained in the Jacobson radical Rad M of
M. If every prime submodule of M is virtually maximal it is not hard
to see that rad M = Rad M.

Corollary 4.3. Let R be a ring and M a Noetherian left R-module.
Then rad M = M or there exist a positive integer k and prime ideals
P, 1 < i <k, such that P, = (PbM : M), 1 < i < k, and
radM = M(Py)N---NM(Pg).

Proof. By Lemma 1.6, Proposition 1.8 and Theorem 4.2. ]

It has proved a difficult task to determine which elements of M
belong to rad M in general. Corollary 4.3 gives less help than might
be supposed at first, because of the difficulty of knowing which prime
ideals P; feature there. In general, the prime ideals P;, 1 < 7 < k,
need not all be minimal prime ideals of R or of R/A, where A is the
annihilator of M. Perhaps a simple example would be helpful here.

Let M be a finitely generated Z-module. In the most general case,
M=M®&- &M, ®&M,

for some positive integer k, where, for each 1 < ¢ < k, M; is a cyclic

module of prime power order pf(i), for some prime p; and positive
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integer k(i), and M’ is a free module of finite rank. The prime ideals
of Z are, of course, 0, Zp (p prime). Clearly,

M(O):M1®®Mka

M(Z,) =M, &--- & M & pM’', ifp#pi, 1<i<k,

and
M(Zy,)=M®- - - OM;_1®p; Mi®M; 1D+ - -HMpDp; M, if 1<i<k.

Thus, the minimal prime submodules of M are M (0), M (Zp;), 1 <i <
k, and
rad M =p1 M1 B --- D ppr M.

In fact, this calculation can readily be extended to a finitely generated
module over any Dedekind domain. More generally, if R is a one-
dimensional commutative domain (i.e., all nonzero prime ideals are
maximal), then

rad M =T NRad M,

for any R-module M, where T denotes the torsion submodule of M.
For, in this case, M (0) is again the torsion submodule of M and, for
any nonzero prime ideal P of R, M (P) = PM, because P is a maximal
ideal. Moreover, for any nonzero prime ideal P of R, M/PM is a vector
space over the field R/P so that Rad M C PM. Thus,

TN Rad M C M(0) N {NpPM} = M(0) N {NpM(P)} = rad M
C TNRad M.

Hence, rad M =T NRad M.
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