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CONGRUENCE NETWORKS FOR STRONG
SEMILATTICES OF REGULAR SIMPLE SEMIGROUPS

MARIO PETRICH

1. Introduction and summary. Normal cryptogroups (or normal
bands of groups) form the class of semigroups which are strong semi-
lattices of completely simple semigroups. We consider here the more
general class of semigroups which are strong semilattices of regular sim-
ple semigroups. We denote the latter by S = [Y;S,, ¢a,g] where Y is
a semilattice, for each v € Y, S, is a regular simple semigroup, and
for a > B, Yo : Sa — Sp is a homomorphism. These homomor-
phisms satisfy the usual conditions and determine the multiplication
of S. This is the semigroup on whose lattice of congruences C(S) we
consider certain operators.

A congruence p on S can be expressed by means of a congruence
aggregate (&;p,) where & € C(Y) and p, € C(S,) are congruences
satisfying certain conditions, and we write p ~ (&; po). We call glp = &
and loc p = (p,) the global and the local of p. These induce the global
relation G and the local relation £ on C(S) by

AGp <= glA=glp, ALp <= loc A =locp.

Our “global and local operators” are induced by the greatest and the
least elements of the equivalence classes of G and L as follows:

pG and pg are the greatest and the least elements G-related to p,
respectively,

pL and pl are the greatest and the least elements L-related to p,
respectively.

These produce the four operators G,g,L and [ on C(S). We are
interested in the semigroup generated by A = {G,g,L,l}. This
semigroup will be represented by generators and relations.

As for general regular semigroups, we define E(S) to be the set of
idempotents of .S,

kerp = {a € S| ape for some e € E(S)}
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to be the kernel of p and trp = p|gg) to be the trace of p. These
induce the kernel relation K and the trace relation 7 on C(S) by

ACp <= ker A = ker p, AT p < trA=trp.

Our “kernel and trace operators” are induced by the greatest and the
least elements of the equivalence classes of K and 7 as follows:

pK and pk are the greatest and the least congruences K-related to p,
respectively,

pT and pt are the greatest and the least congruences 7-related to p,
respectively.

Similarly as above, we are interested in the set T' = {K,k,T,t} of
operators on C(S) and the semigroup generated by it. To this end, one
must first represent the value of the congruence aggregates under these
operators again in terms of congruence aggregates. Since this creates
considerable difficulties for the operators K and T, for them we restrict
our attention to the case when each S, is completely simple, that is, .S
is a normal cryptogroup. In this case we can characterize the semigroup
sought in terms of generators and relations (I', ¥).

A similar analysis can be found for Clifford semigroups (semilattices
of groups) in [7], and it will be seen that we arrive here at the same
set X of relations as in the case of Clifford semigroups. Also, in [6], we
performed a similar analysis for completely simple semigroups; in that
case we applied the operators in the semigroup generated by I to a fixed
congruence on S and characterized the sublattice of C(S) generated
by the resulting set of congruences. Already in the case of Clifford
semigroups in [7], we stopped at the partially ordered set making up
the semigroup generated by I' since the lattice generated seemed quite
out of reach. For example, the latter lattice is not modular whereas,
in the case of completely simple semigroups, it is even distributive.
Further similar investigations may be found in Pastijn-Trotter [3] and
Petrich-Reilly [8].

The description of congruences on S in terms of congruence aggre-
gates is taken from [5]; several other results from that paper are of
fundamental importance for our discussion here. We further relegate
the discussion of (I',X) to [7] since it turns out to be the same semi-
group as there.
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Section 2 contains a general definition of the global and the local of a
congruence. Basic concepts and results concerning strong semilattices
of (regular simple) semigroups taken from [5] can be found in Section
3. A sequence of lemmas in Section 4 leads to a representation of
the semigroup generated by G, g, L and [ by means of generators and
relations and the related network. For a congruence aggregate for S,
the values of k& and t are computed in Section 5. These values are
calculated for T and K in Section 6 for the case when S is a normal
cryptogroup.

2. Preamble. Since we will discuss some new concepts for congru-
ences on very special semigroups, it seems in order to first give a general
definition of the notions. All undefined symbols and terminology can
be found in [4].

Let S be any semigroup, C(S) be its congruence lattice and 1 be the
least semilattice congruence on S. For any p € C(S5), define

glp=(pVn)/n

the global of p, and

locp = (plan) € H C(an)

a€sS

the local of p. On C(S), define the relations G and £ by
AGp <= glA=glp, ALp <= loc A =locp.
Clearly, for any A, p € C(.5), we have
AGp <= AVn=pVn, AMp < AAn=pAn.

Evidently, one could use other fundamental congruences on S instead
of 1 to arrive to possibly new fruitful equivalences on C(S). If S is
regular, recall that n = D* = J*.

We denote by E(S) the set of idempotents of S. The equality and the
universal relations on any set X are denoted by ¢ and w, respectively.

However, we write sometimes x and wy, for emphasis, or ¢, and w,
when X = S,. For any regular semigroup, i and o denote the greatest
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idempotent and the least group congruences, respectively. For S, we
also write u, instead of pu.

We shall freely use the fact that on a regular semigroup, a congruence
is uniquely determined by its kernel and trace, see, e.g., ([2, Corollary
2.11]).

3. Strong semilattices of semigroups and their congruences.
We fix the following notation for the entire paper.

Let Y be a semilattice. For each a € Y, let S, be a semigroup and
assume that S, N Sg = @ if a # B. For any «, 3 € Y such that o > 3,
let vq,8 : S — Sg be a homomorphism, and assume that ¢4 o is the
identity mapping on S, and ¢a ¥,y = Qa,y Whenever a > 3 > . On
the set S = Uqaey So define a multiplication by: for a € S,, b € S;,

ab = (a¢a,ap)(00p,a8)-
Then S is a semigroup called a strong semilattice Y of semigroups

Se with structure homomorphisms ¢, g denoted by [Y; Sa, ¢a,], or
simply a strong semilattice of semigroups.

We call an element (po) € [],cy C(Sa) such that
(1) a,b e S,, apab, a>f = apagpgboas
a local congruence on S. If, in addition, £ € C(Y') and
(2) a,b €Sy, a >0, aPa,p P8 bYa.p, 6B = apab,

then (&;pq) is called a congruence aggregate for S. In such a case,
define a relation p(¢,, ) on S by: for a € Sy, b € Sg,

ap(g;pa)b == @&B, apa,ap PapbPsas.

Denote by L£C(S) and CA(S) the sets of all local congruences and
congruence aggregates for S, respectively, ordered by (componentwise)
inclusion.

We now assume that, for each o € Y, S, is regular and simple.
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Theorem 3.1 ([5, Theorem 4.2]). For every (&;po) € CA(S), we
have p(e,p.) € C(S). Conversely, let p € C(S), define § on'Y by

alp < apu, vpb for some a € Sy, u,v € Sup, B € S3

and, for each o € Y, define po = pls,. Then (& pa) € CA(S) and
p = P(&; pa)-

The mapping (§; pa) — P(e;py) 5 a lattice isomorphism of CA(S) onto
C(S).

We will write p ~ (&;p,) for the above correspondence and will
identify the two concepts when convenient to do so. Next we determine
the lattice operations on CA(S). If ¢ : U — V is a homomorphism of
semigroups and p € C(V), define a relation pp~! by

zpp~ly = zopyp  (z,y €U).

Clearly pp~! € C(U).

Theorem 3.2 ([5, Theorem 4.4]). For (&;pa), (§'5pL,) € CA(S), we

have
(1) (& pa) N (E5p0) = (ENE5pa A pL),
(i) (&pa) vV (E500) = (EVE;VL(psV Pp)easlB < a gV ERY).

Since each S, is simple and the equivalence relation on S whose
classes are the S,’s is a semilattice congruence, this equivalence coin-
cides both with the Green relation J and with the least semilattice
congruence 7 on S. Now slightly modifying the concepts introduced in
the preceding section, we arrive at the following definitions.

For p ~ (&; pa), we call

glp=2gl(§pa) =& locp=loc(;pa) = (Pa)

the global and the local of both p and (&; p.), respectively. These two
concepts give rise to the following relations on C(S) and C.A(S):

AGp = glA=glp, ALp <= loc A =locp.
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In order to study the structure of these relations, we need the following
constructs.

Let £ € C(Y). For each a € Y, define a relation £€6 on S, by

alfb = apap = bpap for some 8 < aff.

Next let (po) € LC(S). For any a > (8 define
alf <= (a,b € Sa, apapabpas = apab).
On Y define a relation (pq )k by

a(pa)rf <= for every v € Y, ay(apy, fyCafy.

Theorem 3.3 ([5, 4.5-4.8]). The mapping

gl (& pa) =€ ((§pa) € CA(S))

is a homomorphism of CA(S) onto C(Y') which induces G. For any
0 = (&pa) € CA(S), we have 6G = [dg,0G] where dg = (&;£0) and
0G = (§wa)-

The mapping

loc : (& pa) = (Pa) (€, pa) € CA(S))

is a N-homomorphism of CA(S) onto LC(S) which induces L. For any
0 = (§pa) € CA(S), we have 6L = [§l,0L] where 6l = (g;p,) and
OL = ((Pa)F; pa)-

Note that for any 6 € CA(S), § = dg vVl = 6G A 0L and, as
a consequence, G N L = . Hence, every congruence is uniquely
determined by its global and its local.

4. The semigroup generated by G, g, L and [. By means of the
results of the preceding section, using a sequence of lemmas we are able
here to represent the semigroup evoked above in terms of generators
and relations. In addition, we characterize the associated partially
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ordered set of congruences of the form p, pG, pg, pL, pl, ... for a fixed
congruence p on S which we term the network of p.

Notice that J ~ (€;w,) and that, for any & = (&; ps) € CA(S), using
Theorems 3.2 and 3.3, we have

(& pa) A (g5wa) = (€5 pa) = &,
(g;pa) \% (5;wa) = (g;wa) =¢G.
Transferring all of the above to congruences, we can write: for any

p € C(S),
pl=pNJT, pG =pVJ.

We provide next an interesting characterization of a congruence aggre-
gate.

Lemma 4.1. Let £ € C(Y) and (po) € LC(S). Then (&; pa) € CA(S)
if and only if £ C (pa)K-

Proof. Necessity. Let a > 8 and a{ 3. Then apq gpsbpa s implies
apab by the definition of a congruence aggregate. Hence £ C ( in the
definition of (p,)k. Also, for «, 3,y € Y such that a & 8, we have

ay > afy, BrEapy, By > apy, BrvEapy,

and hence ay(afvy and ByCafy so that a(ps)kS.

Sufficiency. Let a > 3, a{ § and apa gpsbpa,s. Then a(pq)rf which
implies that ap,b. Therefore (&;pq) € CA(S). o

It follows from Theorem 3.3 that # maps C(Y') into £C(S) and x maps
LC(S) into C(Y). We will need further properties of these functions.

Lemma 4.2. Let £ € C(Y) and (po) € LC(S).

(i) 0 preserves inclusion.

(i) €C ehr.
(iii) €6 = €OkH.
(iv) €0 = (gq).
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Proof. (i) This follows directly from the definition of 6.
(ii) This follows from

(§:€0) < (& €0)L = (§0%;£0).
(iii) By parts (ii) and (i), we have £0 C £0rk6. Also,

(&:€0)Lg = (£0k;€0)g = (§0k; £0r0) < (&:€0)L = (£0r;£0)
so that £0k0 C £0 and equality prevails.

(iv) Indeed, (g;5e4)g = (g;€0) = (g5€4).
(v) This follows from

(& pa) L = ((Pa)k; pa) = ((Pa)K; Pa)g = ((pa)k; (pa)K0).

(vi) Indeed, (w;wa)L = ((wa)k;wa) = (W Wa)- O

The next lemma lists some constants in the iteration of the operators
G,g,L,l.

Lemma 4.3. Let p € C(5), p ~ (& pa). Denote by o the least
simple congruence on S and by ¢ the greatest congruence on S whose
meet with J is the equality relation.

(i) pGL =w ~ (w;wy).
(ii) pGLg = ~ (w;wb).
) plG = pGl =T ~ (g;wq).
) pGLgl =Y AT ~ (g;wh).
(v) plg=¢~ (ci€a).
) plgl =~ ((ea)rica)
(vii) plgLG =¢V T ~ ((ga)k;wa)-
i) pgl = pgLg ~ (COr;CH).
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Proof. Indeed,
(i) (&pa)GL = (§wa)L = (w;wa) ~ w by Lemma 4.2(vi).
(ii) (& pa)GLg = (wiwb) ~ 1.
(iii) (& pa)lG=(: pa)G=(c;wa), (& pa)Gl=(E;wa)l=(c;wa) ~ J.
(iv) (& pa)GLgl = (5;00) ~ Y A JT.
(v) (&pa)lg = (g;pa)g = (€;€0) ~ € by Lemma 4.2 (iv).
(vi) (& pa)lgl = ((ea)k;€a) ~ C.
(vil) (& pa)lgLG = ((ca)K;€a) ~CV T.

(viil) (& pa)gL = (&E0)L = (§0k;€0) = (£0k;E0K0) = (§; pa)gLy
by Lemma 4.2 (iii). O

In view of Lemma 4.3 (i)—(vii), we may drop p in those expressions
and use the following notation:

‘S:lga CzlgLa C\/j:ZgLG, j:lG,
w=GL, ¥ = GLg, Vv AT = GLgl.

Note that the second line is obtained from the first by the transforma-
tion G < I, L < g. Finally, let

A:{G’97Lvl}’ B:{&?ﬁ’jagﬂﬂ/\j’c\/«ﬂw}

Lemma 4.4. Operators A satisfy the following relations
R={(i) G?’=4G=G, ¢*=Gg=y,
P=Ll=1, I?=I1L=1L,
(i) LGL =GLG = GL,

glg =lgl =1lg,
(iii) gLg = gL,
(iv) IG = Gl}.

Proof. The argument is essentially the same as in the proof of ([ 7,
Lemma 6) if we substitute

(3) K — L, k—1, T— G, t—g
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and use Lemma 4.3. o
All this leads to the first principal result of the paper.

Theorem 4.5. The set
Q={L,LG,Lg, LgL, Lgl, LgLG,1,g,9l,9L,gLG,G} U B

is a system of representatives for the congruence on A™ generated by the
relations R. These can be given the multiplication of representatives,
thereby providing an isomorphic copy of (A, R).

Proof. The argument here is again literally the same as in the proof
of [7, Theorem 1] under the substitution (3). All the above has a
faithful analogue in the discussion prior to the result cited. The part
of that proof concerning nonrelatedness of any two different elements
of € carries over to this case since the example used there refers to a
Clifford semigroup. But in a Clifford semigroup, the association (3)
becomes identity and thus the example in [7] can serve our purpose
here as well. O

Transformation (3) can be used to obtain the D-structure of @ from
that of  in ([7, Proposition 1]).

Similarly as in [7], we may deduce the following result.

Theorem 4.6. Let S be a strong semilattice of regular simple
semigroups. The semigroup Q(S) generated by the operators G,g,L
and 1 on C(S) is a homomorphic image of Q. For the semigroup S in
([7, Example 1]), we have Q(S) = Q.

5. Kernels and traces for strong semilattices of semigroups.
We continue with the same notation and now embark upon the same
type of analysis relative to kernels and traces instead of globals and
locals. In the generality of S considered heretofore, we represent here,
for any ¢ € CA(S), Ck and (t as a congruence aggregate.

Let T be a regular semigroup and p € C(T). Then
kerp={a €T |ape for some e € E(T)}, trp = plp(r
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are, respectively, the kernel and the trace of p. The relations on C(T)
defined by

ACp <= ker A = ker p, M p < trA=trp

are, respectively, the kernel and the trace relations on C(T).

For any relation 7 on T, 7* denotes the congruence on T generated
by 7. If 7 is an equivalence relation on T, then 7° denotes the greatest
congruence on 1" contained in 7. In fact,

at’b < zayT by for all z,y € T* (a,beT).

If @ # ACT,letting 7 = (A x A)U[(T\A) x (T\A)], we set 74 = 7°
(74 is the principal congruence on T relative to A).

Theorem 5.1 ([2, Theorem 3.2]). For any p € C(T), we have
oK = [pk,pK],  pT = [pt, pT]
where, with T = tr p,

pk = {(a7a2) | a € ker p}*, PE = Ter p,
pt =17, pT = (LTLTLNRTRTR)C.

We are interested in the semigroup generated by K, k,T and t as
operators on C(S). To simplify our discussion, we will occasionally
identify a congruence p with its congruence aggregate. We thus
may speak of ker (&;p,) or tr(&;pa), ete., for (§;p,) € CA(S), and
importantly notice that

ker (&; po) = U ker pq .
acY

Thus, the information concerning the kernel is contained in the local

of p. For the trace, we have the following situation.

Lemma 5.2. Let (§5pq), (§50,) € CA(S). Then tr (& pa) C
tr (&5 pL,) if and only if € C & and tr po C trpl, for every a €Y.
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Proof. Let p ~ (& pa) and p’ ~ (£'; pl,).-

Necessity. Let 3. Then, for e € E(S,), we have epepq o5 and
thus ep’e@q,qp which yields a{’af. By symmetry, we also have 3¢'a
and thus a&’8. Hence £ C ¢'. Trivially, trp, C trpl, forall a € Y.

Sufficiency. Let e € E(S,), f € E(Sg), epf. Then a&f and
ePa,aB8PaBfP8,08- The hypothesis implies that «& 3 and

ePa,08Ppsf Pp.ap S0 that ep’ f. Therefore trp C trp'. O

Clearly, Lemma 5.2 remains valid with equality written instead of
inclusion everywhere. Our first order of business is, for a given p ~
(&'; pa), to find the congruence aggregates for pK, pk, pT and pt.

In order to treat pk and pt, we need some preparation. For any
(pa) € LC(S) and any operator P on congruences, in the case that
(paP) € LC(S), we say that P is compatible.

Lemma 5.3. Operators k and t are compatible.

Proof. Let (po) € LC(S) and o > .

First, let ap,kb. By Theorem 5.1, there exists a sequence

a = U1Y1v1, Ui ZiV; = Uit 1Yit1Vid1, UpZpUp = b

with u;,v; € SL, y;, z; € Sq, and either z; = y2, y; € ker p, or y; = 22,
z; € kerpg fori =1,2,... ,n—1. Now applying ¢, g to all elements of
the above sequence, with 1, g = 1, we obtain an analogous sequence
in Sg and hence ayq gpgkbyq . Therefore, k is compatible.

Next let apqtb. Then there is a sequence as above with the only
modification being the conditions on y; and z;, which in this case are
Vi, 2z € E(Sq) and yipaz;. All this is again carried by ¢. g to Ss.
Therefore, also ¢ is compatible. a

Theorem 5.4. For any (§; po) € CA(S), we have (&; pa)k = (€; pa)-
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Proof. By Lemma 5.3, (g; pok) € CA(S), and also

ker (&; pa) = U ker po = U ker pok = ker (g; pa k).
aeY acY

Let (m;Aa) € CA(S) be such that ker (n;Ay) = ker (§;pq). Then
ker A, = ke rpa and thus p,k C A, for every o € Y. But then
(€; pak) € (n; A\o) which proves the minimality of (g; pok). o

We will often use the following notation. Let £ € C(Y) and (p,) €
LC(S). For each a € Y, define a relation p§, on S, by

apgb = Qo Py 0P~y for some v < a .
Note that €5, = £6 in the notation introduced in Section 3.

Lemma 5.5. For any & € C(Y) and (po) € LC(S), we have
(&%) € CA(S).

Proof. Clearly p§, is reflexive and symmetric. Let apf,b and bpf,c with
WPoy Py bPary, Do pscpas,  1,0<a, yEald.
Since (po) € LC(S), we obtain

AP, v§ Pvo b@a,vé Py CPa,~S 76 <a 5 767

and thus apf,c and pf, is also transitive.

Next let ap$b with the above notation and ¢ € S,. Then

(ac)pa,y = (@paq)(CPaq)py(bpaq)(CPay) = (bC)Pa,y,

and thus acpf,be. By symmetry, we conclude that pS € C(S,).

Continuing with the same notation for apib, let & > (3. Then
Qa8 PBy 0P gy With By < 8 = Ba€By, and hence

(aa,8)P8,84M8v (bPa,3) 8,67,
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so that agoaﬁpgbapg_,y. Consequently, (pS,) € £LC(S).
Next, let a,b € S,, a > (3, a<pa75pgbgpa,5, a&fB. Then

(pa,8)P8,~0v(0Pa,8)P8,~

for some v < B€y. It follows that apn ,pybpa~y with v < o€~ and
thus apsb. Therefore, (£;p5) € CA(S).

Theorem 5.6. For any (§;pa) € CA(S), we have (& pa)t =
(& (pat)®).

Proof. In view of Lemma 5.3, we have (pyt) € LC(S) and hence by
Lemma 5.5, we get (£ (pat)®) € CA(S). Let A ~ (& (pat)®) = (£ Ma)-

Note that the notation (p,t) means: apply the operator ¢ to the
congruence p,t on S, and thus (;)oj)§ in this context may not be an
element of [] .y C(Sa).

Let alqb. Then apq ~pytbpa , for some v < afy. Hence apa,ypybpa
which together with y£a implies that apn,b. Therefore, A, C p, and
thus A C p. Next, let e, f € E(S,) and ep,f. Then ep,tf and thus
eAof. Hence, trp, C trA, and equality prevails. Now Lemma 5.2
gives that tr A = trp.

Finally, let 8 € C(S) be such that trf = trp. Then, by Lemma
5.2, 0 ~ (§0,) with tré, = trp, for every a € Y. It follows that
Oat = pat for every o € Y. Now let alyb. Then apq ptbpa  for
some v < afy. It follows that apa 0,tbpa , Whence apq 0,b@a
which together with ¢« yields af,b. Therefore, A\, C 6, so that
A C 0, establishing minimality of A. O

It seems natural to attempt a similar argument for describing the
congruence aggregates for pK and pT. First, Example 6.8 in the next
section shows that K is not compatible. The deeper reason why this
may not be possible is the form of pK and pT'. For pK and pT are of the
form ( )°, which, by its expression bears upon the whole semigroup T
rather than only upon parameters intimately related to p, as this is the
case with pk and pt which are of the general form ( )*. We will partly
overcome this difficulty in the next section by imposing the additional
hypothesis that each S, be completely simple.
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6. The congruences pI' and pK for normal cryptogroups.
A completely regular semigroup V' is the union of its subgroups. If
the Green relation H is a congruence on S, then V is a cryptogroup.
If, in addition, V/H is a normal band (that is, satisfies the identity
arya = azxya), then V is a normal cryptogroup (also called a normal
band of groups). According to ([4, IV. 4.3]), normal cryptogroups
coincide with strong semilattices of completely simple semigroups. For
any a € V, a~! denotes the inverse of a in the maximal subgroup of V'

containing a and a’ = aa~!(= a"1a).

We thus specialize the case of S in the previous sections to be of the
form S = [Y; S, ¢a,p] where S, is completely simple for every aw € Y.
We may further assume that S, = M(I, Ga, Aw; Pa) is a Rees matrix
semigroup with P, normalized at some element 1, € I, N A,. We
denote the identity of G, by e,.

Let V. = M(I,G,A; P) with P normalized. An admissible triple
(r, N,m) for S consists of a partition r of I, a normal subgroup N of G
and a partition 7 of A satisfying the conditions:

iy = pMp;jl €N, AT = p,\ip;il € N.
If so, then p = p(, n ) defined by
(4) (.9, Mp(j. b, p) <= irj,  gh™ € N, Amp
is a congruence on V', to be denoted by p ~ (r, N, 7). Conversely, every
congruence on V can be so represented uniquely. Giving admissible
triples componentwise order, we obtain an isomorphic copy of C(V).

We may thus consider the operators K, k,T and ¢ as acting directly on
the set AT (V') of admissible triples for V.

For ¢ = (r,N,w) € AT (V), define ry, 77 and my by
irnj <= pM-p;jl eN forall\eA (i,5 €I,
77 is the normal subgroup of G generated by the set

{p)\lp;_]l | iTj, Ae A} U {pkip/:il | 1€ Iv )\7{'#}7
ATV = pMp;il eEN forallee I (A peA).
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Lemma 6.1. For ( = (r,N,n) € AT(V), we have

CK:(T‘N,N,WN), Ck:(E,N,E),
¢T = (r,G,m), ¢t = (r,7m, 7).

Proof. Straightforward. O

Let also V! = M(I',G’,A’; P') (normalization is not needed here).
Any homomorphism ¢ : V' — V' can be constructed as follows. Let

£:1 -1, u:l— G, w:G— G,
viA— G, n:A— A

be functions with u : i — u;, w a homomorphism, v : A — v). Then

(5) 2 (ivgaA) - (if,ui(gw)v)\, Aﬂ) ((ivgaA) € V)

For a full discussion of these constructions, we refer to ([1, IIL.4]).

Therefore, for normal cryptogroups we have two essential advantages
over the case considered previously: (1) each S, can be taken to
be a Rees matrix semigroup with normalized sandwich matrix with
a convenient form of congruences in terms of admissible triples and
(2) the structure homomorphisms ¢, g can be given a more explicit
form. This will make it possible to handle pK and pT'. We begin with
the easier case of pT" which follows the same general form as pt.

The above notation is fixed throughout this and the next sections.
Lemma 6.2. Operator T is compatible.

Proof. Let (pa) € LC(S), a > B, ¢ = pa, as given in (5), py ~
(ry, Ny, my) for v € {a, B}, (4,9, \) paT (4, h, ). By Lemma 6.1, we have
irej and Amgpu. But then (i, e, A)pa (7, €q, 1), see (4), which implies
that (4, e, A)pps(Jj, €a, 1t)p. In view of both (5) and (4), we conclude
that i€rgj& and Anmgun. It follows that (4,9, \)ppsT (4, h, u)e, as
required. |
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Recall the convention that (p,T)¢ means: apply £ to the congruence
paT

Theorem 6.3. For any (;pa) € CA(S), we have (& pa)T =
(& (paT)").

Proof. By Lemma 6.2, we have (p,T") € LC(S) so by Lemma 5.5, we
get (&5 (paT)E) € CA(S). Let Ay = (paT)¢ and X ~ (& \q).

Let a,b € S, with ap,b. Then ap,Tb so that a,b. Hence p C A.
Next let e, f € E(S,) and eAyf. Then epq o1 fa, for some
v < a&y. But then epq o~ fpa, which together with & o implies
epof- Thus, tr A, C trp, and equality prevails. Now Lemma 5.2
implies that tr A = tr p.

Finally, let 6 € C(S) be such that trf = trp and let afb. Then
a,b € S, for some a € Y and with § ~ (&;6,,), we have 6,T = p,T so
that af,Tb and thus ap,Th. But then al,b which proves that § C A
and establishes the maximality of A. |

For treating pK we need some preparation.

Lemma 6.4. Let V' be a completely reqular semigroup, a,b € V' and
p €C(V). If ab € ker p, then ba € ker p.

Proof. Let ab € ker p. Then

ba = b(ab)a(ba) ' pb(ab)®a(ba)™* = b(ab)®(ab)b*(ba) !
= b(ab)b~ (ba) ™! = (ba)(ba) "t = (ba)°
so ba € ker p. o

Lemma 6.5. Let V' be a completely simple semigroup, a,b € V and

p € C(V). Assume that xa € kerp if and only if xb € kerp for all
x € S. Then also a € ker p if and only if b € ker p.

Proof. Let a € ker p. Then a%a € ker p, so by hypothesis, a®b € ker p.
Hence, (a®b)b° € ker p and thus, by Lemma 6.4, we get b%a"b € ker p.
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Again the hypothesis implies that °a’a € ker p, that is, b%a € ker p.
Finally,
b= (0"a)’bpb®abpb’a’bpb° (a’b)° = v°

so that b € ker p. The opposite implication follows by symmetry. a
For (pa) € [[aey C(Sa) and for each a € Y define a relation pf; by
appb = ava ppsbpa,s for all 8 < « (a,b € Sy).

Also, let (po)m = ().
Lemma 6.6. For (pa) € [[,cy C(Sa), we have (po)m € LC(S).

Proof. Let « € Y and A\, = pl. Clearly A, is reflexive and symmetric.
If aAob and b\, c, then for any 8 < a, we have

AP, P8 VPa.B P8 CPa,B

and thus aA,c. Therefore, A, is also transitive. Assuming al,b and
c € Sy, we get for any § < a,

(ac)@a,p = (aa,p)(cPa,p)pp(bpa,s)(CPa,8) = (bC)Pa,s

and thus acA,be. By symmetry, we conclude that A, € C(S,).

Now let aA,band 8 < a. For any v < 3, we get apq,pbpa,y Whence

(apa,8)¢s,4P~(bpa,3)ps,~. Therefore, apq sAsbpa, g which proves that
(M) € LC(S). o

Recall the convention that (p, /&)™ means: apply 7 to the congruence
pak.

Theorem 6.7. For any (§;pa) € CA(S), we have (& pa)K =
((paK)h; (o K)T).

Proof. Since (poK) € [[,cy C(Sa), by Lemma 6.6 we have (po K)m €
LC(S). Letting n = (poK)wk and A, = (poK)™, by Theorem 3.3 we
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obtain (n; Aa) € CA(S). Let p ~ (& pa) and A ~ (1; Ay ). It remains to
show that pK = .

For any o € Y and a € S,, we have

a € kerp, <= apya’
= apappsa’pas  forall f<a
> apapppKalpas  forall f<a
= alya’
< a €ker),

so that ker p, = ker A\,. It follows that

ker p = U ker p, = U ker A\, = ker A.
agY acY

Let pK ~ ((;60,). Since ker A = ker p, it follows that A C pK and
hence n C ¢ and A\, C 0, for all « € Y. Let af,b. Then apKb and
thus, by Lemma 6.4,

(6) xa € kerp <= xb € kerp for all z € S*.

Let 3 < . We wish to show that aya. gpsKbpag. So, let x € Sa
and assume that z(ap, g) € ker pg. Then za = x(apq,g) € ker p, and
hence by (6), we get xb € kerp. But then x(bp, ) = xb € kerpg.
By symmetry and Lemma 6.5, we conclude that apa gpsKbpag. It
follows that a\,b which proves that 8, C )\, and equality prevails. By
maximality of 1, we must have { C 7. Therefore, ( = n which then
gives A = pK, as required. a

The following observations shed further light on the nature of opera-
tors K, k,T and t.

Example 6.8. This is to show that K is not compatible. Let
S; = M(1;;Gi; Ay Py) for i =0, 1.

10211:{1,2}, AOZ{LQ}, A1 :{1}, G0:G1:{e7a}

PO_[Z (‘j P=le e]
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v:(i,9,1) = (i,9,1) (i=1,2 g€ Gy)
which gives the semigroup. Let p; = €g, for i = 0, 1. Clearly (po, p1) €
LC(A). Tt follows easily that p K = eg, and poK ~ (wy,,{e},wa,)-
In particular, (1,e,1)p1K(2,e,1) but (1,e,1)ppoK(2,€,1)p does not
hold. Therefore K is not compatible.

Lemma 6.9. For any p € C(S), we have pK = pAp and pT = pV .
Operators k,T and t are order preserving but K is not.

Proof. Let p ~ (& pa) and observe that u ~ (&;us) and that
the above formulae are valid in a completely simple semigroup. Now
Theorems 3.2, 5.4 and 6.3 yield

(&5 pa) A (&5 ) = (& pa A ) = (&5 pak) ~ pk,
(& pa) V (&5 a) = (& V{(ps V 1p)pa s | B < a€B})
= (&V{(psT)py 5 | B < alB})

= (& (paT)*) ~ pT.
This also implies that k and T preserve order.
Also let A ~ (n; \o) and assume that (£;p4) < (7;Aa). Then £ C 7

and p, C A, for all « € Y. Let a,b € S, be guch that a ptb. Then
Pa,yPytbpa,y for some v < afy. By Lemma 5.3, this implies that
Py Aytbpa . Since also v < any, it follows that a Atb. Therefore,

(& pa)t < (m; Aa)t as required. O

That K does not preserve order was illustrated in ([7, Example 1])
on an instance of a Clifford semigroup.

7. The semigroup generated by K,k,T and ¢t for a normal
cryptogroup. With the expressions we have obtained for pk and pt
in Section 5 for a strong semilattice of regular simple semigroups, and
for pT and pk in Section 6 for strong semilattices of completely simple
semigroups, we are now able to characterize the semigroup generated
by the operators K, k,T and t. To this end, we first obtain certain
relations satisfied by these operators.

Lemma 7.1. For any p € C(S), we have pTK = w.
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Proof. Let p ~ (€pa) 0 = (paT)é, (\a) = (6ukK)m so that
(& pa)TK = ((Aa)k; Aa). It suffices to prove that A\, = w, for all
a €Y since this forces (A\y)k = w. Fix a € Y. Recall that

(7) abob <= apa Py Tbpu for some v < a~.

If ap,Th, then by compatibility of T, Lemma 6.4, we have
apappsTboap for any § < « and, in particular, for § = v in (7),
so that af,b. It follows that p,T C 0,. Now S, = M(Iy, G, Au; Pa)
so let po, ~ (r,N, 7). By Lemma 6.1, p,T ~ (r,Gq, ) which then
implies that 6, ~ (', Gy, n’) for some ' DO r and 7’ D 7.

Recall that
(8) aAob = a9y 0. Kb s for all 5 < a.
In view of Lemma 6.1, 0,K ~ (wy,,Gqa,wa,, ) so that 0, K = w,. But
then (8) shows that A\, = w,, as required. O

Lemma 7.2. For any p € C(S), pkT = pTk = p.

Proof. 1t is easy to see that the above assertion holds in a Rees matrix
semigroup. Let p ~ (§; po). By Theorems 5.4 and 6.3, we have

(& pa)KT = (&5 pak)T = (&5 (pakT)?) = (&; pakT) = (& pta) ~ f1-

Letting 0, = (poT)%, we have (£;p0)Tk = (£;0,)k = (;04k). Recall
the form of 6, in (7). Let a = (i,9,A), b = (j, h,v), 0o ~ (r,N,7),
py ~ (r',N',7") and ¢ = ¢4~ be as in (5). Using Lemma 6.1, we get

APa,y = (7{7 ui(gw)v)\a )\n)p(r’,G,y,Tr’) (]£7 Uj (hw)vl,, V77) = b@a,'y
which entails no restriction on g or h implying that N = G,. But then
Ouk ~ (4, Gu,eq) so that 0,k = u, whence pTk = p. O

Lemma 7.3. For any p € C(S), we have pkt = ¢.

Proof. 1t is easy to see that the above equality holds in a Rees matrix
semigroup. Letting p ~ (&; ps), by Theorems 5.4 and 5.6, we obtain

(& pa)kt = (g pak)t = (g5 (pakt)®) = (& pakt) = (€;€a).
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Lemma 7.4. For any p € C(S), we have ptK = ptKt.

Proof. Let

P~ (f;pa)a 00 = (pat)£7 Ao = (aaK)ﬂ'>
n= (gaK)’/THa ¢= (Aat)n

so that

(&5 pa)tK = (§;00)K = (0; X)), (& pa)tKt = (1; Ca)-

Fix a € Y and let e, f € E(S,) be such that ep,f. Then ep,tf
which evidently implies that ef, f. Since (&;pa)t = (£;0,), we have
(0) € LC(S) and hence, for any § < «, we obtain ep, 305 fpaq 5. But
then ey, g0sK fpa,p for all B < a and thus el,f. We have proved
that tr p, C tr A,. It follows from Lemma 6.1 that p,t C A,t.

Since (&; pa)tK > (& pa)tKt, we have Ay D (,, and since tr (&; po, )t K

= tr (&; po )tKt, we have tr A, = tr(,. Let a € ker \,. Then arga®
and thus af,Ka®. But then a € ker(§,K) = kerf, whence af,a’.
Then apq,ypyta’pq, for some v < ay. By the first part of the proof,
we get a4 Atapa . Also (& pa)t < (& pa)tK implies that & C 7,
whence v < any. Therefore a,a’ so that a € ker(,. Consequently,
ker A\, C ker (,, and equality prevails. This, together with tr A\, = tr (,
gives A\, = (4. It now follows that (&; po)tK = (&; pa)tKt, as asserted.
O

From this point on, the situation becomes quite analogous to that in
Section 4 for the operators G, g, L and [. It becomes almost identical
to the situation in ([7, Section 3]) for the case of a Clifford semigroup
(semilattice of groups). The results of Lemmas 4.2-4.4 are of course
valid also for Clifford semigroups. As we have seen in the stated
reference, essentially no other relations, except for some trivial ones,
are valid for Clifford semigroups. We now summarize briefly the
situation in our present case relegating the details and proofs to the
cited reference.
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Let I' = {K,k,T,t}. Then operators I satisfy the following relations

Y ={(i) K’=kK =K, k* = Kk =k,
2 =Tt =t, T? =tK =1,
(ii) KTK =TKT =TK,

tht = ktk = kt,
(ili) tKt = tK,
(iv) kT = Tk}.

Let
e = kt, T =ktK, TV u=~kKT, w=KT,

w=TK, o =TKt, oAp=TKtk,
A={e o puT,0 A,V p,w}.
Theorem 7.5. The set
Q= {K,KT,Kt, KtK, Ktk, KtKT, k. t,tk,tK,tKT, T} UA

is a system of representatives for the congruence on I'V generated by
the relations 3.

The D-structure of  is given in ([7, Proposition 1]).

Lemma 7.6. For any p € C(S),

pKtk C pk, T C ptKT, pKT C pKtKT.

Proof. Indeed

ker(pKt) C ker(pK) = ker p, trp = tr (pt) C tr (ptK),
tr (pK) = tr (pKt) C tr (pKtK),

which, by Theorem 5.1, implies the assertions. ]

Similarly as in [7], we may deduce the following result.
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PK ~((p Kl (0 K)) PG~ (E:0,)

pT ~(§ ; (paT)E)

-(loal) Nr-leied

pk~(8;pak)

FIGURE 1.

Theorem 7.7. Let S be a normal cryptogroup. The semigroup Q(S)
generated by the operators K, k,T and t on C(S) is a homomorphic

image of Q. For the semigroup S in ([7, Ezxample 1]), we have
Q(9) 2 Q.

Figure 1 illustrates the mutual relationship of the values pG, pg, pL,
pl, pK, pk, pT and pt for any congruence p on a normal cryptogroup.
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