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CONGRUENCE NETWORKS FOR STRONG
SEMILATTICES OF REGULAR SIMPLE SEMIGROUPS

MARIO PETRICH

1. Introduction and summary. Normal cryptogroups (or normal
bands of groups) form the class of semigroups which are strong semi-
lattices of completely simple semigroups. We consider here the more
general class of semigroups which are strong semilattices of regular sim-
ple semigroups. We denote the latter by S = [Y ;Sα, ϕα,β] where Y is
a semilattice, for each α ∈ Y , Sα is a regular simple semigroup, and
for α ≥ β, ϕα,b : Sα → Sβ is a homomorphism. These homomor-
phisms satisfy the usual conditions and determine the multiplication
of S. This is the semigroup on whose lattice of congruences C(S) we
consider certain operators.

A congruence ρ on S can be expressed by means of a congruence
aggregate (ξ; ρα) where ξ ∈ C(Y ) and ρα ∈ C(Sα) are congruences
satisfying certain conditions, and we write ρ ∼ (ξ; ρα). We call gl ρ = ξ
and loc ρ = (ρα) the global and the local of ρ. These induce the global
relation G and the local relation L on C(S) by

λGρ ⇐⇒ glλ = gl ρ, λLρ ⇐⇒ locλ = loc ρ.

Our “global and local operators” are induced by the greatest and the
least elements of the equivalence classes of G and L as follows:

ρG and ρg are the greatest and the least elements G-related to ρ,
respectively,

ρL and ρl are the greatest and the least elements L-related to ρ,
respectively.

These produce the four operators G, g, L and l on C(S). We are
interested in the semigroup generated by A = {G, g, L, l}. This
semigroup will be represented by generators and relations.

As for general regular semigroups, we define E(S) to be the set of
idempotents of S,

ker ρ = {a ∈ S | aρe for some e ∈ E(S)}
Received by the editors on May 23, 1991, and in revised form on April 2, 1992.

Copyright c©1993 Rocky Mountain Mathematics Consortium

1385



1386 M. PETRICH

to be the kernel of ρ and tr ρ = ρ|E(S) to be the trace of ρ. These
induce the kernel relation K and the trace relation T on C(S) by

λKρ ⇐⇒ kerλ = ker ρ, λT ρ ⇐⇒ trλ = tr ρ.

Our “kernel and trace operators” are induced by the greatest and the
least elements of the equivalence classes of K and T as follows:

ρK and ρk are the greatest and the least congruences K-related to ρ,
respectively,

ρT and ρt are the greatest and the least congruences T -related to ρ,
respectively.

Similarly as above, we are interested in the set Γ = {K, k, T, t} of
operators on C(S) and the semigroup generated by it. To this end, one
must first represent the value of the congruence aggregates under these
operators again in terms of congruence aggregates. Since this creates
considerable difficulties for the operators K and T , for them we restrict
our attention to the case when each Sα is completely simple, that is, S
is a normal cryptogroup. In this case we can characterize the semigroup
sought in terms of generators and relations 〈Γ,Σ〉.

A similar analysis can be found for Clifford semigroups (semilattices
of groups) in [7], and it will be seen that we arrive here at the same
set Σ of relations as in the case of Clifford semigroups. Also, in [6], we
performed a similar analysis for completely simple semigroups; in that
case we applied the operators in the semigroup generated by Γ to a fixed
congruence on S and characterized the sublattice of C(S) generated
by the resulting set of congruences. Already in the case of Clifford
semigroups in [7], we stopped at the partially ordered set making up
the semigroup generated by Γ since the lattice generated seemed quite
out of reach. For example, the latter lattice is not modular whereas,
in the case of completely simple semigroups, it is even distributive.
Further similar investigations may be found in Pastijn-Trotter [3] and
Petrich-Reilly [8].

The description of congruences on S in terms of congruence aggre-
gates is taken from [5]; several other results from that paper are of
fundamental importance for our discussion here. We further relegate
the discussion of 〈Γ,Σ〉 to [7] since it turns out to be the same semi-
group as there.
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Section 2 contains a general definition of the global and the local of a
congruence. Basic concepts and results concerning strong semilattices
of (regular simple) semigroups taken from [5] can be found in Section
3. A sequence of lemmas in Section 4 leads to a representation of
the semigroup generated by G, g, L and l by means of generators and
relations and the related network. For a congruence aggregate for S,
the values of k and t are computed in Section 5. These values are
calculated for T and K in Section 6 for the case when S is a normal
cryptogroup.

2. Preamble. Since we will discuss some new concepts for congru-
ences on very special semigroups, it seems in order to first give a general
definition of the notions. All undefined symbols and terminology can
be found in [4].

Let S be any semigroup, C(S) be its congruence lattice and η be the
least semilattice congruence on S. For any ρ ∈ C(S), define

gl ρ = (ρ ∨ η)/η

the global of ρ, and

loc ρ = (ρ|aη) ∈
∏
a∈S

C(aη)

the local of ρ. On C(S), define the relations G and L by

λGρ ⇐⇒ glλ = gl ρ, λLρ ⇐⇒ locλ = loc ρ.

Clearly, for any λ, ρ ∈ C(S), we have

λGρ ⇐⇒ λ ∨ η = ρ ∨ η, λLρ ⇐⇒ λ ∧ η = ρ ∧ η.

Evidently, one could use other fundamental congruences on S instead
of η to arrive to possibly new fruitful equivalences on C(S). If S is
regular, recall that η = D∗ = J ∗.

We denote by E(S) the set of idempotents of S. The equality and the
universal relations on any set X are denoted by ε and ω, respectively.
However, we write sometimes εX and ωX , for emphasis, or εα and ωα

when X = Sα. For any regular semigroup, µ and σ denote the greatest
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idempotent and the least group congruences, respectively. For Sα, we
also write µα instead of µ.

We shall freely use the fact that on a regular semigroup, a congruence
is uniquely determined by its kernel and trace, see, e.g., ([2, Corollary
2.11]).

3. Strong semilattices of semigroups and their congruences.
We fix the following notation for the entire paper.

Let Y be a semilattice. For each α ∈ Y , let Sα be a semigroup and
assume that Sα ∩ Sβ = ∅ if α �= β. For any α, β ∈ Y such that α ≥ β,
let ϕα,β : Sα → Sβ be a homomorphism, and assume that ϕα,α is the
identity mapping on Sα and ϕα,βϕβ,γ = ϕα,γ whenever α > β > γ. On
the set S = ∪α∈Y Sα define a multiplication by: for a ∈ Sα, b ∈ Sβ,

ab = (aϕα,αβ)(bϕβ,αβ).

Then S is a semigroup called a strong semilattice Y of semigroups
Sα with structure homomorphisms ϕα,β denoted by [Y ;Sα, ϕα,β], or
simply a strong semilattice of semigroups.

We call an element (ρα) ∈
∏

α∈Y C(Sα) such that

(1) a, b ∈ Sα, aραb, α > β ⇒ aϕα,β ρβ bϕα,β

a local congruence on S. If, in addition, ξ ∈ C(Y ) and

(2) a, b ∈ Sα, α > β, aϕα,β ρβ bϕα,β , αξβ ⇒ aραb,

then (ξ; ρα) is called a congruence aggregate for S. In such a case,
define a relation ρ(ξ;ρα) on S by: for a ∈ Sα, b ∈ Sβ ,

aρ(ξ;ρα)b ⇐⇒ α ξ β, aϕα,αβ ραβ bϕβ,αβ .

Denote by LC(S) and CA(S) the sets of all local congruences and
congruence aggregates for S, respectively, ordered by (componentwise)
inclusion.

We now assume that, for each α ∈ Y , Sα is regular and simple.
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Theorem 3.1 ([5, Theorem 4.2]). For every (ξ; ρα) ∈ CA(S), we
have ρ(ξ;ρα) ∈ C(S). Conversely, let ρ ∈ C(S), define ξ on Y by

α ξ β ⇐⇒ aρu, vρb for some a ∈ Sα, u, v ∈ Sαβ , β ∈ Sβ

and, for each α ∈ Y , define ρα = ρ|Sα
. Then (ξ; ρα) ∈ CA(S) and

ρ = ρ(ξ; ρα).

The mapping (ξ; ρα) → ρ(ξ;ρα) is a lattice isomorphism of CA(S) onto
C(S).

We will write ρ ∼ (ξ; ρα) for the above correspondence and will
identify the two concepts when convenient to do so. Next we determine
the lattice operations on CA(S). If ϕ : U → V is a homomorphism of
semigroups and ρ ∈ C(V ), define a relation ρϕ−1 by

xρϕ−1y ⇐⇒ xϕρyϕ (x, y ∈ U).

Clearly ρϕ−1 ∈ C(U).

Theorem 3.2 ([5, Theorem 4.4]). For (ξ; ρα), (ξ′; ρ′α) ∈ CA(S), we
have

(i) (ξ; ρα) ∧ (ξ′; ρ′α) = (ξ ∧ ξ′; ρα ∧ ρ′α),

(ii) (ξ; ρα) ∨ (ξ′; ρ′α) = (ξ ∨ ξ′;∨{(ρβ ∨ ρ′β)ϕ−1
α,β|β ≤ α ξ ∨ ξ′β}).

Since each Sα is simple and the equivalence relation on S whose
classes are the Sα’s is a semilattice congruence, this equivalence coin-
cides both with the Green relation J and with the least semilattice
congruence η on S. Now slightly modifying the concepts introduced in
the preceding section, we arrive at the following definitions.

For ρ ∼ (ξ; ρα), we call

gl ρ = gl (ξ; ρα) = ξ, loc ρ = loc (ξ; ρα) = (ρα)

the global and the local of both ρ and (ξ; ρα), respectively. These two
concepts give rise to the following relations on C(S) and CA(S):

λGρ ⇐⇒ glλ = gl ρ, λLρ ⇐⇒ locλ = loc ρ.
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In order to study the structure of these relations, we need the following
constructs.

Let ξ ∈ C(Y ). For each α ∈ Y , define a relation ξθ on Sα by

aξθb ⇐⇒ aϕα,β = bϕα,β for some β ≤ αξβ.

Next let (ρα) ∈ LC(S). For any α ≥ β define

αζβ ⇐⇒ (a, b ∈ Sα, aϕα,β ρβ bϕα,β ⇒ aραb).

On Y define a relation (ρα)κ by

α(ρα)κβ ⇐⇒ for every γ ∈ Y, αγζαβγ, βγζαβγ.

Theorem 3.3 ([5, 4.5 4.8]). The mapping

gl : (ξ; ρα) → ξ ((ξ; ρα) ∈ CA(S))

is a homomorphism of CA(S) onto C(Y ) which induces G. For any
δ = (ξ; ρα) ∈ CA(S), we have δG = [δg, δG] where δg = (ξ; ξθ) and
δG = (ξ;ωα).

The mapping

loc : (ξ; ρα) → (ρα) ((ξ, ρα) ∈ CA(S))

is a ∧-homomorphism of CA(S) onto LC(S) which induces L. For any
δ = (ξ; ρα) ∈ CA(S), we have δL = [δl, δL] where δl = (ε; ρα) and
δL = ((ρα)κ; ρα).

Note that for any δ ∈ CA(S), δ = δg ∨ δl = δG ∧ δL and, as
a consequence, G ∩ L = ε. Hence, every congruence is uniquely
determined by its global and its local.

4. The semigroup generated by G, g, L and l. By means of the
results of the preceding section, using a sequence of lemmas we are able
here to represent the semigroup evoked above in terms of generators
and relations. In addition, we characterize the associated partially
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ordered set of congruences of the form ρ, ρG, ρg, ρL, ρl, . . . for a fixed
congruence ρ on S which we term the network of ρ.

Notice that J ∼ (ε;ωα) and that, for any ξ = (ξ; ρα) ∈ CA(S), using
Theorems 3.2 and 3.3, we have

(ξ; ρα) ∧ (ε;ωα) = (ε; ρα) = ξl,

(ξ; ρα) ∨ (ε;ωα) = (ξ;ωα) = ξG.

Transferring all of the above to congruences, we can write: for any
ρ ∈ C(S),

ρl = ρ ∧ J , ρG = ρ ∨ J .

We provide next an interesting characterization of a congruence aggre-
gate.

Lemma 4.1. Let ξ ∈ C(Y ) and (ρα) ∈ LC(S). Then (ξ; ρα) ∈ CA(S)
if and only if ξ ⊆ (ρα)κ.

Proof. Necessity. Let α > β and α ξ β. Then aϕα,βρβbϕα,β implies
aραb by the definition of a congruence aggregate. Hence ξ ⊆ ζ in the
definition of (ρα)κ. Also, for α, β, γ ∈ Y such that α ξ β, we have

αγ ≥ αβγ, βγξαβγ, βγ ≥ αβγ, βγξαβγ,

and hence αγζαβγ and βγζαβγ so that α(ρα)κβ.

Sufficiency. Let α ≥ β, α ξ β and aϕα,βρβbϕα,β . Then α(ρα)κβ which
implies that αραb. Therefore (ξ; ρα) ∈ CA(S).

It follows from Theorem 3.3 that θ maps C(Y ) into LC(S) and κ maps
LC(S) into C(Y ). We will need further properties of these functions.

Lemma 4.2. Let ξ ∈ C(Y ) and (ρα) ∈ LC(S).

(i) θ preserves inclusion.

(ii) ξ ⊆ ξθκ.

(iii) ξθ = ξθκθ.

(iv) εθ = (εα).
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(v) (ρα)κθ ⊆ (ρα).

(vi) (ωα)κ = ω.

Proof. (i) This follows directly from the definition of θ.

(ii) This follows from

(ξ; ξθ) ≤ (ξ; ξθ)L = (ξθκ; ξθ).

(iii) By parts (ii) and (i), we have ξθ ⊆ ξθκθ. Also,

(ξ; ξθ)Lg = (ξθκ; ξθ)g = (ξθκ; ξθκθ) ≤ (ξ; ξθ)L = (ξθκ; ξθ)

so that ξθκθ ⊆ ξθ and equality prevails.

(iv) Indeed, (ε; εα)g = (ε; εθ) = (ε; εα).

(v) This follows from

(ε; ρα)L = ((ρα)κ; ρα) ≥ ((ρα)κ; ρα)g = ((ρα)κ; (ρα)κθ).

(vi) Indeed, (ω;ωα)L = ((ωα)κ;ωα) = (ω;ωα).

The next lemma lists some constants in the iteration of the operators
G, g, L, l.

Lemma 4.3. Let ρ ∈ C(S), ρ ∼ (ξ; ρα). Denote by ψ the least
simple congruence on S and by ζ the greatest congruence on S whose
meet with J is the equality relation.

(i) ρGL = ω ∼ (ω;ωα).

(ii) ρGLg = ψ ∼ (ω;ωθ).

(iii) ρlG = ρGl = J ∼ (ε;ωα).

(iv) ρGLgl = ψ ∧ J ∼ (ε;ωθ).

(v) ρlg = ε ∼ (ε; εα).

(vi) ρlgL = ζ ∼ ((εα)κ; εα)

(vii) ρlgLG = ζ ∨ J ∼ ((εα)κ;ωα).

(viii) ρgL = ρgLg ∼ (ζθκ; ζθ).
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Proof. Indeed,

(i) (ξ; ρα)GL = (ξ;ωα)L = (ω;ωα) ∼ ω by Lemma 4.2(vi).

(ii) (ξ; ρα)GLg = (ω;ωθ) ∼ ψ.

(iii) (ξ; ρα)lG=(ε; ρα)G=(ε;ωα), (ξ; ρα)Gl=(ξ;ωα)l=(ε;ωα) ∼ J .

(iv) (ξ; ρα)GLgl = (ε;ωθ) ∼ ψ ∧ J .

(v) (ξ; ρα)lg = (ε; ρα)g = (ε; εα) ∼ ε by Lemma 4.2 (iv).

(vi) (ξ; ρα)lgL = ((εα)κ; εα) ∼ ζ.

(vii) (ξ; ρα)lgLG = ((εα)κ; εα) ∼ ζ ∨ J .

(viii) (ξ; ρα)gL = (ξ; ξθ)L = (ξθκ; ξθ) = (ξθκ; ξθκθ) = (ξ; ρα)gLg
by Lemma 4.2 (iii).

In view of Lemma 4.3 (i) (vii), we may drop ρ in those expressions
and use the following notation:

ε = lg, ζ = lgL, ζ ∨ J = lgLG, J = lG,

ω = GL, ψ = GLg, ψ ∧ J = GLgl.

Note that the second line is obtained from the first by the transforma-
tion G↔ l, L↔ g. Finally, let

A = {G, g, L, l}, B = {ε, ψ,J , ζ, ψ ∧ J , ζ ∨ J , ω}.

Lemma 4.4. Operators A satisfy the following relations

R = {(i) G2 = gG = G, g2 = Gg = g,

l2 = Ll = l, L2 = lL = L,

(ii) LGL = GLG = GL,

glg = lgl = lg,

(iii) gLg = gL,

(iv) lG = Gl}.

Proof. The argument is essentially the same as in the proof of ([ 7,
Lemma 6) if we substitute

(3) K → L, k → l, T → G, t→ g
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and use Lemma 4.3.

All this leads to the first principal result of the paper.

Theorem 4.5. The set

Q = {L,LG,Lg, LgL, Lgl, LgLG, l, g, gl, gL, gLG,G} ∪B
is a system of representatives for the congruence on A+ generated by the
relations R. These can be given the multiplication of representatives,
thereby providing an isomorphic copy of 〈A,R〉.

Proof. The argument here is again literally the same as in the proof
of [7, Theorem 1] under the substitution (3). All the above has a
faithful analogue in the discussion prior to the result cited. The part
of that proof concerning nonrelatedness of any two different elements
of Ω carries over to this case since the example used there refers to a
Clifford semigroup. But in a Clifford semigroup, the association (3)
becomes identity and thus the example in [7] can serve our purpose
here as well.

Transformation (3) can be used to obtain the D-structure of Q from
that of Ω in ([7, Proposition 1]).

Similarly as in [7], we may deduce the following result.

Theorem 4.6. Let S be a strong semilattice of regular simple
semigroups. The semigroup Q(S) generated by the operators G, g, L
and l on C(S) is a homomorphic image of Q. For the semigroup S in
([7, Example 1]), we have Q(S) ∼= Q.

5. Kernels and traces for strong semilattices of semigroups.
We continue with the same notation and now embark upon the same
type of analysis relative to kernels and traces instead of globals and
locals. In the generality of S considered heretofore, we represent here,
for any ζ ∈ CA(S), ζk and ζt as a congruence aggregate.

Let T be a regular semigroup and ρ ∈ C(T ). Then

ker ρ = {a ∈ T | a ρ e for some e ∈ E(T )}, tr ρ = ρ|E(T )



CONGRUENCE NETWORKS 1395

are, respectively, the kernel and the trace of ρ. The relations on C(T )
defined by

λKρ ⇐⇒ kerλ = ker ρ, λT ρ ⇐⇒ trλ = tr ρ

are, respectively, the kernel and the trace relations on C(T ).

For any relation τ on T, τ∗ denotes the congruence on T generated
by τ . If τ is an equivalence relation on T , then τ0 denotes the greatest
congruence on T contained in τ . In fact,

aτ0b ⇐⇒ xay τ xby for all x, y ∈ T 1 (a, b ∈ T ).

If ∅ �= A ⊆ T , letting τ = (A×A) ∪ [(T\A) × (T\A)], we set πA = τ0

(πA is the principal congruence on T relative to A).

Theorem 5.1 ([2, Theorem 3.2]). For any ρ ∈ C(T ), we have

ρK = [ρk, ρK], ρT = [ρt, ρT ]

where, with τ = tr ρ,

ρk = {(a, a2) | a ∈ ker ρ}∗, ρK = πker ρ,

ρt = τ∗, ρT = (LτLτL ∩RτRτR)0.

We are interested in the semigroup generated by K, k, T and t as
operators on C(S). To simplify our discussion, we will occasionally
identify a congruence ρ with its congruence aggregate. We thus
may speak of ker (ξ; ρα) or tr (ξ; ρα), etc., for (ξ; ρα) ∈ CA(S), and
importantly notice that

ker (ξ; ρα) =
⋃

α∈Y

ker ρα.

Thus, the information concerning the kernel is contained in the local
of ρ. For the trace, we have the following situation.

Lemma 5.2. Let (ξ; ρα), (ξ′; ρ′α) ∈ CA(S). Then tr (ξ; ρα) ⊆
tr (ξ′; ρ′α) if and only if ξ ⊆ ξ′ and tr ρα ⊆ tr ρ′α for every α ∈ Y .
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Proof. Let ρ ∼ (ξ; ρα) and ρ′ ∼ (ξ′; ρ′α).

Necessity. Let α ξ β. Then, for e ∈ E(Sα), we have eρeϕα,αβ and
thus eρ′eϕα,αβ which yields α ξ′αβ. By symmetry, we also have βξ′αβ
and thus α ξ′β. Hence ξ ⊆ ξ′. Trivially, tr ρα ⊆ tr ρ′α for all α ∈ Y .

Sufficiency. Let e ∈ E(Sα), f ∈ E(Sβ), eρf . Then α ξ β and
eϕα,αβραβfϕβ,αβ . The hypothesis implies that α ξ′ β and

eϕα,αβρ
′
αβfϕβ,αβ so that eρ′f . Therefore tr ρ ⊆ tr ρ′.

Clearly, Lemma 5.2 remains valid with equality written instead of
inclusion everywhere. Our first order of business is, for a given ρ ∼
(ξ′; ρα), to find the congruence aggregates for ρK, ρk, ρT and ρt.

In order to treat ρk and ρt, we need some preparation. For any
(ρα) ∈ LC(S) and any operator P on congruences, in the case that
(ραP ) ∈ LC(S), we say that P is compatible.

Lemma 5.3. Operators k and t are compatible.

Proof. Let (ρα) ∈ LC(S) and α > β.

First, let aραkb. By Theorem 5.1, there exists a sequence

a = u1y1v1, uizivi = ui+1yi+1vi+1, unznvn = b

with ui, vi ∈ S1
α, yi, zi ∈ Sα, and either zi = y2

i , yi ∈ ker ρα or yi = z2
i ,

zi ∈ ker ρα for i = 1, 2, . . . , n−1. Now applying ϕα,β to all elements of
the above sequence, with 1ϕα,β = 1, we obtain an analogous sequence
in Sβ and hence aϕα,βρβkbϕα,β . Therefore, k is compatible.

Next let aραtb. Then there is a sequence as above with the only
modification being the conditions on yi and zi, which in this case are
yi, zi ∈ E(Sα) and yiραzi. All this is again carried by ϕα,β to Sβ .
Therefore, also t is compatible.

Theorem 5.4. For any (ξ; ρα) ∈ CA(S), we have (ξ; ρα)k = (ε; ρα).



CONGRUENCE NETWORKS 1397

Proof. By Lemma 5.3, (ε; ραk) ∈ CA(S), and also

ker (ξ; ρα) =
⋃

α∈Y

ker ρα =
⋃

α∈Y

ker ραk = ker (ε; ραk).

Let (η;λα) ∈ CA(S) be such that ker (η;λα) = ker (ξ; ρα). Then
kerλα = ker ρα and thus ραk ⊆ λα for every α ∈ Y . But then
(ε; ραk) ⊆ (η;λα) which proves the minimality of (ε; ραk).

We will often use the following notation. Let ξ ∈ C(Y ) and (ρα) ∈
LC(S). For each α ∈ Y , define a relation ρξ

α on Sα by

aρξ
αb ⇐⇒ aϕα,γργbϕα,γ for some γ ≤ α ξ γ.

Note that εξ
α = ξθ in the notation introduced in Section 3.

Lemma 5.5. For any ξ ∈ C(Y ) and (ρα) ∈ LC(S), we have
(ξ; ρξ

α) ∈ CA(S).

Proof. Clearly ρξ
α is reflexive and symmetric. Let aρξ

αb and bρξ
αc with

aϕα,γ ργ bϕα,γ , bϕα,δ ρδ cϕα,δ, γ, δ ≤ α, γ ξ α ξ δ.

Since (ρα) ∈ LC(S), we obtain

aϕα,γδ ργδ bϕα,γδ ργδ cϕα,γδ, γδ ≤ α ξ γδ,

and thus aρξ
αc and ρξ

α is also transitive.

Next let aρξ
αb with the above notation and c ∈ Sα. Then

(ac)ϕα,γ = (aϕα,γ)(cϕα,γ)ργ(bϕα,γ)(cϕα,γ) = (bc)ϕα,γ ,

and thus acρξ
αbc. By symmetry, we conclude that ρξ

α ∈ C(Sα).

Continuing with the same notation for aρξ
αb, let α > β. Then

aϕα,βγρβγbϕα,βγ with βγ ≤ β = βαξβγ, and hence

(aϕα,β)ϕβ,βγηβγ(bϕα,β)ϕβ,βγ ,
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so that aϕα,βρ
ξ
βbϕβ,γ . Consequently, (ρξ

α) ∈ LC(S).

Next, let a, b ∈ Sα, α > β, aϕα,βρ
ξ
βbϕα,β , αξβ. Then

(αϕα,β)ϕβ,γργ(bϕα,β)ϕβ,γ

for some γ ≤ βξγ. It follows that aϕα,γργbϕα,γ with γ ≤ α ξ γ and
thus aρξ

αb. Therefore, (ξ; ρξ
α) ∈ CA(S).

Theorem 5.6. For any (ξ; ρα) ∈ CA(S), we have (ξ; ρα)t =
(ξ; (ραt)ξ).

Proof. In view of Lemma 5.3, we have (ραt) ∈ LC(S) and hence by
Lemma 5.5, we get (ξ; (ραt)ξ) ∈ CA(S). Let λ ∼ (ξ; (ραt)ξ) = (ξ;λα).

Note that the notation (ραt)ξ means: apply the operator ξ to the
congruence ραt on Sα and thus (ραt)ξ in this context may not be an
element of

∏
α∈Y C(Sα).

Let aλαb. Then aϕα,γργtbϕα,γ for some γ ≤ αξγ. Hence aϕα,γργbϕα,γ

which together with γξα implies that aραb. Therefore, λα ⊆ ρα and
thus λ ⊆ ρ. Next, let e, f ∈ E(Sα) and eραf . Then eραtf and thus
eλαf . Hence, tr ρα ⊆ trλα and equality prevails. Now Lemma 5.2
gives that trλ = tr ρ.

Finally, let θ ∈ C(S) be such that tr θ = tr ρ. Then, by Lemma
5.2, θ ∼ (ξ; θα) with tr θα = tr ρα for every α ∈ Y . It follows that
θαt = ραt for every α ∈ Y . Now let aλαb. Then aϕα,γργtbϕα,γ for
some γ ≤ αξγ. It follows that aϕα,γθγtbϕα,γ whence aϕα,γθγbϕα,γ

which together with γξα yields aθαb. Therefore, λα ⊆ θα so that
λ ⊆ θ, establishing minimality of λ.

It seems natural to attempt a similar argument for describing the
congruence aggregates for ρK and ρT . First, Example 6.8 in the next
section shows that K is not compatible. The deeper reason why this
may not be possible is the form of ρK and ρT . For ρK and ρT are of the
form ( )◦, which, by its expression bears upon the whole semigroup T
rather than only upon parameters intimately related to ρ, as this is the
case with ρk and ρt which are of the general form ( )∗. We will partly
overcome this difficulty in the next section by imposing the additional
hypothesis that each Sα be completely simple.
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6. The congruences ρT and ρK for normal cryptogroups.
A completely regular semigroup V is the union of its subgroups. If
the Green relation H is a congruence on S, then V is a cryptogroup.
If, in addition, V/H is a normal band (that is, satisfies the identity
axya = axya), then V is a normal cryptogroup (also called a normal
band of groups). According to ([4, IV. 4.3]), normal cryptogroups
coincide with strong semilattices of completely simple semigroups. For
any a ∈ V , a−1 denotes the inverse of a in the maximal subgroup of V
containing a and a0 = aa−1(= a−1a).

We thus specialize the case of S in the previous sections to be of the
form S = [Y ;Sα, ϕα,β ] where Sα is completely simple for every α ∈ Y .
We may further assume that Sα = M(Iα, Gα,Λα;Pα) is a Rees matrix
semigroup with Pα normalized at some element 1α ∈ Iα ∩ Λα. We
denote the identity of Gα by eα.

Let V = M(I,G,Λ;P ) with P normalized. An admissible triple
(r,N, π) for S consists of a partition r of I, a normal subgroup N of G
and a partition π of Λ satisfying the conditions:

irj ⇒ pλip
−1
λj ∈ N, λπµ ⇒ pλip

−1
µi ∈ N.

If so, then ρ = ρ(r,N,π) defined by

(4) (i, g, λ)ρ(j, h, µ) ⇐⇒ irj, gh−1 ∈ N, λπµ

is a congruence on V , to be denoted by ρ ∼ (r,N, π). Conversely, every
congruence on V can be so represented uniquely. Giving admissible
triples componentwise order, we obtain an isomorphic copy of C(V ).
We may thus consider the operators K, k, T and t as acting directly on
the set AT (V ) of admissible triples for V .

For ζ = (r,N, π) ∈ AT (V ), define rN , rπ and πN by

irN j ⇐⇒ pλip
−1
λj ∈ N for all λ ∈ Λ (i, j ∈ I),

rπ is the normal subgroup of G generated by the set

{pλip
−1
λj | irj, λ ∈ Λ} ∪ {pλip

−1
µi | i ∈ I, λπµ},

λπNµ ⇐⇒ pλip
−1
µi ∈ N for all i ∈ I (λ, µ ∈ Λ).
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Lemma 6.1. For ζ = (r,N, π) ∈ AT (V ), we have

ζK = (rN , N, πN ), ζk = (ε,N, ε),
ζT = (r,G, π), ζt = (r, rπ, π).

Proof. Straightforward.

Let also V ′ = M(I ′, G′,Λ′;P ′) (normalization is not needed here).
Any homomorphism ϕ : V → V ′ can be constructed as follows. Let

ξ : I → I ′, u : I → G′, ω : G→ G′,
v : Λ → G′, η : Λ → Λ′

be functions with u : i→ ui, ω a homomorphism, v : λ→ vλ. Then

(5) ϕ : (i, g, λ) → (iξ, ui(gω)vλ, λη) ((i, g, λ) ∈ V ).

For a full discussion of these constructions, we refer to ([1, III.4]).

Therefore, for normal cryptogroups we have two essential advantages
over the case considered previously: (1) each Sα can be taken to
be a Rees matrix semigroup with normalized sandwich matrix with
a convenient form of congruences in terms of admissible triples and
(2) the structure homomorphisms ϕα,β can be given a more explicit
form. This will make it possible to handle ρK and ρT . We begin with
the easier case of ρT which follows the same general form as ρt.

The above notation is fixed throughout this and the next sections.

Lemma 6.2. Operator T is compatible.

Proof. Let (ρα) ∈ LC(S), α > β, ϕ = ϕα,β as given in (5), ργ ∼
(rγ , Nγ , πγ) for γ ∈ {α, β}, (i, g, λ)ραT (j, h, µ). By Lemma 6.1, we have
irαj and λπαµ. But then (i, eα, λ)ρα(j, eα, µ), see (4), which implies
that (i, eα, λ)ϕρβ(j, eα, µ)ϕ. In view of both (5) and (4), we conclude
that iξrβjξ and ληπβµη. It follows that (i, g, λ)ϕρβT (j, h, µ)ϕ, as
required.
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Recall the convention that (ραT )ξ means: apply ξ to the congruence
ραT .

Theorem 6.3. For any (ξ; ρα) ∈ CA(S), we have (ξ; ρα)T =
(ξ; (ραT )ξ).

Proof. By Lemma 6.2, we have (ραT ) ∈ LC(S) so by Lemma 5.5, we
get (ξ; (ραT )ξ) ∈ CA(S). Let λα = (ραT )ξ and λ ∼ (ξ;λα).

Let a, b ∈ Sα with aραb. Then aραTb so that aλαb. Hence ρ ⊆ λ.
Next let e, f ∈ E(Sα) and eλαf . Then eϕα,γργTfϕα,γ for some
γ ≤ αξγ. But then eϕα,γργfϕα,γ which together with γ ξ α implies
eραf . Thus, trλα ⊆ tr ρα and equality prevails. Now Lemma 5.2
implies that trλ = tr ρ.

Finally, let θ ∈ C(S) be such that tr θ = tr ρ and let a θ b. Then
a, b ∈ Sα for some α ∈ Y and with θ ∼ (ξ; θα), we have θαT = ραT so
that aθαTb and thus aραTb. But then aλαb which proves that θ ⊆ λ
and establishes the maximality of λ.

For treating ρK we need some preparation.

Lemma 6.4. Let V be a completely regular semigroup, a, b ∈ V and
ρ ∈ C(V ). If ab ∈ ker ρ, then ba ∈ ker ρ.

Proof. Let ab ∈ ker ρ. Then

ba = b(ab)a(ba)−1ρb(ab)0a(ba)−1 = b(ab)0(ab)b−1(ba)−1

= b(ab)b−1(ba)−1 = (ba)(ba)−1 = (ba)0

so ba ∈ ker ρ.

Lemma 6.5. Let V be a completely simple semigroup, a, b ∈ V and
ρ ∈ C(V ). Assume that xa ∈ ker ρ if and only if xb ∈ ker ρ for all
x ∈ S. Then also a ∈ ker ρ if and only if b ∈ ker ρ.

Proof. Let a ∈ ker ρ. Then a0a ∈ ker ρ, so by hypothesis, a0b ∈ ker ρ.
Hence, (a0b)b0 ∈ ker ρ and thus, by Lemma 6.4, we get b0a0b ∈ ker ρ.
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Again the hypothesis implies that b0a0a ∈ ker ρ, that is, b0a ∈ ker ρ.
Finally,

b = (b0a)0bρb0abρb0a0bρb0(a0b)0 = b0

so that b ∈ ker ρ. The opposite implication follows by symmetry.

For (ρα) ∈
∏

α∈Y C(Sα) and for each α ∈ Y define a relation ρπ
α by

aρπ
αb ⇐⇒ aϕα,βρβbϕα,β for all β ≤ α (a, b ∈ Sα).

Also, let (ρα)π = (ρπ
α).

Lemma 6.6. For (ρα) ∈
∏

α∈Y C(Sα), we have (ρα)π ∈ LC(S).

Proof. Let α ∈ Y and λα = ρπ
α. Clearly λα is reflexive and symmetric.

If aλαb and bλαc, then for any β ≤ α, we have

aϕα,β ρβ bϕα,β ρβ cϕα,β

and thus aλac. Therefore, λα is also transitive. Assuming aλαb and
c ∈ Sα, we get for any β ≤ α,

(ac)ϕα,β = (aϕα,β)(cϕα,β)ρβ(bϕα,β)(cϕα,β) = (bc)ϕα,β

and thus acλαbc. By symmetry, we conclude that λα ∈ C(Sα).

Now let aλαb and β ≤ α. For any γ ≤ β, we get aϕα,γργbϕα,γ whence
(aϕα,β)ϕβ,γργ(bϕα,β)ϕβ,γ . Therefore, aϕα,βλβbϕα,β which proves that
(λα) ∈ LC(S).

Recall the convention that (ραK)π means: apply π to the congruence
ραK.

Theorem 6.7. For any (ξ; ρα) ∈ CA(S), we have (ξ; ρα)K =
((ραK)πκ; (ραK)π).

Proof. Since (ραK) ∈
∏

α∈Y C(Sα), by Lemma 6.6 we have (ραK)π ∈
LC(S). Letting η = (ραK)πκ and λα = (ραK)π, by Theorem 3.3 we
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obtain (η;λα) ∈ CA(S). Let ρ ∼ (ξ; ρα) and λ ∼ (η;λα). It remains to
show that ρK = λ.

For any α ∈ Y and a ∈ Sα, we have

a ∈ ker ρα ⇐⇒ aραa
0

⇐⇒ aϕα,βρβa
0ϕα,β for all β ≤ α

⇐⇒ aϕα,βρβKa
0ϕα,β for all β ≤ α

⇐⇒ aλαa
0

⇐⇒ a ∈ kerλα

so that ker ρα = kerλα. It follows that

ker ρ =
⋃

α∈Y

ker ρα =
⋃

α∈Y

kerλα = kerλ.

Let ρK ∼ (ζ; θα). Since kerλ = ker ρ, it follows that λ ⊆ ρK and
hence η ⊆ ζ and λα ⊆ θα for all α ∈ Y . Let aθαb. Then aρKb and
thus, by Lemma 6.4,

(6) xa ∈ ker ρ ⇐⇒ xb ∈ ker ρ for all x ∈ S1.

Let β ≤ α. We wish to show that aϕα,βρβKbϕα,β . So, let x ∈ Sβ

and assume that x(aϕα,β) ∈ ker ρβ . Then xa = x(aϕα,β) ∈ ker ρ, and
hence by (6), we get xb ∈ ker ρ. But then x(bϕα,β) = xb ∈ ker ρβ .
By symmetry and Lemma 6.5, we conclude that aϕα,βρβKbϕα,β . It
follows that aλαb which proves that θα ⊆ λα and equality prevails. By
maximality of η, we must have ζ ⊆ η. Therefore, ζ = η which then
gives λ = ρK, as required.

The following observations shed further light on the nature of opera-
tors K, k, T and t.

Example 6.8. This is to show that K is not compatible. Let
Si = M(Ii;Gi; Λi;Pi) for i = 0, 1.

I0 =I1 ={1, 2}, Λ0 ={1, 2}, Λ1 ={1}, G0 =G1 ={e, a}

P0 =
[
e e
e a

]
, P1 = [ e e ]
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ϕ : (i, g, 1) → (i, g, 1) (i = 1, 2, g ∈ G1)

which gives the semigroup. Let ρi = εSi
for i = 0, 1. Clearly (ρ0, ρ1) ∈

LC(A). It follows easily that ρ1K = εS1 and ρ0K ∼ (ωI0 , {e}, ωΛ0).
In particular, (1, e, 1)ρ1K(2, e, 1) but (1, e, 1)ϕρ0K(2, e, 1)ϕ does not
hold. Therefore K is not compatible.

Lemma 6.9. For any ρ ∈ C(S), we have ρK = ρ∧µ and ρT = ρ∨µ.
Operators k, T and t are order preserving but K is not.

Proof. Let ρ ∼ (ξ; ρα) and observe that µ ∼ (ε;µα) and that
the above formulae are valid in a completely simple semigroup. Now
Theorems 3.2, 5.4 and 6.3 yield

(ξ; ρα) ∧ (ε;µα) = (ε; ρα ∧ µα) = (ε; ραk) ∼ ρk,

(ξ; ρα) ∨ (ε;µα) = (ξ;∨{(ρβ ∨ µβ)ϕ−1
α,β | β ≤ αξβ})

= (ξ;∨{(ρβT )ϕ−1
α,β | β ≤ αξβ})

= (ξ; (ραT )ξ) ∼ ρT.

This also implies that k and T preserve order.

Also let λ ∼ (η;λα) and assume that (ξ; ρα) ≤ (η;λα). Then ξ ⊆ η
and ρα ⊆ λα for all α ∈ Y . Let a, b ∈ Sα be such that a ρt b. Then
aϕα,γργtbϕα,γ for some γ ≤ αξγ. By Lemma 5.3, this implies that
aϕα,γλγtbϕα,γ . Since also γ ≤ αηγ, it follows that a λ tb. Therefore,
(ξ; ρα)t ≤ (η;λα)t as required.

That K does not preserve order was illustrated in ([7, Example 1])
on an instance of a Clifford semigroup.

7. The semigroup generated by K, k, T and t for a normal
cryptogroup. With the expressions we have obtained for ρk and ρt
in Section 5 for a strong semilattice of regular simple semigroups, and
for ρT and ρk in Section 6 for strong semilattices of completely simple
semigroups, we are now able to characterize the semigroup generated
by the operators K, k, T and t. To this end, we first obtain certain
relations satisfied by these operators.

Lemma 7.1. For any ρ ∈ C(S), we have ρTK = ω.
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Proof. Let ρ ∼ (ξ; ρα), θα = (ραT )ξ, (λα) = (θαK)π so that
(ξ; ρα)TK = ((λα)κ;λα). It suffices to prove that λα = ωα for all
α ∈ Y since this forces (λα)κ = ω. Fix α ∈ Y . Recall that

(7) aθαb ⇐⇒ aϕα,γργTbϕα,γ for some γ ≤ α ξ γ.

If aραTb, then by compatibility of T , Lemma 6.4, we have
aϕα,βρβTbϕα,β for any β ≤ α and, in particular, for β = γ in (7),
so that aθαb. It follows that ραT ⊆ θα. Now Sα = M(Iα, Gα,Λα;Pα)
so let ρα ∼ (r,N, π). By Lemma 6.1, ραT ∼ (r,Gα, π) which then
implies that θα ∼ (r′, Gα, π

′) for some r′ ⊇ r and π′ ⊇ π.

Recall that

(8) aλαb ⇐⇒ aϕα,βθαKbϕα,β for all β ≤ α.

In view of Lemma 6.1, θαK ∼ (ωIα
, Gα, ωΛα

) so that θαK = ωα. But
then (8) shows that λα = ωα, as required.

Lemma 7.2. For any ρ ∈ C(S), ρkT = ρTk = µ.

Proof. It is easy to see that the above assertion holds in a Rees matrix
semigroup. Let ρ ∼ (ξ; ρα). By Theorems 5.4 and 6.3, we have

(ξ; ρα)kT = (ε; ραk)T = (ε; (ραkT )ε) = (ε; ραkT ) = (ε;µα) ∼ µ.

Letting θα = (ραT )ξ, we have (ξ; ρα)Tk = (ξ; θα)k = (ε; θαk). Recall
the form of θα in (7). Let a = (i, g, λ), b = (j, h, ν), θα ∼ (r,N, π),
ργ ∼ (r′, N ′, π′) and ϕ = ϕα,γ be as in (5). Using Lemma 6.1, we get

aϕα,γ = (iξ, ui(gω)vλ, λη)ρ(r′,Gγ ,π′)(jξ, uj(hω)vν , νη) = bϕα,γ

which entails no restriction on g or h implying that N = Gα. But then
θαk ∼ (εα, Gα, εα) so that θαk = µα whence ρTk = µ.

Lemma 7.3. For any ρ ∈ C(S), we have ρkt = ε.

Proof. It is easy to see that the above equality holds in a Rees matrix
semigroup. Letting ρ ∼ (ξ; ρα), by Theorems 5.4 and 5.6, we obtain

(ξ; ρα)kt = (ε; ραk)t = (ε; (ραkt)ε) = (ε; ραkt) = (ε; εα).
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Lemma 7.4. For any ρ ∈ C(S), we have ρtK = ρtKt.

Proof. Let

ρ ∼ (ξ; ρα), θα = (ραt)ξ, λα = (θαK)π,

η = (θαK)πκ, ζ = (λαt)η

so that

(ξ; ρα)tK = (ξ; θα)K = (η;λα), (ξ; ρα)tKt = (η; ζα).

Fix α ∈ Y and let e, f ∈ E(Sα) be such that eραf . Then eραtf
which evidently implies that eθαf . Since (ξ; ρα)t = (ξ; θα), we have
(θα) ∈ LC(S) and hence, for any β ≤ α, we obtain eϕα,βθβfϕα,β . But
then eϕα,βθβKfϕα,β for all β ≤ α and thus eλαf . We have proved
that tr ρα ⊆ trλα. It follows from Lemma 6.1 that ραt ⊆ λαt.

Since (ξ; ρα)tK ≥ (ξ; ρα)tKt, we have λα ⊇ ζα, and since tr (ξ; ρα)tK

= tr (ξ; ρα)tKt, we have trλα = tr ζα. Let a ∈ kerλα. Then aλαa
0

and thus aθαKa
0. But then a ∈ ker(θαK) = ker θα whence aθαa

0.
Then aϕα,γργta

0ϕα,γ for some γ ≤ αξγ. By the first part of the proof,
we get aϕα,γλγta

0ϕα,γ . Also (ξ; ρα)t ≤ (ξ; ρα)tK implies that ξ ⊆ η,
whence γ ≤ αηγ. Therefore aζαa0 so that a ∈ ker ζα. Consequently,
kerλα ⊆ ker ζα and equality prevails. This, together with trλα = tr ζα
gives λα = ζα. It now follows that (ξ; ρα)tK = (ξ; ρα)tKt, as asserted.

From this point on, the situation becomes quite analogous to that in
Section 4 for the operators G, g, L and l. It becomes almost identical
to the situation in ([7, Section 3]) for the case of a Clifford semigroup
(semilattice of groups). The results of Lemmas 4.2 4.4 are of course
valid also for Clifford semigroups. As we have seen in the stated
reference, essentially no other relations, except for some trivial ones,
are valid for Clifford semigroups. We now summarize briefly the
situation in our present case relegating the details and proofs to the
cited reference.
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Let Γ = {K, k, T, t}. Then operators Γ satisfy the following relations

Σ = {(i) K2 = kK = K, k2 = Kk = k,

t2 = Tt = t, T 2 = tK = t,

(ii) KTK = TKT = TK,

tkt = ktk = kt,

(iii) tKt = tK,

(iv) kT = Tk}.

Let
ε = kt, τ = ktK, τ ∨ µ = ktKT, µ = kT,

ω = TK, σ = TKt, σ ∧ µ = TKtk,

∆ = {ε, σ, µ, τ, σ ∧ µ, τ ∨ µ, ω}.

Theorem 7.5. The set

Ω = {K,KT,Kt,KtK,Ktk,KtKT, k, t, tk, tK, tKT, T} ∪ ∆

is a system of representatives for the congruence on Γ+ generated by
the relations Σ.

The D-structure of Ω is given in ([7, Proposition 1]).

Lemma 7.6. For any ρ ∈ C(S),

ρKtk ⊆ ρk, ρT ⊆ ρtKT, ρKT ⊆ ρKtKT.

Proof. Indeed

ker(ρKt) ⊆ ker(ρK) = ker ρ, tr ρ = tr (ρt) ⊆ tr (ρtK),
tr (ρK) = tr (ρKt) ⊆ tr (ρKtK),

which, by Theorem 5.1, implies the assertions.

Similarly as in [7], we may deduce the following result.
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ρ ρ πκ ρ πα αK K K~ ;( ) ( )( )

ρ ρ κ ρα αL ~ ;( )( )

ρ ξ ωαG ~ ;( )

ρ ξ ρα
ξ

T T~ ; ( )⎛
⎝

⎞
⎠

ρ ξ ρα~ ;( )

ρ ξ ρα
ξ

t t~ ; ( )⎛
⎝

⎞
⎠

ρ ξ ξθg ~ ;( )

ρ ε ραl ~ ;( )

ρ ε ραk k~ ;( )

FIGURE 1.

Theorem 7.7. Let S be a normal cryptogroup. The semigroup Ω(S)
generated by the operators K, k, T and t on C(S) is a homomorphic
image of Ω. For the semigroup S in ([7, Example 1]), we have
Ω(S) ∼= Ω.

Figure 1 illustrates the mutual relationship of the values ρG, ρg, ρL,
ρl, ρK, ρk, ρT and ρt for any congruence ρ on a normal cryptogroup.
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