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PLANTING AND HARVESTING
FOR PIONEER-CLIMAX MODELS
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. Kolmogorov-type systems of ordinary differ-
ential equations are presented, where per capita growth rates
are either monotone decreasing (pioneer) or one-humped (cli-
max) functions of weighted population densities. Varying an
intraspecific crowding parameter destabilizes an equilibrium
via Hopf bifurcation. This effect may be reversed by planting
the pioneer population or harvesting the climax population.
Averaging methods are used to study the two-dimensional sys-
tem with constant rate or periodic rate planting.

1. Introduction. Competition and cooperation among different in-
dividuals and different species in an ecosystem for its natural resources
are important factors in determining the development of the ecosys-
tem. For example, a tree in a forest competes with its neighbors for
light, space, carbon dioxide, and soil nutrients. Although the intensity
of this competition may or may not be affected by the species type of
the neighboring trees, it is affected by neighboring population density.
Analogously, an animal may not care what type of competitor is con-
suming its food, but the amount of food consumed will be affected by
competitor population density and, possibly, by species characteristics
of the competitors, for instance, physical size. We try to model the
effects of population density on the survival and growth of an individ-
ual species by assuming that the species’ per capita growth rate (i.e.,
fitness) is a function of a weighted total density variable. This total
density variable is a linear combination of the densities of the inter-
acting species with coefficients weighting the intensity of the effect of
each species. An example of such a model is the Lotka-Volterra system
where the per capita growth rate is just a linear combination of the
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densities of the interacting populations. Other studies assuming this
approach include May [11], Comins and Hassell [2], Hassell and Comins
[9], Hofbauer, Hutson and Jansen [10], Cushing [3, 4], Selgrade and
Namkoong [14, 15], and Franke and Yakubu [5].

Selgrade and Namkoong [14, 15] study such models where a popula-
tion’s fitness is either a monotone decreasing function of its weighted to-
tal density (a pioneer species) or a one-humped function of its weighted
total density (a climax species). They observe for two and three di-
mensional systems that stable equilibrium behavior may be lost by
decreasing the pioneer intraspecific crowding parameter or by increas-
ing the climax intraspecific crowding parameter. Here we show that
this destabilization may be reversed by constant rate or periodic rate
planting of the pioneer or harvesting of the climax. We have observed
numerically that planting or harvesting may be used to maintain these
systems in a “near-equilibrium” condition or in the vicinity of a large
amplitude periodic solution. Using averaging methods, we prove that a
two-dimensional pioneer-climax system which loses stable equilibrium
behavior may be returned to stable equilibrium by constant rate plant-
ing or to near-equilibrium behavior by periodic rate planting. This is
done by comparing solutions for periodic rate planting to those for con-
stant rate planting where the constant rate is the time-average of the
periodic rate. The crucial term in the bound between solutions is seen
to be the product of the amplitude and the period of the periodic rate.
Then the autonomous system with constant rate planting is compared
to the system without planting to determine conditions for restabilizing
the system. Similar analytical arguments should carry through for the
case of harvesting.

Section 2 discusses the background for pioneer-climax systems. Sec-
tion 3 describes the destabilizing effect of varying the intraspecific
crowding parameters. Section 4 compares the asymptotic behavior for
constant rate and periodic rate planting. Section 5 gives conditions
for which planting of a linear or an exponential pioneer will return the
system to a near-equilibrium condition. And Section 6 proves the aver-
aging results needed in Section 4. The averaging theorems are proved
for general C1 vector fields in the plane.

2. Background and model equations. An ecosystem of n
interacting, continuously reproducing populations is modeled by an
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autonomous system of ordinary differential equations of Kolmogorov-
type. Let xi, i = 1, . . . , n, denote the density (size) of the i-th
population as a function of time t and let yi denote its weighted total
density variable, i.e.,

yi =
n∑

j=1

cijxj

where cij is called the interaction coefficient and weights the effect of
the j-th population on the i-th population. The per capita growth rate,
the fitness fi, of the i-th population is a smooth function of yi. Our
model equations are

(1) dxi/dt = xifi(yi), i = 1, 2, . . . , n.

In vector form (1) may be written as

dx/dt = F (x)

where the function F is called a vector field. This vector field is defined
on the nonnegative orthant which is invariant because of the form of
(1).

Introducing the weighted density variable, yi, has the advantage of
separating the i-th population’s response to density, fi, from the com-
petitive or cooperative effect of each individual interacting population.
Typically this response may be characterized by monotonicity proper-
ties of the fitness fi as a function of the weighted density yi. Certainly,
for large enough yi, because of the detrimental effects of crowding, fi

should be a decreasing function of yi. In a forest ecosystem, a species
which has a fitness which is monotonically decreasing for all values
of density is called a pioneer species, and we use that terminology
here. On the other hand, Allee [1] discusses many examples of the
beneficial effects of increasing density on both reproduction and sur-
vival rates. For predator-prey interactions, Freedman and Wolkowicz
[6] and Wolkowicz [18] assert that prey group defense may cause prey
fitness to increase with increasing prey density. Tonkyn [16] suggests a
one-humped fitness curve for phloem-feeding aphids because the flow of
phloem sap increases due to stimulation from an increasing number of
feeding aphids; and this facilitates aphid growth and reproduction up
to a point where aphid crowding begins to adversely affect per capita
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growth. At low density, certain tree species such as oak and maple
benefit from the presence of additional trees which provide protection
and improved soil conditions; but ultimately individual reproduction
and survival decrease at increasingly higher densities. We refer to a
species as a climax species if its fitness monotonically increases up to
a maximum value and then monotonically decreases as a function of
weighted total density. For this study we assume that each fitness is
either pioneer or climax.

To obtain Lotka-Volterra systems from (1), we take each fi to be a
linear pioneer fitness of the form

(2) fi(yi) = ri − yi.

Since yi =
∑n

j=1 cijxj , if cij > 0 then the j-th population competes
with the i-th population; and if cij < 0 then the j-th population
cooperates with the i-th population. Ricker [13] concludes that certain
fish populations have exponential pioneer fitnesses

(3) f(y) = er(1−y) − a.

Hassell and Comins [9] study pioneer fitnesses of the form

(4) f(y) =
r

(1 + by)p
− a.

Cushing [3, 4] in studies of age-structured populations and Selgrade
and Namkoong [14, 15] in a model for forest succession consider climax
fitnesses like

(5) f(y) = yer(1−y) − a.

If fi is a pioneer fitness, then we assume that it has exactly one
positive zero, i.e., there is exactly one value zi > 0 so that fi(zi) = 0.
Hence the xi-isocline is the hyperplane zi =

∑n
j=1 cijxj . Also, we

assume this zero is nondegenerate, i.e., f ′
i(zi) �= 0. We take each climax

fitness to have exactly two positive zeroes which also are nondegenerate.
Thus the isoclines of a climax population are two parallel hyperplanes.
An equilibrium of (1) in the positive orthant occurs precisely where
these hyperplanes intersect. If C = (cij) is the matrix of interaction
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coefficients and z = (z1, . . . , zn) is a vector of zeroes of the fitnesses
then an interior equilibrium E = (e1, . . . , en) is a solution to the system
of linear equations

(6) CE = z.

This equilibrium is isolated if detC �= 0, which we always assume.
The derivative of our vector field F may be expressed in terms of two
diagonal matrices and C as
(7)

DF (x) =

⎡
⎢⎣

f1(y1) 0
. . .

0 fn(yn)

⎤
⎥⎦ +

⎡
⎢⎣

x1f
′
1(y1) 0

. . .
0 xnf ′

n(yn)

⎤
⎥⎦ C.

Note that the first diagonal matrix in (7) vanishes at an equilibrium
E in the interior of the orthant. Hence, formulas for the trace and
determinant of DF (E) are

(8)

trDF (E) =
n∑

i=1

eif
′
i(zi)cii

detDF (E) = detC

n∏
i=1

eif
′
i(zi).

3. Destabilizing E by varying intraspecific crowding. For the
two-dimensional system modelling the interaction of a pioneer x1 and a
climax x2, Selgrade and Namkoong [14, 15] show that a stable E may
lose its stability via Hopf bifurcation. We assume that E is the interior
equilibrium determined by the smaller zero z2 of the climax fitness f2

and so f ′
2(z2) > 0. Also we assume that there is intraspecific crowding

determined by cii > 0, i = 1, 2. From (8) it follows that

(9) trDF (E) = e1f
′
1(z1)c11 + e2f

′
2(z2)c22

where the first term on the right is negative and the second is positive.
Although ei and zi, i = 1, 2, depend on c11 and c22, it may be possible to
increase trDF (E) by decreasing c11 or increasing c22. In fact, Selgrade
and Namkoong [14] show that if detC < 0 a stable equilibrium E may
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become unstable via Hopf bifurcation if c22 is fixed and the parameter
c11 decreases or if c11 is fixed and the parameter c22 increases. Selgrade
and Namkoong [15] derive a formula for the stability coefficient of
the resulting periodic solution which may easily be applied to many
examples of biological interest. For instance, for the linear pioneer (2)
and the exponential climax (5), the Hopf periodic solution is always
locally, asymptotically stable.

Similar behavior may be observed in the following three-dimensional
model with two linear pioneers and an exponential climax population:
(10)

dx1/dt = x1[4 − 4(c11x1 + (3/2)x2 + x3)]
dx2/dt = x2[3/4 − ((3/2)x2 + x3)]

dx3/dt = x3[−6+6(x1+(4/3)x2+(1/2)x3)e1/2−(x1+4x2/3+x3/2)/2].

As c11 decreases through c11
∼= .42, a Hopf bifurcation occurs at

E ∼= (.595, .051, .673) resulting in a stable periodic solution. If we
numerically track this periodic solution as c11 decreases through .23,
we see that it is replaced by an attracting periodic solution of roughly
twice its period lying in the box .04 < x1 < 2.5, .07 < x2 < .25, and
.04 < x3 < 1.41. This occurs due to a period-doubling bifurcation of
the return map. Continuing to decrease c11 results in a period-doubling
cascade and the onset of an apparent chaotic attractor when c11 < .2.
This system exhibits bistable dynamics because there is always a locally
stable climax equilibrium at (0, 0, 7.0257).

Thus decreasing the pioneer intraspecific crowding parameter c11

causes destabilization of a stable equilibrium and, in general, causes
an attractor to become more complicated dynamically. From a bio-
logical perspective, reversing this reduction in pioneer crowding may
be accomplished by introducing more of the pioneer population into
the ecosystem. In fact, numerical studies indicate the constant rate or
periodic rate planting or seeding of the pioneer returns the system to a
“near-equilibrium” condition. We investigate the mathematical details
of this strategy in the next three sections.

On the other hand, increasing the climax intraspecific crowding pa-
rameter c22 results in destabilization of the equilibrium. This increase
in climax crowding may be reversed by removing some of the climax
population from the ecosystem, i.e., by harvesting the climax. The
numerical work of Monteiro [12] shows that this reversal of the dy-
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namics does occur in two dimensions for constant rate or periodic rate
harvesting.

4. Planting the pioneer. In this section we compare the asymp-
totic behavior of the two-dimensional pioneer-climax model with con-
stant rate planting, equation (CRP), to the model with periodic rate
planting, equation (PRP). An ecologist might try to manage a pioneer-
climax ecosystem with either of these strategies. A periodic rate plant-
ing regime may be necessitated by seasonal variations in the ecosystem.
We take a cosine function as the periodic rate although our arguments
will work for any finite linear combination of cosines and sines of the
same period. We intend to apply our results to the vector field of (1);
however, Theorem 1 requires only that F be a two-dimensional, C1

vector field. Our two systems of differential equations have the forms:

(PRP) ẋ = F (x) +
[
A + B cos

2πt

p
, 0

]∗

(CRP) ż = F (z) + [A, 0]∗.

Here x, z ∈ R2 and A, B, and p are positive constants. Also, “·” denotes
time derivative and “∗” denotes transpose since vectors are considered
as columns. The constant A in both systems is the same, because we
wish to compare the dynamical behavior of the time-dependent system
(PRP) near an attractor with that of the autonomous system (CRP)
in which the time-periodic term is replaced by its integral average over
the period p. Note that

(11) A =
1
p

∫ p

0

(
A + B cos

2πt

p

)
dt.

In this study we restrict our attention to the case where the attractor
for (CRP) is an equilibrium.

Assume that E is a hyperbolic equilibrium of (CRP) which is locally,
asymptotically stable. Thus the eigenvalues λ1 and λ2 of DF (E) have
negative real parts, and one of the following three cases applies:

(i) If λ2 ≤ λ1 < 0 and DF (E) is similar to a diagonal matrix,
then there is an N > 0 so that |etDF (E)| ≤ Neσt for all t ≥ 0 and all
σ, λ1 ≤ σ < 0.
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(ii) If λ = α ± βi for α < 0, then there is an N > 0 so that
|etDF (E)| ≤ Neσt for all t ≥ 0 and all σ, α ≤ σ < 0.

(iii) If λ1 = λ2 = λ < 0 and DF (E) is similar to the matrix
(

λ 1

0 λ

)
,

then there is an N > 0 so that |etDF (E)| ≤ Neσt for all t ≥ 0 and all
σ, λ < σ < 0.

Our first result compares solutions to (PRP) and (CRP) in a neigh-
borhood of E. This theorem is similar to classical averaging results (see
Hale [8] or Guckenheimer and Holmes [7]) but our error bound between
solutions is O(pB) instead of O(B) for fixed p or O(p) for fixed B, as
in the classical case. This allows us to compare attractors for a large
set in the (p, B) parameter space. For example, if (CRP) has a stable
equilibrium E then, for fixed p, (PRP) has a unique stable periodic
solution near E if B is small enough (see Guckenheimer and Holmes
[7, page 168]). This periodic attractor is clearly visible in numerical
experiments. For larger values of B but for pB still relatively small,
we observe more complicated attractors close to E, e.g., a period 2p
attractor or an apparent chaotic attractor. In some numerical exper-
iments with our pioneer-climax systems, where the coordinates of E
are less than one (i.e., population densities are on a very small scale),
we have observed this attractor for a product pB as large as two. The
precise statement of our local result is as follows:

Theorem 1. Let F be a C1 vector field on R2 and E be a stable
hyperbolic equilibrium of (CRP). Then there exist positive constants
ε, N, K, and γ and two convex balls S(E) centered at E of radii ε and
δ(ε) < ε, so that if pB is sufficiently small and if x(0), z(0) ∈ Sδ(ε)(E)
then, for all t ≥ 0, x(t), z(t) ∈ Sε(E) and

(12) |x(t) − z(t)| ≤ KpB + Ne−γt|x(0) − z(0)|.

In addition, a more global result may be obtained with the same
hypotheses on F and E and the same notation as Theorem 1.

Theorem 2. Let z(0) be in the domain of attraction of E, i.e.,
z(t) → E as t → ∞. Then there is a T > 0 so that for B small enough
there is a neighborhood G of z(0) such that if x(0) ∈ G then z(T ),
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x(T ) ∈ Sδ(E). And if pB is sufficiently small then, for all t ≥ T ,

(13) |x(t) − z(t)| ≤ KpB + Ne−γ(t−T )|x(T ) − z(T )|.

Theorem 2 follows easily from Theorem 1 but is useful for our ap-
plication because we wish to make conclusions about the asymptotic
behavior of initial conditions for (PRP) by analyzing asymptotic be-
havior for (CRP). The proofs for these results are contained in Section
6.

5. Using planting to restabilize the system. Periodic rate
planting (PRP) is more realistic biologically than constant rate planting
(CRP), but (CRP) is easier to analyze mathematically since it is
autonomous. The theorems in the previous section imply that if (CRP)
has a stable equilibrium then (PRP) has an attractor nearby if planting
amplitude and period are in appropriate ranges. In this section we
obtain conditions under which a constant planting rate returns the
pioneer-climax system to stable equilibrium.

Recall that the pioneer-climax system (1) undergoes Hopf bifurcation
as c11 decreases through a critical value ĉ11. We take F in (CRP) to
be the pioneer-climax vector field, and we consider (CRP) to be a
system with two parameters, c11 and A. For the cases of a linear or an
exponential pioneer, we study the curve in parameter space where Hopf
bifurcation occurs near the point (c11, A) = (ĉ11, 0). We give conditions
implying that this curve is the graph of A as a decreasing function of
c11 as in Figure 1. Hence for c11 < ĉ11 and no planting (A = 0),
the system has an unstable equilibrium and a stable periodic solution.
Fixing such a c11 and planting at a rate A above the bifurcation curve
will return the system to one with a stable equilibrium. Periodic rate
planting with this average A and appropriate amplitude B and period
p will return the system to “near-equilibrium” behavior.

We assume that the linear pioneer has fitness f1 given by (2) and the
climax fitness is given by (5), i.e., for 0 < r1 and 0 < r2 < 1

f1(y1) = r1 − y1 and f2(y2) = y2e
r2(1−y2) − 1.
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FIGURE 1. Bifurcation curve for Hopf bifurcation.

The equilibrium E of (CRP) where a Hopf bifurcation may occur solves
the nonlinear system of equations:

(14)
r1 − (c11x1 + c12x2) = −A/x1

c21x1 + c22x2 = 1.

The trace of DF (E) is given by

(15) tr DF (E) = c11x1f
′
1(y1) + c22x2f

′
2(y2) − (A/x1).

To determine where the Hopf bifurcation occurs we set trDF (E) equal
to zero in (15) and that along with (14) provide three equations in the
four unknowns x1, x2, A, and c11. We use the second equation in (14)
to eliminate x2 and obtain two equations in the unknowns x1, A, and
c11. Specifically, the first equation in (14) determines the function

G(x1, A, c11) = x1(r1 − c11x1 + (c12c21x1 − c12)/c22) + A

and (15) gives

H(x1, A, c11) = c11x
2
1 + c21(1 − r2)x2

1 − (1 − r2)x1 + A.
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The set of points where Hopf bifurcation occurs is the solution set
to (G, H) = (0, 0). We appeal to the implicit function theorem to
find conditions when the equation (G, H) = (0, 0) determines x1 and
A as functions of c11 near the point Q = (x1, A, c11) = ((r1c22 −
c12)/detC, 0, ĉ11). In particular, we want A to be a decreasing function
of c11 as in Figure 1. The appropriate derivative at Q is given by:

∂(G, H)
∂(x1, A)

(Q) =

[ −(r1c22 − c12)
c22

1
(1 − r2) 1

]
.

The implicit function theorem applies if

(16) det
∂(G, H)
∂(x1, A)

(Q) =
c12 − r1c22 + (r2 − 1)c22

c22
�= 0.

As mentioned in Section 3, detC < 0 and so c12−r1c22 > 0 since x1 > 0.
Hence, (16) is positive if r2 ≈ 1. To determine the monotonicity of A
as a function of c11, we compute

(17)
∂(G, H)
∂(x1, c11)

(Q) =

[ −(r1c22 − c12)
c22

−x2
1

1 − r2 x2
1

]
.

The negative determinant of (17) divided by (16) gives

(18)
dA

dc11
=

−x2
1[c12 − r1c22 + (1 − r2)c22]

[c12 − r1c22 + (r2 − 1)c22]

where x1 = (r1c22 − c12)/detC. Thus sufficient conditions for A to
be a decreasing function of c11 near (A, c11) = (0, ĉ11) are that (16) is
nonzero and (18) is negative. Such a system with a linear pioneer may
be returned to near-equilibrium behavior by constant rate planting or
periodic rate planting.

The same procedure may be applied to the case where the pioneer
population has an exponential fitness of the form

f1(y1) = er1−y1 − 1.

The functions which determine the bifurcation set are

G(x1, A, c11) = x1[−1 + e(r1−c11x1+(c12c21x1−c12)/c22)] + A

H(x1, A, c11) = c11x
2
1 + c21(1 − r2)x2

1 − c11Ax1 − (1 − r2)x1 + A.
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We need the following Jacobian to be nonzero:

(19) det
∂(G, H)
∂(x1, A)

(Q) =
(1 − c11x1)(c12 − r1c22) + (r2 − 1)c22

c22

where x1 = (r1c22 − c12)/detC. And then we compute

(20)
dA

dc11
=

−x2
1[c12 − r1c22 + (1 − r2)c22]

(1 − c11x1)(c12 − r1c22) + (r2 − 1)c22
.

So sufficient conditions for the bifurcation curve to determine A as a
decreasing function of c11 are that (19) is nonzero and (20) is negative.

6. Proofs of theorems. In this section we prove Theorem 1 and
Theorem 2 which are stated in Section 4. For our argument we need
to compute an upper bound for

I ≡
∣∣∣∣
∫ t

T

eDF (E)(t−τ)

[
B cos

2πτ

p
, 0

]∗
dτ

∣∣∣∣.
This is obtained by writing eDF (E)(t−τ) in terms of its real canonical
form and integrating term by term. A bound is found for the norm of
the resulting matrix. The integration is done first to take advantage of
the oscillatory nature of cos(2πτ/p). We treat the following three cases
as in Section 4:

(i) If λ2 ≤ λ1 < 0 and DF (E) is similar to a diagonal matrix, then
there is an M > 0 so that for all t ≥ T

I ≤ MpB(1 + eλ1(t−T )).

(ii) If λ = α ± βi, then there is an M > 0 so that for all t ≥ T ,

I ≤ MpB(1 + eα(t−T )).

(iii) If λ1 = λ2 = λ < 0 and DF (E) is similar to
(

λ 1

0 λ

)
, then there

is an M > 0 so that for all t ≥ T

I ≤ MpB(1 + eλ(t−T ) + (t − T )eλ(t−T )).



PIONEER-CLIMAX MODELS 305

The constant M depends on DF (E) and on the maximum value of
several bounded rational functions of p.

To estimate the difference between a solution to (PRP) and to (CRP)
we begin by subtracting (CRP) from (PRP) and introducing DF (E)
on the right side to get:

(21)
ẋ − ż = DF (E)(x − z) − DF (E)(x − z)

+ F (x) − F (z) +
[
B cos

2πt

p
, 0

]∗
.

For each t we use the mean value theorem to write

(22) F (x) − F (z) =
∫ 1

0

DF (w(s, t))(x− z) ds

where w(s, t) belongs to the line segment from z(t) to x(t). Later we
guarantee that this line segment is in an appropriate neighborhood of
E. With (22), (21) becomes

(23)
ẋ − ż = DF (E)(x − z) +

∫ 1

0

[DF (w(s, t))

− DF (E)](x− z) ds +
[
B cos

2πt

p
, 0

]∗
.

To simplify notation let u = x − z and D = DF (E). Then we have

(24) u̇ − Du =
∫ 1

0

[DF (w(s, t)) − D]u ds +
[
B cos

2πt

p
, 0

]∗
.

Multiplying both sides by e−Dt and integrating from T to any t ≥ T ,
we get
(25)

u(t) = eD(t−T )u(T ) +
∫ t

T

eD(t−τ)

∫ 1

0

[DF (w(s, τ)) − D]u(τ ) ds dτ

+
∫ t

T

eD(t−τ)

[
B cos

2πτ

p
, 0

]∗
dτ.
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Taking norms in (25) gives the inequality
(26)

|u(t)| ≤ |eD(t−T )||u(T )| +
∫ t

T

|eD(t−τ)|
∫ 1

0

|DF (w(s, τ))−D||u(τ )| ds dτ

+
∣∣∣∣
∫ t

T

eD(t−τ)

[
B cos

2πτ

p
, 0

]∗
dτ

∣∣∣∣.

Let ζ = λ1, α, or λ depending on case (i), (ii) or (iii), respectively; and
use the bounds for the last integral in (26) obtained for these cases. Also
apply the bound |eDt| ≤ Neσt obtained for the three cases in Section
4. Finally, assume that there is an L > 0 so that for all s ∈ [0, 1] and
τ ≥ T , we have

(27) |DF (w(s, τ))− D| ≤ L.

Later we show that it is possible to find such an L. With these
conditions we conclude from (26) that

(28)
|u(t)| ≤ Neσ(t−T )|u(T )| +

∫ t

T

Neσ(t−τ)L|u(τ )| dτ

+ MpB(1 + eζ(t−T ) + (t − T )eζ(t−T )).

Note that the term (t − T )eζ(t−T ) in (28) appears only in case (iii).
Multiply both sides of (28) by e−σt and apply the time-dependent
version of Gronwall’s inequality to get

(29)
e−σt|u(t)| ≤ Ne−σT |u(T )| + e−σtMpB(1 + eζ(t−T ) + (t − T )eζ(t−T ))

+
∫ t

T

[Ne−σT |u(T )| + e−σsMpB(1 + eζ(s−T )

+ (s − T )eζ(s−T ))]NLeNL(t−s) ds.

We compute the integrals on the right of (29), multiply both sides by
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eσt, and rearrange terms to get

(30)

|u(t)| ≤ MpB

[
1 − NL

σ + NL

]

+ e(σ+NL)(t−T )

[
N |u(T )| + NLMpB

σ + NL
+

NLMpB

σ + NL − ζ

]

+ MpBeζ(t−T )

[
1 − NL

σ + NL − ζ

]

+ MpBeζ(t−T )(t − T )
[
1 − NL

σ + NL − ζ

]

+
MpBNL

(σ + NL − ζ)

[
e(σ+NL)(t−T )

σ + NL − ζ
− eζ(t−T )

σ + NL − ζ

]
.

Note that the last four terms in (30) are only present in case (iii). Fix
σ = ζ in cases (i) and (ii) and ζ < σ < 0 for case (iii). Hence σ−ζ ≥ 0.
We may take L small enough so that σ + 2NL < 0. As we see later,
this choice is possible because of the continuity of DF (see (27)). It
follows that

max
t≥T

[
e(σ+NL)(t−T )

σ + NL − ζ
− eζ(t−T )

σ + NL − ζ

]
≤ −1

ζ

and

max
t≥T

(t − T )eζ(t−T )

[
1 − NL

σ + NL − ζ

]
≤ −1

ζe
.

Hence (30) leads to

(31) |u(t)| ≤ MpB

(
4 − 1

ζ
− 1

ζe

)
+ N |u(T )|e(σ+NL)(t−T ).

Taking K = M(4 − 1/ζ − 1/(ζe)) and −γ = σ + NL gives (13) in
Theorem 2:

(32) |u(t)| ≤ KpB + Ne−γ(t−T )|u(T )|.

This inequality is valid provided we may choose L as claimed. Note
that K and N effectively depend on DF (E).
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Proof of Theorem 1. Fix L so that σ+2NL < 0. Since F is C1, there
is an ε, 0 < ε < 1, so that if w ∈ Sε(E) ≡ {x : |x − E| < ε}, then

|DF (w) − DF (E)| < L.

Take δ, 0 < δ < ε, such that

(a) 2δN < ε/6, and

(b) if z(0) ∈ Sδ(E) then z(t) ∈ Sε/3(E) for all t ≥ 0.

Claim. If z(0), x(0) ∈ Sδ(E) and if pB is sufficiently small, then
x(t) ∈ Sε(E) for all t ≥ 0 and (32) holds with T = 0.

Proof of Claim. Assume not, i.e., there is a first time t̂ such that
|x(t̂) − E| = ε. Then for all t < t̂, x(t) ∈ Sε(E) and the line segment
from z(t) to x(t) is in Sε(E) as needed for (22) and (23). By our choice
of ε, |DF (w(s, τ))−DF (E)| < L for all τ < t̂ which gives (27). Hence
(28) is valid with T = 0 and so is (32). Thus, for all t < t̂,

(33)
|x(t) − z(t)| = |u(t)| ≤ KpB + N |x(0) − z(0)|e−γt

≤ KpB + 2δN < ε/3.

The last inequality in (33) holds if pB is less than ε/(6K). By our
choice of δ it follows that for all t < t̂

|x(t) − E| ≤ |x(t) − z(t)| + |z(t) − E| < ε/3 + ε/3.

Hence |x(t̂)−E| ≤ 2ε/3 which is a contradiction. This proves the claim
and Theorem 1.

Proof of Theorem 2. Fix z(0) so that z(t) → E as t → ∞. Then there
is a T > 0 so that z(T ) ∈ Sδ(E). By continuity in initial conditions
and in parameters there is a neighborhood G of z(0) so that for all
x(0) ∈ G, x(T ) ∈ Sδ(E). The preceding argument now applies and
results in (32). This proves Theorem 2.
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