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ON THE EXISTENCE OF MULTIPLE SOLUTIONS
OF A BOUNDARY VALUE PROBLEM ARISING
FROM FLOWS IN FLOATING CAVITIES
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. Existence of multiple solutions of the similar-
ity equation f'" +Q[Aff" — f'?] = B satisfying f(0) = f(1) =
f""(0) +1 = f""(1) = 0 is proved using the shooting method.
Here Q, A and B are parameters, Q > 0 and A = 1.

1. Introduction. The third order nonlinear differential equation

"+ QIAFf = (=8, f=fm), 0<n<1

with boundary condition f(0) = f(1) = (1) = f”(0) + 1 = 0, where
Q >0, A >0, and 8 are parameters, governs the velocity of boundary
layer flow in a low Prandtl number fluid zone having the shape either
of rectangular (A = 1) or a circular disk (4 = 2) [1, 2]. Existence of
solutions to the boundary value problem has been proved in [4] and [5]
for the following cases:

(1) for given A > 0 and for S € [0, 1], there exists at least one @ > 0
for which the equation has at least one convex solution;

(2) Given Q > 0 and A € [1, 2], there exists at least one S for which
the equation has a convex solution. Moreover, 8 < 0 if @ is sufficiently
large;

(3) If A =2, there exists a unique solution for every @ > 0;
(4) If A =1, there may exist multiple solutions for some @ > 0.

In this paper we improve the result in (4). We present a proof of the
existence of multiple solutions for A = 1 as long as @ is sufficiently
large, i.e., if A = 1, then there exists a number @y > 0 such that
there are at least three solutions for any given @ > @o. Since @
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is proportional to the Reynolds number, the result means that, for
floating rectangular cavities, there always exist two-cell and three-cell
flows for sufficiently larger Reynolds numbers.

The method of proof is a topological shooting argument based on a
technique of McLeod and Serrin [6]. As in our previous work [5], we
differentiate the third order equation with respect to the independent
variable 7, and let g(n) = Qf(1 — n). Then, the given equation takes
the following form:

"

(1) g(iv) — gg/// _ g/g

and the boundary conditions become

The main result in this paper is the following theorem.

Theorem. There exists a Qg > 0 such that for Q > Qq, the boundary
value problem (1)—(1a)—(1b) has at least three solutions.

2. Proof of theorem. The technique employed in the proof is the
shooting argument. Consider the initial value problem consisting of
(1)—(1la) and

(1c) go)y=x 4"0)=pu,

where A and p are parameters which are to be found so that the solution
g=g9(n) =gl A\, pn) of (1)~(1a)—(1c) also satisfies condition (1b). For
simplicity, we will usually suppress the dependence of g on pairs of
(A, ) in the context. Before we start shooting, we list the lemma that
was proved in [5] for completeness.

Lemma 1. Any solution g(n; \, p) of (1)~(1a)—(1c) satisfies g™) <0
for all n > 0 for which it exists, and if u # 0, then g (m; \, ) < 0
for all n > 0 for which it exists.
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Proof of Lemma 1. Differentiating (1) with respect to 7, we obtain

(2) g™ = gg\™) — g2,

Multiplying (2) by an integrating factor exp(— fon g ds) and integrating
the resulting equation, we get

n t
(3 R R
0

which implies the lemma. ]

Now we start the shooting argument by varying A and u. To do this,
we define two subsets of the Au-plane as follows

P={(\u)]|g(l;A u) <0 or g(n; A p) blows up before n = 1},
S={(\n)|g(1; A pn) > 0}.

Here by blow up we mean the solution becomes unbounded. According
to Lemma 1, solutions of (1) can only blow up by tending to —oco. By
the definitions of P and S and the theorem on continuous dependence
of solutions on initial values, it is clear that P and S are open subsets on
the A\p-plane. Then the following lemma is obtained using the existence
and uniqueness of solutions to the initial value problem (1)—(1a)—(1c).

Lemma 2. The positive A axis, {(A\, 1) | A > 0, u = 0} is contained
in S and the negative A azis, {(\, 1) | A < 0, = 0} is contained in P.

Proof of Lemma 2. If px = 0, then g(n) = An is the unique solution,
which implies the result. a

By Lemma 1 we see that if A < 0 and g < 0, then ¢’ < 0 for
n > 0 so long as the solution exists. Therefore, in order to hit the
boundary condition (1b), we need only consider the following three
cases: (i) A > 0and p <05 (ii) A > 0 and g > 0; (iii) A < 0 and p > 0.
To complete the proof of the theorem, we shall prove for each case that
g'(1) =0, g"(1) <0, and lim) |, infg" (1) = —oo.

A. Ezistence of solutions with ¢'(0) > 0 and ¢""(0) < 0.
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Lemma 3. For each A > 0, there exists a u(A) < 0 such that if
< (), then (\,u) € P.

Proof of Lemma 3. We first note that any solution of (1) can be
differentiated with respect to the independent variable 7 infinitely many
times as long as it exists. Applying Taylor’s theorem to the solution
of (1)—(1a)—(1c), one sees that g(n) < An + un®/3! for n > 0 as long as
g(n) exists. Therefore, for given A > 0 there must be a p(\) such that
if 4 < p(N), then either g(1) < 0 or g(n) blows up before n = 1. O

Let 3 be the fourth quadrant of Au-plane, i.e., X1 = {(A\,u) | A >
0 and p < 0}. By the continuous dependence of solutions on initial
values, we see from Lemma 2 that the set Ry = SNX; # @. It
also follows from Lemma 3 that the set P, = PN Xy # @. Since
P; and R; are disjoint, open subsets of i, it follows that the set
[21 — (Py U Ry)] is not empty. Furthermore, it follows from the result
in [4] that there exists a continuum §; in ¥; such that g(1; A, p) =0
for any pair (A, ) € ;. From Lemmas 2 and 3, in fact, we see that
Q= {(A\pu) | A>0,g(1;\ p) = 0}. Since ¢’ (1; A, i) is a continuous
function of (A, 1) on €y, the existence of this convex solution for any
Q > 0 will follow if we show that limsup,_,¢"(1; A, ) = 0, and
liminfy 4o " (13 A, ) = —oo for (A, p) is in ;. These limits are
established in the next two lemmas.

Lemma 4. limsup,_,,¢"(1; A\, ) =0 for (A, ) in Q4.

Proof of Lemma 4. From Lemma 1 and Taylor’s theorem, g(1; Ap) <
A+ p/3l Thus 4 — 0 as A — 0. On the other hand, ¢''(1;0,0) = 0.
Again, by the continuity of solutions in (), ), we see that |g"(1; A, )|
is small if )\ is sufficiently small if (A, u) € Q. o

Lemma 5. liminf)_, o ¢"(1; A\, ) = —oo while (A, p) is in Q.

Proof of Lemma 5. We prove the lemma by contradiction. Assume
it is false. Then there exists a sequence of {\;} such that A; — co and
9" (1; \i, i) is bounded as i — oo. Since ¢g"" < p; < 0 for all 7 > 1,
it follows that g”(1) < ¢"(n) < 0 for n € (0,1). Hence, g (n; \i, ;) is
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bounded uniformly for 7 > 1. Therefore, there exists a constant & > 0
such that

—k < g" (n; Xiy i) <0

for all n € (0,1) and for all ¢ > 1. Integrating the inequality twice
shows that

k
(4) —5772 + Xin < g(m; Xis ps),

which implies that g(1;\;, ;) > 0 for sufficiently large A;. This
contradicts the fact that (A\;, ;) € Q. o

B. Euzistence of solutions with ¢'(0) > 0 and ¢"'(0) > 0. Let X2
denote the first quadrant of Ap-plane, i.e., ¥o = {(\, ) | A > 0 and p >
0}. The following lemma shows that both sets (X2 N P) and (X2 N S)
are nonempty.

Lemma 6. For any given A > 0 there exist two numbers by = by (\) >
0 and by = ba(A) > 0 such that if u € (0,b1) then (A, pn) € S, while if
p > by then (A, u) € P.

Proof of Lemma 6. Since g(n; A,0) = An, we see that the continuous
dependence of solutions on initial values implies the existence of b; and
that (A, p) € S if p < bi. To prove the existence of by we first prove
that if A > 0 is given and if p is sufficiently large, then there is an
N = Nu(p) in (0,1) such that ¢’ (n,) = p/2. Since ¢g"'(0) = p > p/2,
it follows that g"’(n) > w/2 on the interval [0,7,). Then, as long as

g" > p/2,

g > %n, g>0, ¢gW =g (") <—(g")?< —%nz.

Integrating the last inequality ¢(*) < —(u?/4)n? twice yields the
conclusion that, as long as g"" > u/2,

(5) 9" <p-— “—2774
48"
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Therefore, g’ becomes 0 before n = (24/u)*/%; hence, 1, < (24/u)*/*.
This implies 1, — 0 as u — co. We repeatedly integrate (5) to obtain

2

K5

(6) 9" () < Wil = S5 < il
u

(7) 9'(nu) < X+ 5
and

B o3
(8) 9(1) < N+
as long as g > /2. Since g") < 0 as long as g > 0, the derivative g(**)

is decreasing. By the Mean Value Theorem applied to g"’’, there exists

a ¢ € (0,n,) such that g™ (¢)n, = —pu/2. Thus ¢ (n,) < g™ (¢),
and it follows that

1/4
(iv) _K __H(HE
0 $ ) << -5 (%)

Since ¢g(**) continues to decrease until g = 0, integrating (9) four times
over the interval (1,,7n) produces the inequality

p p
9(n) < X + G + <>\ + 5775) (n =)
Pl o oy2 P )38
(10) + D) (m—nu)” + 12(77 M)
5/4

14 4
- W(n—m) .

which is valid as long as g > 0. Therefore, either g(n) blows up before
n =1or g(1) < 0 for all values of p that are sufficiently large compared
with given A. The proof of Lemma 6 is therefore completed. o

Again, by the result in [6], there exists a continuum A; in ¥; —(PUS)
such that Ay = {(A, ) | A > 0, > 0 and g(1; A\, u) = 0}. Since
g(1; A, i) is a continuous function of (A, u) on Ay, it suffices to prove
that liminf ¢ (1; A\, u) = —o0 as A — oo, in order to get the existence
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of solutions of this kind for sufficiently large (). This is given in the
next two lemmas.

Lemma 7. For any M >0, sup{g” (1; A\, ) | X € [0, M], and (\, ) €
Al} < 0.

Proof of Lemma 7. We first prove that there is a p > 0 such that

the set {(\, 1) | 0 < /A2 4+u2 < p, A > 0 and g > 0} lies in set S.
Expanding a solution g(n; A, 1) in a Taylor series in (A, ) around (0,0),
one sees the lower order terms are

(11) g(ms A, 1) = )+ (MA+{d1(n)p®+d2(MpA+ds(MA2}+...

where ¢(n)=0g(n, A\, 1) /Opt|a=0,u=0 and ¥(n) =0g(n, A, 1) /OX|x=0,u=o0-
Noticing that ¢(n) satisfies

¢(iv) — ¢g/// + g¢m o ¢Igll - g/¢//,
$(0) = ¢'(0) =¢"(0) =0,  ¢"(0) =1,

one finds that ¢(n) = 7*/6. Similarly, ¥(n) = n. Therefore, if A > 0
and p > 0 are sufficiently small, then g(m; A, 1) &~ (73/6)u + nA; hence,
g(L; A, 1) ~ (1/6)u+ A > 0. This implies that if A > 0 is small, then the
corresponding u for (A, 1) € Ay cannot be too small. Therefore, there
is a p > 0 such that if A2+ 2 < p, A\ > 0, and p > 0, then (\, u) € Ay,
and hence inf{u | (\,n) € Ay for all XA € [0, M]} > 0 for any fixed
M > 0. Since ¢" (1, A, i) is continuous in (A, ) on [0, M] x [p1, pe] for
any ps > w1 > 0, we find that Sup {g"(1; A, p) | A € [0, M],(A\, p) €
Al} < 0. m]

Lemma 8. liminfy_, ;o ¢"(1; A, u) = —o0 provided (A, p) is in A;.

Proof of Lemma 8. Introduce a new function h(n) = g(n)/A and set
e =1/A. Then

(12) &.h(iv) = BR" — h/h”,

together with h(0) = 0, A'(0) = 1, A”(0) = 0 and A" (0) = ep. It
has been proved that, for each ¢ > 0, there is at least one positive
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p such that h(l;e,u) = 0. Since g = h'"/e, it suffices to prove
liminf. ,oh"(1;e,u) < —a for (1/e, 1) € A; and some constant o > 0
in order to prove the lemma. In other words, we shall prove that there
exists a constant o > 0 such that h”(1) < —a« for infinitely many &’s.
In fact, we can prove h”(1) < —1 for all € > 0, which, of course, implies
the lemma. Since ¢’(0) > 0 and ¢’"’(0) > 0, we claim that there is no
zero point of g in (0,1). If it is not so, then let 79 < 1 be the first zero
of g. Thus, ¢’, ¢”, and ¢"” must be nonpositive, and therefore g < 0
for 7 > mp. This shows that n =1 is the only zero of h on (0,1]. From
the profile of h(n) it is apparent that there exist points two n3 < 72
with h"'(n3) = 0, A" (n3) > 0, h'(n3) > 1, "'(n2) = 0, "' (n2) < 0, and
R'(n2) > 1. Since h(1) = 0 and h(*) < 0, we see that there is a point
n1 > ne with A'(n;) = 0. Noting that h” is decreasing and concave
down for 1 > 1, we find

h' —hn
B < (771) (772) <1
m—n2

for n > ny.
Therefore, h”(1) < —1 and the lemma is proved. o

C. Ezistence of solutions with g'(0) < 0, g"""(0) > 0.

Lemma 9. If A< 0 and p > 0, then g > 0 as long as g’ < 0.

Proof of Lemma 9. If the lemma is false, then there is a first zero
n3 of g" at which ¢” > 0 and ¢’ < 0. From equation (1), we see that
g = —¢"g’ > 0. This contradicts Lemma 1. O

Lemma 10. Let ¢(n; \, p) = 0g(n, A\, 1) /Ou and X < 0, u > 0. Then
¢,¢" and ¢" are all positive as long as g’ < 0.

Proof of Lemma 10. Integration of (1) gives
(20) gIII _ gg// _ g/2 + )\2 + p.
Differentiating (20) with respect to u leads to

(21) ¢" =1-2¢'g'+ ¢g" + g¢,
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with ¢(0) = ¢/(0) = ¢"(0) = 0, ¢'(0) = 1. Initially, ¢, ¢',¢", and
¢"" are all positive. Suppose there is a first zero of ¢", say n.. Then
#""(n2) < 0. On the other hand,

(22) ¢" =1-2¢'g'+ ¢g",

n

at 2. By Lemma 9, we see that if ¢’ < 0, then ¢’ > 0 and hence
g" > 0. This yields ¢" > 0 (¢’ > 0,4 > 0), a contradiction. Therefore,
¢" > 0 and hence ¢ and ¢’ are positive as long as g’ < 0. O

Taking a fixed A < 0, we consider the solution for p > 0. If p is small,
then g(n) = An, ¢'(n) & A. Then Lemmas 9 and 10 imply ¢'(1; A, ) >0
for small p > 0.

Lemma 11. If p is sufficiently large, then g'(n) > 0 and g(n) > 0
for some n € (0,1).

Proof of Lemma 11. On some initial interval, ¢’ < 0 and, as long as
this inequality persists, we have

(23) A<g <O, M<g<0, ¢'>0, and g >\g".

Repeatedly integrating the last inequality in (23) shows that

An An
ue ue
g" > pe/, g > 2 +2A, and g> e + An.
The last two inequalities imply the lemma. u]

From Lemma 11, we see that, for any given A < 0 there is a
p = p1(A) > 0 such that g(m; A, ) > 0 for some n € (0,1) provided
p > p1. Recall too that if p = 0, then g(1) < 0, so by the continuity
of the solution in x4, we see g(1) < 0 for small x> 0. Therefore, there
exists at least one p > 0 such that g(1) = 0 and ¢"(1) > 0. A similar
argument shows that there is a continuum in the Ap-plane such that
g(L; A, u) = 0 for (A, p) in the continuum. Denote the intersection of
such a continuum and Y3 = {(A\, ) | A < 0,u > 0} by As. In fact,
any pair (\,p) in Aj gives a concave up solution, which is proved in
Lemma 12.
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Lemma 12. If g < 0 on [0,1] solves equation (1)—(1la)—(1c) with
A <0 and p > 0, then g’ has exactly one zero and g" > 0 on (0,1).

Proof of Lemma 12. It is observed from equation (1) that ¢" > 0
when ¢’ = 0 and g” > 0. Then g” > 0 before ¢’ = 0. Noting ¢g"”’ reaches
zero before g” does, we see that g’ > 0 wherever g’ = 0 with ¢’ > 0
and g < 0. Therefore, ¢” < 0 and ¢’ has only one zero on (0,1). O

Remark. The equation only reflects the case @ > 0 from the original
model. However, it is mathematically interesting to know whether any
solution exists for @ < 0. It is easy to see that limsup g”(1; A, u) — 0
as A — 0 for (A\,p) € As from the continuous dependence of the
solution on the initial conditions. This means that there exists at least
a constant, say (1, such that solutions exist for @ € (—Q1,0). Also,
the solutions found in this region are concave up. It is a conjecture
that sup g”(1; A\, u) < co as A — —oo, which was found by Wang and
Chen numerically [7].

Finally, we consider the existence of solutions with two wiggles for
A <0.

Recall the function ¢(n; A\, u) = g(n, A, ) /Op and that if A = p =0,
g = 0, then ¢(n;0,0) = 3/6. Hence ¢(1;0,0) = 1/2 and ¢(1; \u) > 1/4
in some neighborhood of (0,0). Also, the functions ¢, 9¢/0X and d¢/Ou
are uniformly bounded for n € [0,1] and (A, ) in some neighborhood of
(0,0). Therefore, there are py > 0 and Ay < 0 such that ¢(1, A, u) >0
for (A, 1) € [0, Xo] X [0, uo]. Since g(1; A, ) = 0, we see that g(1, A, ) >
0 if |Xp| is small enough to ensure that u(Xg) < po, Ao < A < 0, and
(X)) < p < po. This proves that S contains an open set bounded below
by u = p1(A) for A <0 and by g =0 for A > 0.

Lemma 13. For each A < 0 there is a ps(\) > 0 such that if
p > ps(A), then (A, p) € P.

Proof of Lemma 13. For large p, as long as g > 0 and ¢’ < /u/2,
it follows from (20) that

(24) pn>g">0, ¢ >1, g>xp and g¢g">p/2+ Aun’.
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If n < 1/(24/|A]), then ¢ > u/4. Integrating the last inequality three
times and using the initial conditions on g, we conclude that either

g=0or g = p/2 before n = 1/24|\|/u. On the other hand, ¢"” < pun,
and hence ¢’ < A + un?/2, so

, 24|\ w
i < ~
(25) g ( 11\ < 9

for large pu. This shows that, for large u, g = 0 before n = /24|A|/ .
Furthermore, ¢ > A\ — /2 4+ pu > p/2 and 0 < ¢’ < 11|A\| at g = 0.
From here the proof that g(1) < 0 proceeds with estimates which are
very similar to those in Lemma 6. O

Applying the result in [6], we see that there is a continuum A4 such
that
Ag={(\p) | A<0,p>0,9(1) =0 and g"(1) < 0}.

The proof of existence of solutions with two wiggles for large @ is
completed by showing that liminf ¢”(1; A, #) = —0co as A = —o0. Once
again, let h = g/|A|, and integrate equation (12). Then

(26) eh" = hh" —h? +1+%p

with h(0) = —1, A" (0) = 0. It is sufficient to show that A”(1) < —1 as
¢ — 0. This is proved in the following lemma.

Lemma 14. h"(1) < —1.

Proof of Lemma 14. The solution h(n) is nonconcave and has three
zeros in [0,1]. Thus, there are two zeros of A’ and one zero of A" in
(0,1). In fact, h(n) has the following properties:

R <0,
h' <0 on some interval [0, 7),
h" >0 on (n,n"), h' <0 on (n*,1),
R" >0 on (0,m2), h" <0 on (n2,1],
R >0 on|0,73), R <0 on (n3,1],
h <0 on (0,n), h>0 on (n,1),



198 C. LU

where 0 < 71 < 13 < 172. Since A’ becomes zero before h” does, we
see by Lemma 1 that h” is decreasing and concave down on [ng,1].
From (26) we see h'(n2) > /1 +¢2u > 1. Hence, there is an 7 > 1
with A'(f) = 1. Furthermore, there is an 7, € (m2,n*) such that
h"(ne) = (0= A'(m2))/(n* — m2) < —1. Since h"(n) < 0 for n > ng,
it follows that h'(n) < h”(n*) for n > n*, which implies A”(1) < —1.
This proves Lemma 14. |

Summing up, we see from Lemmas 5, 8 and 14 that the boundary
value problem '
g(w) — gg/// _ g/gll,
9(0)=0,  g¢"(0)=0,
g()=0, ¢"(1)=-@Q

has at least three solutions for all sufficiently large Q). The proof of the
theorem in the paper is complete.

REFERENCES

1. W.N. Gill, N.D. Kazarinoff, C.C. Hsu, M.A. Noack and J.D. Verhoeven,
Thermalzapillary-driven convection in supported and floating-zone driven convec-

tion, Adv. Space Research 4 (1984), 15-22.

2. W.N. Gill, N.D. Kazarinoff and J.D. Verhoeven, Convective diffusion in zone
refining of low Prandtl number liquid metals and semiconductors, Chemical and
Physical Processing (P. Stroeve, ed.), Amer. Chem. Soc. Symposium Series, No.
290, 1985.

3. S.P. Hastings, C. Lu and A.D. MacGillivray, A boundary value problem with
multiple solutions from the theory of laminar flow, to appear in SIAM J. Math.
Anal.

4. C. Lu, N.D. Kazarinoff, et al., Ezistence of solutions of the similarity equa-
tion for floating rectangular cavities and disks, SIAM J. Math. Anal. 19 (1988),
1119-1126.

5. C. Lu, Existence, bifurcation and limit of solutions of the similarity equations
for floating rectangular cavities and disks, SIAM J. Math. Anal. 3 (1990), 721-728.

6. J.B. McLeod and J. Serrin, The ezistence of similar solutions of an equation
arising in the theory of boundary layer problems, Arch. Rat. Mech. and Anal. 31
(1968), 288-303.

7. C.-A. Wang and Y.-Y. Chen, private communication.

DEPARTMENT OF MATHEMATICS AND STATISTICS, SOUTHERN ILLINOIS UNIVERSITY
AT EDWARDSVILLE, EDWARDSVILLE, [L. 62026



