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TRAVELLING WAVE SOLUTIONS OF
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Dedicated to Paul Waltman on the occasion of his 60th birthday

1. Introduction. In a recent paper [3], we gave a technique for
approximating travelling wave solutions u(z — ct) of reaction-diffusion
equations for large wave speed c. The approximation is asymptotic in
the sense that it converges uniformly to the exact solution on the set
of real numbers as ¢ — oc.

Below we extend this technique to the case where the diffusion term
is a function of u. Such equations are frequently used in mathematical
biology to model dispersal of an animal population when there is
increased diffusion due to population pressure (see [1, 4, 5]).

We will also show how to construct and verify “higher order” approx-
imations. These approximations will improve the earlier ones when ¢
is sufficiently large.

Specifically, consider the equation
(1) U = D(u)as — f(u),

where D and f are smooth functions satisfying D(0) = 0, D(u) > 0,
D'(u) >0, f(0) = f(1) =0, and f(u) < 0 for 0 < u < 1. We seek
travelling wave solutions of the form u(z) = u(x — ct) and find from (1)

that u satisfies
du d?

—e = ED(U) — f(u).

2

Now let € = ¢=2, w = £'/?2. Then equation (1) transforms to

d? du
(2) EWD(U) + o f(u)=0.
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The appropriate boundary conditions are

(3) u(—o0) =1, u(0) =1/2, u(o0) = 0.

2. The basic approximation method. We propose to construct
a trapping region for solutions of (2). First, write (2) as a first order
system:

D" 5, flu)—v

(4) U,:’U, ’UI:—FU +7
The trapping region will have the form

T={(w,v): flu)(1+ec)<v< flu)(l+ed),0<u<1},

where ¢ > d are constants to be determined. At the upper boundary
v = f(u)(1 + &d), we require for 0 < u < 1

D" fu) —w (1+ed)f
0< U—ﬁvz+7:|'|: _1 :|7

or equivalently (since f < 0)
D" d
0> (1+ed)’f + F(1+sd)2f+ o

The last inequality can also be written as

d
Ggeay < P
Thus it suffices to make
d .
) e <mn{—() (@0 <u <1} =m

Note that (5) can be satisfied for any ¢ > 0 by choosing d somewhat
larger than —1/e.

Similarly, at the lower boundary v = f(u)(1 4 €c) we require

(6) © > max{—(D'f)'(u),0 <u< 1} = M.

(1 +ec)?
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Since
c 1

(14¢c)? T4
(at ¢ = e1), a necessary condition for (6) is ¢ < 1/(4M).

max

Theorem 1. Assume f(0) = f(1) =0, D(0) =0, and for 0 < u < 1,
f(u) <0, D(u) >0, D'(u) >0. Let d(¢) € (¢71,0] satisfy

4

(1+ed)? —

Assume 0 < &€ < 1/(4M). Then there is a nonnegative constant c(e)
satisfying

m.

c
(1+ ec)? z M,

and there is a solution u(w,e) of (2) and (3) so that

(7) f(w)(1+ec) <du/dw < f(u)(l+ed)

for0 <wu<1.

Proof. Suppose first that the strict inequalities (5) and (6) are true.
Then we have constructed a trapping region T for solutions of (4). Let
ug € (0,1) and define S = T'N{(u,v) : u = up}. Each trajectory that
intersects S must remain in 7" and go to the origin as w — co. (Note
that this is true even if (4) is singular at the origin.)

In reverse time, these solutions must either exit through the boundary
of T or go to the equilibrium point at u =1, v =0 as w — —oco. By
the Wazewski retract method (see [2]), some solution must remain in T’
and approach (1,0) as w — —oo. The proof is completed by a standard
limiting argument. O

Note that inequality (7) can be integrated to obtain uniformly valid
upper and lower bounds on the travelling wave solution. Also, we can
compute optimal values for ¢ and d by solving the quadratic equations
corresponding to inequalities (5) and (6):

d(e) = 1—2me — 1 —4me
(8) N 2e2m
=m — 2em? + 0(e?), e — 0,
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(o) = Lo 2Me— VIZ I
(9) A= 22 M
M —2eM? + O(g?), e —0.

Example. Consider the equation
up = (UP) e +u(l — u).
Here D(u) = u” (p > 1) and f(u) = u(u—1). Thus the travelling wave
solution u(w, ) satisfies
Ed—;u”—l—j—Z—i—u(l—u) =0,
u(—o0) =1, wu(0)=.5 wu(co)=0.

Now
—(D'f) (u) = pu*~'[p = (p + 1)u]

and
1 ifp=1

p(EP=" ifp > 1.

By Theorem 1, for 0 < ¢ < 1/(4M)

m= —p, M:{

u(u—1)(14+ec) < du/dw < u(u —1)(1 + ed)

on the interval 0 < u < 1, where d and ¢ are given by (8) and (9),
respectively. Integrating the inequality, we have

1 < < 1
1+ e(ltecw — u(w’ E) — 1+ e(lted)w
if w > 0 and
1 < < 1
1+ e(ltedw — u(w, €) — 1+ e(ltec)w
if w <0.

Our assumption ¢ < 1/(4M) is not necessarily the best possible
condition for existence of the travelling wave. See [6] for a discussion
of existence in case D(u) = wP and f(u) = u™(u — 1).
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3. Higher order approximations. We will now obtain a more ac-
curate approximation of the solution of (2) and (3) when ¢ is sufficiently
small. Inequality (7) suggests seeking a solution of the form

u' = f(u)(1+eC(u,e)),

where C(u,¢) is to be determined. If we substitute this form into (2),
we find the following equation for C:

C+D'f+D"f+e2D'f'C+ D' fC'+2D" fC)
+ (D' f'C* + D"fC* + D'fC'C) = 0.

This suggests that
Clu,e) = —(D'f) (u) + Oe), e—0
(compare with (5) and (6)). Thus we define
(10) 9(u) = —(D'f)' (u)
and ask whether
R={(u,v) : f(u)(1+eg(u)+ac?) < v < f(u)(l+eg(u)+be?),0 < u < 1}

is a trapping region for bounded functions a(e¢) > b(e) and small € > 0.
At the upper boundary, we need the inequality

0> f'[l+eg+eb) +efg [l +eg+ %]
+ %l,’f[l +eg +€%0)* + %,
which simplifies (using (10)) to
0> —g[29 + (2b + g*)e + 2gbe? + b*e®] + fg'D' (1 + eg + £2b) + b.
Consequently, for ¢ sufficiently small it suffices to require
(11) b < min{(2¢9> — f¢'D’)(u): 0 < u < 1}.
Similarly, we require

(12) a > max{(2¢> — f¢'D")(u): 0 < u < 1}.
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Now the proof of the following theorem is similar to that of Theorem
1.

Theorem 2. If ¢ is sufficiently small, f and D satisfy the hypotheses
of Theorem 1, and b and a satisfy (11) and (12), respectively, then the
solution u(w,€) of (2) and (3) satisfies

fu)(1 + eg(u) + ag?) < du/dw < f(u)(1 + eg(u) + be?)

for 0 < u < 1, where g(u) is given by (10).

Theorem 2 provides an estimate for the solution trajectory in the
phase plane. If an approximation of the solution as a function of w is
desired, we define

w ds
Flw) = / &0+ 29(s))

for 0 < u < 1 and note that F is invertible for small €. Then

2 blwe?
-1 |a|we -1 |
F <w+1+ 5 <u(w,e) < F w+l+ 6

for w > 0, while the inequalities are reverse for w < 0.
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