TRAVELLING WAVE SOLUTIONS OF REACTION-DIFFUSION MODELS WITH DENSITY-DEPENDENT DIFFUSION

WALTER KELLEY

Dedicated to Paul Waltman on the occasion of his 60th birthday

1. Introduction. In a recent paper [3], we gave a technique for approximating travelling wave solutions u(x-ct) of reaction-diffusion equations for large wave speed c. The approximation is asymptotic in the sense that it converges uniformly to the exact solution on the set of real numbers as $c \to \infty$.

Below we extend this technique to the case where the diffusion term is a function of u. Such equations are frequently used in mathematical biology to model dispersal of an animal population when there is increased diffusion due to population pressure (see [1, 4, 5]).

We will also show how to construct and verify "higher order" approximations. These approximations will improve the earlier ones when c is sufficiently large.

Specifically, consider the equation

$$(1) u_t = D(u)_{xx} - f(u),$$

where D and f are smooth functions satisfying D(0) = 0, D(u) > 0, D'(u) > 0, f(0) = f(1) = 0, and f(u) < 0 for 0 < u < 1. We seek travelling wave solutions of the form u(z) = u(x - ct) and find from (1) that u satisfies

$$-c\frac{du}{dz} = \frac{d^2}{dz^2}D(u) - f(u).$$

Now let $\varepsilon = c^{-2}$, $w = \varepsilon^{1/2}z$. Then equation (1) transforms to

(2)
$$\varepsilon \frac{d^2}{dw^2} D(u) + \frac{du}{dw} - f(u) = 0.$$

Received by the editors on March 3, 1993.

Copyright ©1994 Rocky Mountain Mathematics Consortium

The appropriate boundary conditions are

(3)
$$u(-\infty) = 1, \quad u(0) = 1/2, \quad u(\infty) = 0.$$

2. The basic approximation method. We propose to construct a trapping region for solutions of (2). First, write (2) as a first order system:

(4)
$$u' = v, \qquad v' = -\frac{D''}{D'}v^2 + \frac{f(u) - v}{\varepsilon D'}.$$

The trapping region will have the form

$$T \equiv \{(u,v) : f(u)(1+\varepsilon c) < v < f(u)(1+\varepsilon d), 0 < u < 1\},\$$

where $c \geq d$ are constants to be determined. At the upper boundary $v = f(u)(1 + \varepsilon d)$, we require for 0 < u < 1

$$0 < \left[v - \frac{D''}{D'} v^2 + \frac{f(u) - v}{\varepsilon D'} \right] \cdot \left[\begin{array}{c} (1 + \varepsilon d) f' \\ -1 \end{array} \right],$$

or equivalently (since f < 0)

$$0 > (1 + \varepsilon d)^2 f' + \frac{D''}{D'} (1 + \varepsilon d)^2 f + \frac{d}{D'}.$$

The last inequality can also be written as

$$\frac{d}{(1+\varepsilon d)^2} < -(D'f)'.$$

Thus it suffices to make

(5)
$$\frac{d}{(1+\varepsilon d)^2} < \min\{-(D'f)'(u), 0 < u < 1\} \equiv m.$$

Note that (5) can be satisfied for any $\varepsilon > 0$ by choosing d somewhat larger than $-1/\varepsilon$.

Similarly, at the lower boundary $v = f(u)(1 + \varepsilon c)$ we require

(6)
$$\frac{c}{(1+\varepsilon c)^2} > \max\{-(D'f)'(u), 0 < u < 1\} \equiv M.$$

Since

$$\max \frac{c}{(1+\varepsilon c)^2} = \frac{1}{4\varepsilon}$$

(at $c = \varepsilon^{-1}$), a necessary condition for (6) is $\varepsilon < 1/(4M)$.

Theorem 1. Assume f(0) = f(1) = 0, D(0) = 0, and for 0 < u < 1, f(u) < 0, D(u) > 0, D'(u) > 0. Let $d(\varepsilon) \in (\varepsilon^{-1}, 0]$ satisfy

$$\frac{d}{(1+\varepsilon d)^2} \le m.$$

Assume $0 < \varepsilon \le 1/(4M)$. Then there is a nonnegative constant $c(\varepsilon)$ satisfying

$$\frac{c}{(1+\varepsilon c)^2} \ge M,$$

and there is a solution $u(w, \varepsilon)$ of (2) and (3) so that

(7)
$$f(u)(1+\varepsilon c) \le du/dw \le f(u)(1+\varepsilon d)$$

for $0 \le u \le 1$.

Proof. Suppose first that the strict inequalities (5) and (6) are true. Then we have constructed a trapping region T for solutions of (4). Let $u_0 \in (0,1)$ and define $S = T \cap \{(u,v) : u = u_0\}$. Each trajectory that intersects S must remain in T and go to the origin as $w \to \infty$. (Note that this is true even if (4) is singular at the origin.)

In reverse time, these solutions must either exit through the boundary of T or go to the equilibrium point at u=1, v=0 as $w\to -\infty$. By the Wazewski retract method (see [2]), some solution must remain in T and approach (1,0) as $w\to -\infty$. The proof is completed by a standard limiting argument. \square

Note that inequality (7) can be integrated to obtain uniformly valid upper and lower bounds on the travelling wave solution. Also, we can compute optimal values for c and d by solving the quadratic equations corresponding to inequalities (5) and (6):

(8)
$$d(\varepsilon) = \frac{1 - 2m\varepsilon - \sqrt{1 - 4m\varepsilon}}{2\varepsilon^2 m} \\ = m - 2\varepsilon m^2 + \mathcal{O}(\varepsilon^2), \qquad \varepsilon \to 0,$$

(9)
$$c(\varepsilon) = \frac{1 - 2M\varepsilon - \sqrt{1 - 4M\varepsilon}}{2\varepsilon^2 M}$$
$$= M - 2\varepsilon M^2 + \mathcal{O}(\varepsilon^2), \qquad \varepsilon \to 0.$$

Example. Consider the equation

$$u_t = (u^p)_{xx} + u(1-u).$$

Here $D(u) = u^p$ $(p \ge 1)$ and f(u) = u(u-1). Thus the travelling wave solution $u(w, \varepsilon)$ satisfies

$$\varepsilon \frac{d^2}{dw^2} u^p + \frac{du}{dw} + u(1-u) = 0,$$

$$u(-\infty) = 1$$
, $u(0) = .5$, $u(\infty) = 0$.

Now

$$-(D'f)'(u) = pu^{p-1}[p - (p+1)u]$$

and

$$m = -p, \quad M = \begin{cases} 1 & \text{if } p = 1 \\ p(\frac{p-1}{p+1})^{p-1} & \text{if } p > 1. \end{cases}$$

By Theorem 1, for $0 < \varepsilon \le 1/(4M)$

$$u(u-1)(1+\varepsilon c) \leq du/dw \leq u(u-1)(1+\varepsilon d)$$

on the interval $0 \le u \le 1$, where d and c are given by (8) and (9), respectively. Integrating the inequality, we have

$$\frac{1}{1 + e^{(1+\varepsilon c)w}} \le u(w,\varepsilon) \le \frac{1}{1 + e^{(1+\varepsilon d)w}}$$

if w > 0 and

$$\frac{1}{1 + e^{(1+\varepsilon d)w}} \le u(w, \varepsilon) \le \frac{1}{1 + e^{(1+\varepsilon c)w}}$$

if $w \leq 0$.

Our assumption $\varepsilon \leq 1/(4M)$ is not necessarily the best possible condition for existence of the travelling wave. See [6] for a discussion of existence in case $D(u) = u^p$ and $f(u) = u^n(u-1)$.

3. Higher order approximations. We will now obtain a more accurate approximation of the solution of (2) and (3) when ε is sufficiently small. Inequality (7) suggests seeking a solution of the form

$$u' = f(u)(1 + \varepsilon C(u, \varepsilon)),$$

where $C(u, \varepsilon)$ is to be determined. If we substitute this form into (2), we find the following equation for C:

$$C + D'f' + D''f + \varepsilon(2D'f'C + D'fC' + 2D''fC) + \varepsilon^2(D'f'C^2 + D''fC^2 + D'fC'C) = 0.$$

This suggests that

$$C(u, \varepsilon) = -(D'f)'(u) + \mathcal{O}(\varepsilon), \qquad \varepsilon \to 0$$

(compare with (5) and (6)). Thus we define

(10)
$$g(u) = -(D'f)'(u)$$

and ask whether

$$R \equiv \{(u, v) : f(u)(1 + \varepsilon g(u) + a\varepsilon^2) < v < f(u)(1 + \varepsilon g(u) + b\varepsilon^2), 0 < u < 1\}$$

is a trapping region for bounded functions $a(\varepsilon) \geq b(\varepsilon)$ and small $\varepsilon > 0$. At the upper boundary, we need the inequality

$$0 \ge f'[1 + \varepsilon g + \varepsilon^2 b]^2 + \varepsilon f g'[1 + \varepsilon g + \varepsilon^2 b] + \frac{D''}{D'} f[1 + \varepsilon g + \varepsilon^2 b]^2 + \frac{\varepsilon b + g}{D'},$$

which simplifies (using (10)) to

$$0 \ge -g[2g + (2b + g^2)\varepsilon + 2gb\varepsilon^2 + b^2\varepsilon^3] + fg'D'(1 + \varepsilon g + \varepsilon^2 b) + b.$$

Consequently, for ε sufficiently small it suffices to require

(11)
$$b < \min\{(2g^2 - fg'D')(u) : 0 < u < 1\}.$$

Similarly, we require

(12)
$$a > \max\{(2g^2 - fg'D')(u) : 0 < u < 1\}.$$

Now the proof of the following theorem is similar to that of Theorem 1

Theorem 2. If ε is sufficiently small, f and D satisfy the hypotheses of Theorem 1, and b and a satisfy (11) and (12), respectively, then the solution $u(w, \varepsilon)$ of (2) and (3) satisfies

$$f(u)(1 + \varepsilon g(u) + a\varepsilon^2) < du/dw < f(u)(1 + \varepsilon g(u) + b\varepsilon^2)$$

for 0 < u < 1, where g(u) is given by (10).

Theorem 2 provides an estimate for the solution trajectory in the phase plane. If an approximation of the solution as a function of w is desired, we define

$$F(u) = \int_{.5}^{u} \frac{ds}{f(s)(1 + \varepsilon g(s))}$$

for 0 < u < 1 and note that F is invertible for small ε . Then

$$F^{-1}\left(w + \frac{|a|w\varepsilon^2}{1 + M\varepsilon}\right) < u(w, \varepsilon) < F^{-1}\left(w + \frac{|b|w\varepsilon^2}{1 + m\varepsilon}\right)$$

for $w \geq 0$, while the inequalities are reverse for $w \leq 0$.

REFERENCES

- 1. D.G. Aronson, Density-dependent interaction-diffusion systems, Proc. Adv. Seminar on Dynamics and Modeling of Reactive Systems, Academic Press, New York, 1980.
 - 2. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.
- 3. W. Kelley, Travelling wave solutions of reaction-diffusion equations with convection, Recent Trends in Ordinary Differential Equations, World Scientific Series in Applicable Analysis, Vol. 1, 1991.
- ${\bf 4.}$ J.D. Murray, ${\it Mathematical~biology},$ Biomathematics Texts ${\bf 19},$ Springer, New York, 1989.
- 5. A. Okubo, Diffusion and ecological problems: Mathematical models, Springer, New York, 1980.
- 6. A. DePablo and J.L. Vazquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations 93 (1991), 19-61.

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019