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Dedicated to Professor A. Sharma on his 70th birthday

ABSTRACT. It is proved that the “pure” and “modified”
(0,3) interpolation operators based on the roots of the inte-
gral of the Legendre polynomials uniformly converge for all
continuous functions. Until now, no such algebraic Birkhoff
interpolation was known. Error estimates in terms of moduli
of continuity, as well as the optimal order of uniform conver-
gence are determined.

Introduction. As the pioneering work of J. Baldzs and P. Turén [2]
has shown, the (0,2) interpolation (i.e., when function values and zero
second derivatives are prescribed) based on the roots

(1) “l=z1 <z <<z =1
of the polynomial
(2) (@) = (1= a*) P,y (2),

converges uniformly for some continuous functions in the interval
[-1,1]. (Here P,(z) is the Legendre polynomial of degree n normed
such that P, (1) = 1.) The condition of convergence was later improved
by G. Freud [4] and H. Gonska [5], but as P. Vértesi [8] has shown,
the procedure is not uniformly convergent for all continuous functions,
the reason being that the Lebesgue constant of this type of interpola-
tion is of order exactly O(n). The situation is similar for other classical
systems of nodes, and the conjecture is that whenever the (0,2) interpo-
lating polynomials exist, they always diverge for some properly chosen
continuous function.

Thus, looking for Birkhoff interpolation procedures that are uniformly
convergent for all continuous functions, one may turn to higher order
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(0, M) interpolation. This has been done in a recent work of M.R.
Akhlaghi, A.M. Chak and A. Sharma [1], where they considered “mod-
ified” and “pure” (0,3) interpolation. It turned out that these problems
are uniquely solvable for all n > 3, and in order to obtain the so-called
fundamental polynomials of pure (0,3) interpolation, first it is more
convenient to consider a modified procedure. However, the fundamen-
tal polynomials of first kind (being the most important) are given in
integral form in [1], which practically prevents us from applying the
results to convergence problems.

In this paper we overcome this difficulty by giving a simpler form
to the fundamental polynomials of first kind of the modified (0,3)
interpolation (Section 1.3). This will be applied to get uniform error
estimates (Section 1.2). The results will provide Birkhoff interpolation
operators convergent for all continuous functions in [—1,1], similar
to the classical result of L. Fejér for the (0,1) interpolation on the
Chebyshev nodes. In Section 1.6 we give an example of a function
for which the error estimate is better than that given by Corollary
1, and in Section 1.7 we prove that this error is optimal. In Part II
the corresponding questions for the pure (0,3) interpolation will be
considered.

1. Modified (0,3) interpolation.

1.1. Definitions. Modified (0,3) interpolation means that at the
endpoints £1, instead of third derivatives we prescribe first derivatives.
It is proved in [1] that for n > 3 there exist polynomials r,(z)
(v=1,...,n), o1(z),on(x), p(z) (v =2,...,n— 1) of degree 2n — 1
such that (see (1))

(3)

ro(z;)=0,5, j=1,...,n, r,(£1)=r(z;)=0, j=2,...,n-1;
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(6) Pu(l'j) - p:'(:tl) = 0’ -7 = 17 RN (2
() =6,5,  F=2,...,n—L

These polynomials give rise to the definition of the modified (0,3)
interpolation operator

(7) R, (f,z) = Z f(zj)ri(z)

defined for all f(z) € C[—1,1] and having the properties
R, (f,£1) =R (f,z;) =0, j=2,...,n—1

We note that sometimes the seemingly more general operator
- n—1
(8)  Ru(f,2) = Ru(f,) + 01 (x) + anon(z) + Y Bjpi(x)
j=2

is considered, where the numbers oy, a,,3; (j = 2,...,n — 1) are
subject to certain growth conditions in order to ensure the uniform
convergence of (8). However, these conditions are independent of the
structural properties of f(z), and they guarantee only that R, — R,
should converge to zero uniformly as n — oo, thus not contributing
anything to the convergence of R,, to f. Therefore, we prefer to consider
the operator (7).

1.2. Uniform error estimates. Let ws(g,h) denote the modulus
of smoothness of order s of g € C[—1,1], and let ||g|| = max ;<1 |g(2)].

Theorem 1. We have

1f (@)~ Ba(f, z)l|
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Here the “O” signs indicate absolute constants. It will be clear from
the proof that the following corollary holds:

Corollary 1. If f'(z) € C[-1,1] and f'(£1) =0, then
/3, 1/3
17(0) = Rl = 05 (1,5 1)),

We do not know that, in general, the logl/ 3 n terms can be dropped
from these estimates. In some particular cases this is possible (see
Section 1.6). On the other hand, the term O(n~?) in Theorem 1 cannot
be omitted, since then we would have for f(z) =z

0=z- Rn(fa :E) = Ul(x) + O'n(l'),
a contradiction, since by (4)—(5), o7 (1) + o, (1) = 1.

The proof of Theorem 1 is long and therefore it is broken into a series
of lemmas.

1.3. Fundamental polynomials of modified (0,3) interpola-
tion. In [1] (4.2) it is proved that the fundamental polynomials p, (),

v=2,...,n—1, satisfying (6) can be given in the form
- /
=2,...,n—1,
where
(10) Mow =3k(E—1) +n(n—-1), k=2,...,n 1.

As we mentioned above, the formulas of r, (z) and oy (), o, (z) given
in [1] are not suitable for our purpose. In this connection we prove

Lemma 1. We have

nin-

(11) r1(z) = 1 (z)+ Gzl' (@)1} () pj () = rn(—2),
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(12) r,(z) = 2(z) + %py(@

7621' (z)l) (z5)pj(z), v=2,...,n—1,

(13) oi(z) = [ (2)l1(2)

where
(1—z)P, ,(x)

l = ———F——= =,(—x),
(14) (@)= Cae-n) ~

R X B () V1T

v 7! (z,)(z—z,)  nn—1)P,_1(z,)(z—z,)’
v=2,...,n—1 are the fundamental polynomials of Lagrange interpo-
lation.

Proof. In order to save space, we do not give the details of deriving
these formulae (11)—(13). On the other hand, to check that these
polynomials satisfy conditions (3)—(5) is a routine work; therefore we
only indicate that in doing so we may use the differential equation

(15) (1=2)P; y(z) = 22P, 4 (2) + n(n—1)P, 1(z)
= ((1=2*)P, 1 (2)) +n(n—1)Po_1(z) =0

of the Legendre polynomials. ]

1.4. Estimates of the fundamental polynomials. From now on
we shall use the convenient notations

T = cost, x; = costj, O0=th<tph_1< - <ta<t;=m.
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Lemma 2. We have

(16) [ Po(2) + Posa(2) = o< L:f) l<z<l-e<l
and
(17) |P7;(x)+P,;+1(x)|_o< Sl%) “l<z<l-e<l
where the “O” depends on €.

Proof. Starting from the formula
(18) P, (z) + Ppy1(z) = (1 + z)Po(z) + n/xl P, (&) d¢

(see G. Sansone [6, page 201]), we obtain by differentiation
Pp(@) + Py (@) = (n+ 1) Pu(z) + (1 + 2) Py (),

i.e., using the estimates

P = 0 )

p) =0
@l =0/ 4
([6, II1.10(8)] and G. Szegd [7, (7.33.7)] we obtain
|Pr() + Py ()] < (n+ 1) |Po(@)] + sin® t - | Py ()]

(19)

8

>, -1<z<l1

—

= 0< ﬁ) + O(Vnsint)
:0< ﬁ) “l<z<l-c
To get (16), we use (18), (15) and (19) again
Py () + Pay1(2) = (14 2)Pa(2) - w

|Pp(2) + Pry1(z)] < sin’ ¢t - | P ()| + n~ ! sin? t|P) ()]

_ < sin3t>+0< y)
n n
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Lemma 3. We have for an arbitrary ¢ > 0

(20) | (25 +1)Pi(x)Pu(z,)
s=1
O< n |t—t|>’ if [t —t,| >c¢/n
sin®/? ¢ sin'/? t, sin =5+
= s
O\ ————+— |, if |t —t,] <c/n,
<sin3/2 ¢sin'/? t,,) /| | /
v=2,...,n—1 m=12,...,n; —-1l<z<l.

Proof. By Ps(—z) = (—1)*Ps(z) and z,, 11 = —2,, v = 1,... ,n,
we may assume that —1 < z < 0, i.e., 7/2 < t < m. By the Christoffel-
Darboux formula (see [6, II1.5(18)])

m

(2s + 1) P (z) Ps(z,)

S

P S:Em Phys (4)Pu(1)
Poe) s () P )P (2)

[P+ P Ol (22) — Pao0) + Pas e lPns(e)
(Pule) + Pm+1(x)]PmH(%Z)_—m[P)T;(xu) + P (2P ()

+

+

z, # x. Applying Lemma 2, (19) and max(sint,sint,) < 2sin((¢t +
t,)/2) we get

m

(xu)

0 < (sintsint,) /2 +sin=3/2 tsin'/? ¢,
=0|m

o lt=tu| ottty
Sin 3 Sin )
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sint n sint,
n sint, sint
sin? ¢ Zt,, sin? t+2t,,

m
:O< 32, 1/2, o [t—ts]
sin”’'“¢sin”’“ ¢, sin 5+

: >
ntsint.)l/2 ity g bty
(sintsint,)/2sin® =t sin

. |t=t,] )
<sm3/2tsm1/2t s1n|T>

§|t—t\ 2<t<7r, t, >

o] 3

To extend the validity of this estimate for ¢, < 7/3, we apply the
first relation in (21), as well as the estimates (19). We omit the easy
calculations. Finally, the second relation in (20) is obtained by term-

by-term estimates and on using (19) again. O
Lemma 4. We have for -1 <z <landv=2,... ,n—1
(22)

B ma(z)(1 - a3)
n?(n—1)2XAp—1,,P%_1(z,)(z — z,)

. 2 .3
= sin“ ¢ sin” ¢t .
pv () +o< ' ‘tjt = R > ift #ty
nSsin L5 nYsin® 5
O(n3sin’t,), if [t —t,| < <.

Proof. Let

= 2m_1 m— 1(x)PrIn ()

(23) K(z,a.) Z ~DAmn ’

Applying Abel’s summation, using the relations

1 1 6(m—1)

)\m—l,n )‘m,n Am—l,n)‘m,n
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(see (10)) and

"~ (2s = )P (2)P) 4 (x.)
port s(s—1)
_ B @) P a(2y) — Pl (20) Py o(2)

r—x,

(this follows from [7, (4.21.7) and (4.5.2)], we obtain

n—1
1 2m — 1P}, (x) P, (zy)
K v) =
(@, 2v) An—1n mZZQ m(m —1)
n—1 m—1
1 1 (25— 1)P 1(g;)P;_l(ggU)
Ll )L e

_ Péfl(m)P;z72(mV)
C An—in(n—D)(z — )
6\~ Pro(@)Phs(@) = Phy(2,)Py_s()
T -,

)
— )\mf 1,n)\m,n
m=3

T # T,
Here we apply another Abel summation using
1 1
>\m—2,n>\m—1,n Am—l,n)\m,n
3<m<n-1

=0(n™?),

and then make the substitutions
Py () = Pp,_g(w) + (2m — 3) P _2()
(see [6, II1.5(14)]) and
Ps(zy) = —(n— 1) Pua ()

(see [7, (4.7.28)]) to obtain

K(z,z,) = _Pi(@Paa(z) n O( 1 )

An—1n(z —xy) ntlz—x, |
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) Z [Pro_1(2) Py a(20) = Pro_(20) Py, _o(2)]

n—1
1 1 1
of — _
* (|J)—l‘,j> n; <)‘m2,n)\m1,n )\ml,n)\m,n>

[Pi_1(2)Pi_s(x0) — Py_q(z,) Pi_s()]

_Plll(m)Pnl(wu)+O< 1 )

)\n—l,n(w_wu) TL4|I—£EV|

n—3

> (25 + 1)P/(z) Ps(x,)

s=1

ot )Z(IP L@)P (@)

Z(2S+1)P£( )Ps(xv)

s=1

(1P a@P () +

)

+

>7 T F# T,

Now we apply Lemma 3 as well as (19):

K(z,z,) = Py (@)oo (2) n O( 1 )

An—1n(z —2y) nilz—x,|

n n
N + )
< (sintsint, )32 sin3/2¢sin'/2t, sin lt;tyl
1 n—1 m
+O0( =—— (sintsint.)3/2
() Z (o

+ m )
. . =
sin®/? ¢ sin'/? t, sin %

PTIl 1( )Pnfl(wy)
An—l,n(xfxu)
+0( sin 15+l 4 sint, >
n3(sintsint,)3/2 sin? =t gin e

TFET,.

Hence by (9) and (23) we obtain the first relation in (22). The second
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relation in (22) is obtained from (23) by using (2) and (19) term-by-
term. We omit the details. O

Lemma 5. We have

n—1

> (1=a) o (2)

v=2

logn

n3

Proof. Lemma 4, (2) and (19) and the relation
(24) 0<c <P? [ (x,)nsint, < co, v=2,...,n-1

(see [7, (7.3.8)] and [2, pages 202-203]) imply

|p, () O< sin® £, sin?,, sin® ¢, )
v (T -
g n4 sin % nSsin |t—2tu\ nb sin2 %
25
= sin®t,
=0 m , |t—tV|ZC/n.
n*sin =%
2

Hence

n—1 .

Z(l — 3312/)73/2|p1/($)| = O(n*‘l) — + O(nf?’).

v=2 [t—t,|>c/n sin —;

Now we use the asymptotic formula

. _4Av+3 z+ 1
(26) T T o1 2 n-min(v,n —v) )’

v=2,...,n—1
(see P. Vértesi [9]), as well as the relation

(27) |tﬂ_tu|zc'@7 H,V:].,...,n

(see [7, (6.21.7)]). With the notation

(28) t—t = min |t bl
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we obtain

%:o( 3 tn]/|>:0(nlogn);

i S
t—t,|>c/n sin 2 t—t,|>c/n
| |> >

thus the upper estimate is proved. To prove the lower estimate we note
that the main contribution of p,(z) comes from the first term in (22).
Let, e.g., n be even, then

n—1

> ) @)l 2 3 s o0

v=2
n—1
> &
— 4 Z
n
v=2

logn
n3

1
] TOm )z

Lemma 6. We have

lo1(@)]] = llon(z)|| ~ n "2

Proof. We obtain from (2), (14), (15) and (24)

=P o),

n2

(et = 0

wM%ﬂH%M=O( n ) i=2. neL.

-5
sin” t;

Thus (13) and (25)—(28) yield the upper estimate

lo1(z)| = O(n™?) <l +n3 Z 1 =3 + ! >
2

.2 . 2 w12
n®sin®t
lt—t, [>c/n S t, sin s

=0(n?).

Now, instead of proving the lower estimate for oy (z), we shall prove
more, namely that there exists a y,, € (—1,1) such that for n even

(29)  o1(yn) £ on(yn) ~ Fn~? and o1(=Yn) £ on(—yn) ~ n”2.
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We use the formula (n even)
_ m(z)(1-2)
o1(z) = 2n(n—1)

T 2k—1)(n—k)(n+k—1)(=1)*mi(2)
_71'n($)k:§2 Qn(n—l)k(k—l)kk,n

_ m(@)(1-2) O(Wn(w)\/@>

2n(n—1) n3/2

(see [1, (4.3)]). Hence

on(@) = _% N O<|wn(n>3|/\2/s17>,
e e o))

It is easy to see from the properties of Legendre polynomials that
. N3 . 1 1
mn(x) > cp(nsint)® if 0<t< itn,l or m— 5252 <t<m.

Thus choosing = y,, = cosa/n with a sufficiently small a > 0 we get
(29). For odd n’s the proof is analogous. o

Lemma 7. We have

1— a3 __mn(n-1)  n(n-1)

z,—z;)(z—z;) 6(1-22)(z—z,) 3(z—z,)>

M |

J:
J#v

n(n—1)P,_1(z) N 1—z2
(z—z,)’P_y(z)  (z—m)"
ctx, 1i=2,....,n—1; v=2,...,n—1
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Proof. Our starting point is the formula

n

(30) (@) 3 —— = (@) — 7 ()l (2),

I*Ij

Jj=1
jv

Differentiating and substituting = = x,,, we obtain

(@)Y = () — () () = O,

i.e.,

Differentiating (30) twice and substituting x = z,:

2 (@) Y g = () - (@) ()

j=1 (wl’ - w])z
iy
2
- gﬂ-gl(ml/)v
S5 1 ) e
o (y—z)?  3m(z)  3(1—23)
j#v

Finally, differentiating (30) three times and putting z = z,:

= 1 3
67, (20) > 3 = ma(@,) — mh (@) () = 770 (),
(z, — z;) 4
j=1""
ity
i 1 _ o) (z) _ ~zyn(n—1)
= (@ —ay)® 8my(x) 2(1 —=3)*’
J#
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Thus, partitioning with respect to x; and using the above relations we
obtain

"Zl 1—a? _ z": 1— a3
= (w—a;)(z—z;) o (& —2;)*(z—z)
i JAv
C1-a? & 1
oz, ]z:; (xy—x;)3
G
2z, 1-22 | & 1
(m—x,, (l‘—x,,)2> ; () —x;)?
J#v
1-22 (1 1-22 &~ 1
(x—x,)3 Z z,—x; (z—z,) ; r—x;
i it
___zwn(n-1) . 2z,n(n—1)
2(1-a)(z—xy)  3(1—2z})(z—w))
n(n—1) 1-2? (7 (z) 1
S 3(z—z,)?  (z—=z,)? (ﬂn(x) B xac,,)
_xyn(n—-1) n(n—1)
T 6(1—22)(z—x,) 3(z—w,)2
n(n—1)P,_1(x) 1—2?
(=27 () | (—2n)¥
v =2, ,nm—1 ]

Lemma 8. We have

n

> ()|

v=1

— o),

Proof. Since Y p_,1Z(z) < 1, we have l{(z) < 1, and an easy
calculation shows (see (14)) that

|l'1(xj)l'1'(xj)| = O(rfl sin_7tj), j=2,...,n—1.
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Thus we obtain from (11), (25), (26), (28) and Lemma 6
1 ()] < 1 () + O(n?)[|o1 ()]

<o et e

:1+O(1)+0( > ! P >

5qintt. gin 1=l nisintt
lt—t;[>c/n TV SII tjsin —; s

= 0(1).

The same estimate holds for r,,(z).

In order to estimate r,(x), v =2,... ,n — 1, we need the relation
l/ (a:)l"(a:): 2PT2L—1(wj)
VTR (2 — 2)P PRy (2)

Co( )

xz, —x;|3sint;
| il j

(31)

which is easily checked from (14). Thus we obtain

n—1 s i1
sin" " ¢
2 : E : ! " J
ll/(x])lu (I]) . g |t—t“
ntsin® =41
v=2"|t—t;|>c/n 2
n—1 . . g
_5 1 sint, sin’ t;
=0(n7) g . E — ,
sind bl 24 | gin B gy BFls
[t—t;|>c/n 2 v=2 2 2
v#j

= O(n 5) ‘t—tjl Z -3 |tu_tj‘
2

s 2-G g, s
lt—t,|>c/n S tjsin’ — 5;3 sin
1
= O(niz) . 271’1‘: . g ‘t_tjl
lt—t,[>c/n S jsin’ —;
n—1 1
~o( L) oW i-1a
j=2

i



ON CONVERGENT (0,3) INTERPOLATION PROCESSES 745

where s has the same meaning as before. Thus we obtain from (12),
(24), (25), (31) and Lemmas 4 and 7

n—1 n—1 n—1
o lru(@)] <Y B(2)+0(n?) Y sintt,|p,(x)]
v=2 v=2 v=2
it 1—a?

72 (x) iy 1
+O< s );P,%_l(w» DI ey Py
Jj#v

L))

n—1
LDIEDY
v=2|t~t;|>c/n

n—1 . .
sint, sin® ts
+ Z 3 g ) 3
|z, — xs|® sints n
v=2

. 2 3 . 3 .

sin” t; sin” t; >‘
it R

nd sin =4l ;Jl nbsin? 24

V;és

—0(n?) nf v o(%)

. - [t—t, ns
y—2 Sint, sin ===
v#s

n—1 n—1 1— CL’Z
- ) sint - +0(1)
,;2 Y Jz:; (z, —x;)% (v —;)
iv
. —1 .
sint' % 1 sint
g O —_— v
( n? ) Z <sintl,|a:—x,,| + (z—x,)?
v=2
v#s
sintsint, sin? ¢ sin t,
nle —z,3  n2(x—x,)*

sin?t) o= 1-a3
+o< — )Zif - +0(1)

= (@s—ay)
Jj#s
- <§ <u|slu| " (ujs>2 " |st|3 " (uls>4>>
+O<i (j_18)4> +0(1) = 0(1)
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1.5. Proof of Theorem 1. Let f)(z) € C[-1,1], m =

[n/(log*®n)], and consider polynomials p,(z) of degree at most m
such that

. . s o 1
w  O@=p@I =00 s (10, 1),
0<j<i
and
(33) npgkxn|=<90nf4ﬁ%'i(f“%-l), i+1<j<it3
m

(cf. H. Gonska [5, p. 165]). Since the problem of modified (0,3)
interpolation is uniquely solvable, evidently
(34)

P (@) — Ru(pm, ) = pro (— 1) a1 (z) + Pl (1 ) + Zp/rlri (zv)pu(z
Here, applying Lemma 5 and (33) with ¢ = 0 and j = 3, we get

Zp% J;,, Pu

(35) Ol ( P > logn

Further, by (33) (with =0, j =1)

all = Oy 1.1

and thus, by Lemma 6,

P (=D)o1(@) + pr (Don (@)l = (Pl - [loal])

ofE(e)
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Hence, by (32) (with ¢ = j = 0) and Lemma 8

f = Bn(NI < [If = pmll + llpm = Bn(pm) || + | B (P — )]

cof(s) +0(2)o 1)

) ‘

> Irk(a)]
-ofus2) +o(2)(02)

k=1
Considering the value of m, this completes the proof of Theorem 1.
]

+ |l — 1] -

Proof of Corollary 1. Now if f' € C[-1,1] and f'(£1) = 0, then (32)
with ¢ = j = 1 yields the better estimate

il = 0(wa(£.2) ).

(- Do1(2) + a (Den(@)l] = O 2han 1,2 ).

whence

Thus we obtain

-pin=ofo(52)) (1.2

whence Corollary 1 follows. a

1.6. A nontrivial example for an O(n~%) order of conver-
gence. Theorem 1 cannot provide O(n~3) as the order of convergence.
Nevertheless, we show that for the polynomial

fi(z) =2® — 32

we have

1f1 = Ru(f1)ll = O(n ).
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To prove this, we need a strengthening of (24):

Lemma 9. We have

1 m . 1
e~ a0 (o))

logn < k < n—logn.

Proof. We use the asymptotic formula

COoSs n—— E— g [0) -
Pnfl(xk:) = [( —)zn_li:;nt:nsm k),

k=2,...,n—1

[7, (8.21.18)], as well as (26) in the form

4k+3 1
th41- k= o |
ok 2(2n—l)ﬂ-+0(nlogn>

logn <k <n/2

1 O< Z(n —1)sinty >
P2 (zx)  \cosO(= )+loén

n—1 logn

- g(n— l)sintk<1+0<$>>'

Returning to the proof of (37), (34) yields

to obtain

(38) fi(@) = Rulfrm _62py

We have seen in the proof of Lemma 5 that the contribution of the

remainder terms in (22) to ZZ;; \p, ()] is O(n=3). Thus, without loss
of generality, assuming 0 < z < 1, with the notation (28), we get

2

(o) = Rul ) = 028 )an T Ol
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1<|v|<s/2
sint
v 0 _3
fn 3 oW
1<v<s/2

or 3s/2<v<n
.3
sin” ¢ 1
—o(%) ¥ m

1<|v|<s/2 Pn—l(xs+u)(x_ws+u)
L0 <sin2 t

n4

sint,
lt—ty|

) 1<v<s/2 ST
or 3s/2<v<n
sin® ¢ 1
=0 5 Z 2
n

1<|v[<s/2 Pa_1(@s4n) (=25 40)

+0(n?)

Here, first let 1 < s < logn, then

(%) 2

1<|v|<s/2 P

($S+V)|x - $S+V‘

O

log®n > s+v
5 Tattaty
n v
1</v]<s/2 S0 % sin =5

<log > s+v
6
n 1<|v|<s/2 (2S+V)

log® n log log n>

O

=0
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In case logn < s < n/2, applying Lemma 9 we get

sin®t 1
o(%) ¥ &

1<|V‘<s/2Pn71("L‘S+V)|m_xs+y|

s/2

= O<Sl;1—zt> ) (P,fl(xsw)l(xs_xﬁ”)

v=1

1
_l’_
Pr%—l(xS—u)(xs ﬂ”s—u))
s/2

.3
sin” t 20, —Tsiy—Ts—y
(%)X (=

1 i1 (Tst0) (s — Tst0)?

N 1 1 1 >
|zs—Ts 0| Pr%—l(xs+u) Ps_l(xs,,,)
s/2

-3
sin” ¢ (1—cost,)(s+v)
:O< nb )Z (S- 21, 2 tattors
2

=1 111 > sin

n|sints,, —sint, .|+ 1:2)
sin%’sin%
sint s/2 si 2t s/2
_ intg m ts
_0< = )Zs+0< i )Zl
v=1 v=1
sin? ¢ >\ s+v

O s = O n73 .
(n410gn> ; v =)

Collecting these estimates, we get (37).

1.7. The optimal order of convergence. The operator R, is
saturated as it is shown by the following

Theorem 2. We have

1f(z) = Ru(f, @)l = o(n™?)

if and only if f(x) = const.
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Proof. Since R, reproduces constants, the “if” part is obvious.
Assume now that

||f—R2n(f)||§§—Z, where &, -0 asn — oo.

Then, by Bernstein’s inequality

RS (f, \<§]Rw f,z) — RS (f,2)]

2k:+1

4
<Z<1ﬂﬁ§ﬁmﬁm)
k
1—m2222 Ek

O((1 - a®)~%)(2™/? max ey +2" max Ek)

k>n/2
on
O<m>, |x|§a<1

Hence, using the notation (28),

R (f,2)| = |RYn(f, @) — Riu(f, )]
< rﬁziimzn (f,2)| - |z — x|
B 9 V1—a?
_O<(la2)2> 2n
=o((1-a*)7*?%) =0

| A

asn — oo, |z| <b<a <1 Thus

|ALf(@)] < |AR(f(@) — Ron(f,2))] +|Aj Ran (f, )]
de,
<24 max  |RU(fz)] =0

8m —b<z<b—3h
asn — o0, —b <z < x+3h < b. Hence A} f(z) = 0 for any h > 0, i.e.,
f(z)isa quadratlc polynomial in [—b,b]. But b < a < 1 are arbitrary,
whence

f(z) = ax® + Bz + 7, lz| < 1.
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Using (34) we obtain

f(&) = Ran(f,2) = f'(=1)or(z) + f'(1)o2n (2)
= —2a(01(2) — o2n (2)) + B(o1(2) + 020 (2)).

Now if sgn o = sgn 3, then by (29) we get

En c(2al + |8

s )~ Ron(fraen)] > 2D
whence a = f = 0, ie, f(z) = v = const. Similarly, when
sgna = —sgn S.

2. Pure (0,3) interpolation.

2.1. The fundamental polynomials and the main result. It is
proved in [1] that the polynomials

1 () o1(z) on ()
(39) mle)=x ) n'@) o' o' |, vr=l...n
r)(=1) of'(-1) o7'(-1)

L)o@ oul)
(0) pil@) =5 pP(1) o) ar(1) |, w=2.. 01,
pl(-1) of'(-1) ofi(-1

1

(41) pi(e)=—% o1(2)  on(@)

ar'(1) ay'(1)

of degree at most 2n — 1, where
A =0{"(1)? - o{"(-1)?,

satisfy
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Thus we can define the pure (0,3) interpolation operator
R;(f,z) =) f(x;)r} ()
j=1
for any f(z) € C[—1,1]. This operator has the properties

R, (f,z;) = f(x)), RY"(f,z;) =0, j=1,...,n.

Theorem 3. If f(z) € C[-1,1], then

1)~ Bl = 0w (£,

where w3(f, h) is the modulus of smoothness of order 3 of f(z).

For the proof we need two lemmas.
2.2. Estimates of the fundamental polynomials.

Lemma 10. We have

> lei(@)

1
_ o< °g3">, |z| < 1.
n

Proof. In [1] it is proved that A # 0, but here we need more. It
follows from [1], Section 5 that for n even

0_/111(_1) +0_/111(1) — (n+1)n(n_1)(n_2)

8
3n(n—1) Y2 (4k—3)(n—2k+1)(n+2k—2)
LTSy X
h—1 2k—1,n
V2 (4k—3)(n—2k+1)(n+2k—2)(2k—1)(k—1)
+3) 3
k=1 2k—1,n

>cn
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and

0'/1”(—1) _ 0,11//(1) — (n+1)n(n8_ 1)(”—2) + 3"(2_ 1)

n/2—1

S (4k—1)(n—2k)(n+2k 1)

>\2k,n

k=1

n/2—1
S (4k—1)(n—2k)(n+2k—1)k(2k—1)

)\2k,n

k=1

> ent.

Similar estimates hold when n is odd. Hence
A > b
On the other hand, by Lemma 6 and Markov’s inequality
(43) ol (F1)| = |oy' (£1)| = O(n*),
whence and by (40)
o3 ()| = O(lpu ()| + n=°[loy (=1)| + o2 (D),
lz| <1, v=2,... ,n—1,
1o @) = llo}, ()] = O(n=°).

Using Lemma 5,

S Joi ()] = O(n %) + O(Z |pu<x>)

+0(n=%) S (11 + 1 (D)
= 0(“E") + 0w ) S 11+ ),

But, using Markov’s inequality, it is easy to see that Lemma 5 implies

n—1
Sl @) =0 logn),  |e|<1. o
v=2
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Applying this with = 41, the statement of the lemma follows.

Lemma 11. We have

Proof. It follows from (39), Lemma 6 and (43) that

r3 (@) = O(|ru (@) + n=|ry" (1) + 2~} (- 1)),
lz|<1; v=1,...,n,

whence and by Lemma 8

S Iri(@) = O(Z Iru(w)|> L oM S ()] + (- 1)),

|z < 1.

Just as in the previous proof, it is easily seen from Lemma 8 that

n

2 = o).

and hence Lemma 11 follows. O

2.3. Proof of Theorem 3. Let first g (x) be absolutely continuous
and ¢"'(z) € Loo. Then applying again Gonska’s result (32) with i =3
and j = 0, respectively j = 3, we obtain polynomials p,, of degree at
most m = 2n — 1 such that

||g(w)—pn(m)|20<%> and ||p’”H (”gmH)

Similarly to (34), we now have by Lemma 10,

III

[lpn () = Ry, (pns @)|| = )lpy (@

logn
)| =0 (25" ) a1
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i.e., by Lemma 11,

lg(z) — Ry, (g, 2)|| < llg(x) — pa(@)I| + llpn(x) — Ry, (pn, 7)]|
+ [[R7(9 — pn, @)l

logn
— (5" iy

Since R} is a linear operator, applying Theorem 2.3 of R. DeVore [3],
Theorem 3 follows. u]

Theorem 4. We have

1f(z) = R (f,2)ll = o(n™?)

if and only if f(z) is a quadratic polynomial.

Since the proof is almost the same as that of Theorem 2, we omit the
details.

2.4. Open problems. (i) Eliminate the log!/® n factor in Theorems
1 and 3; at least for f € Lipa, 0 < a < 1.

(ii) Give pointwise estimates instead of the norm estimates.
(iii) Solve the saturation problem of the operators R, and R}.

(iv) Investigate, in general, (0, M) interpolation (M odd) for different
systems of nodes.

We hope to return to these problems in subsequent papers.

Acknowledgment. The authors would like to express their thanks
to Prof. H. Gonska who called their attention to [5], the application of
which made the result expressed in Theorem 1 more elegant.

ENDNOTES

1. Note that there is an error in formula (4.2) in [1].

2. a, ~ b, means that there exist positive constants c; < cs
independent of n such that ¢; < a,, /b, < ca.



ON CONVERGENT (0,3) INTERPOLATION PROCESSES 757

REFERENCES

1. M.R. Akhlaghi, A.M. Chak and A. Sharma, (0,3) interpolation on the zeros
of mn(z), Rocky Mountain J. Math. 19 (1989), 9-21.

2. J. Balazs and P. Turan, Notes on interpolation II-IV, Acta Math. Acad. Sci.
Hungar. 8 (1957), 201-205; 9 (1958), 195-214; 243-258.

3. R. DeVore, Degree of approzimation, in Approzimation theory II (G.G.
Lorentz, et al., eds.), Academic Press, Boston, (1976), 117-161.

4. G. Freud, Bemerkung tdber die Konvergenz eines Interpolationsverfahrens von

P. Turdn, Acta Math. Acad. Sci. Hungar. 9 (1958), 337-341.

5. H. Gonska, Degree of approzimation by lacunary interpolators: (0,... , R—2, R)
interpolation, Rocky Mountain J. Math. 19 (1989), 157-171.

6. G. Sansone, Orthogonal functions, R.E. Krieger Publ. Co., Huntington, 1977.

7. G. Szegd, Orthogonal polynomials, Amer. Math. Soc. Coll. Publ., Vol. XXIII,
Providence, 1978.

8. P. Vértesi, Notes on the convergence of (0,2) and (0,1, 3) interpolation, Acta
Math. Acad. Sci. Hungar. 22 (1989), 127-138.

9. , On the zeros of Jacobi polynomials, Studia Sci. Math. Hungar. 25
(1990), 401-405.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, H-1364,
BubaresT, P.O.B. 127

UNIVERSITY OF FLORIDA, DEPARTMENT OF MATHEMATICS, GAINESVILLE, FL
32611



