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CONSTRUCTIONS AND 3-DEFORMATIONS
OF 2-POLYHEDRA AND GROUP PRESENTATIONS
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ABSTRACT. In this paper we shall study the Andrews-
Curtis conjecture (AC) and its relation with some other in-
teresting and important conjectures in low dimensional topol-
ogy through special polyhedra and special presentations. An
abelian monoid is constructed in the set of equivalence classes
of mutually 3-deformable, contractible special polyhedra. It
is shown that this abelian monoid is trivial if and only if (AC)
is true. Some properties of this monoid are also discussed.
Via the generalized Nielsen operations, we see the connection
between special polyhedra and group presentations; hence, we
derive another version of (AC). Then we prove that some cases
of this version of (AC) are true.

1. Introduction. In 1964, E.C. Zeeman made the conjecture (Z)
[16]: Every compact contractible 2-polyhedron is 1-collapsible. He also
showed that (Z) implies the 3-dimensional Poincaré conjecture (3D-P).
In 1965 Andrews and Curtis made their conjecture (AC) [2]: Every
balanced, finite presentation of the trivial group can be reduced to the
empty presentation by the generalized Nielsen operations. Later in
1975, P. Wright showed an equivalent formulation of (AC) [13]: Every
compact contractible 2-polyhedron 3-deforms to a point. Because of
this equivalent geometric formulation of (AC), it is easy to see that
(Z) implies (AC). To understand these conjectures better and find a
way to prove or disprove them, mathematicians are looking for their
relationships. In 1983, Gillman and Rolfsen showed [5] that (Z) for
thickened special polyhedra is equivalent to (3D-P). In 1987, S.V.
Matveev claimed [9] that (Z) for unthickened special polyhedra is
equivalent to (AC). In Section 2 we give most of the definitions for the
future discussion in this paper. In Section 3 we construct (M, +) and
show that it is an abelian monoid. Then we discuss the significance of
(M, +) and the analogy between (M, +) and M.M. Cohen’s geometric
construction of the Whitehead group Wh (L) for a CW complex L.
This analogy may give us some hint for calculating (M, +). In Section
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4 we derive another version of (AC) via the correspondence between the
set of mutually 3-deformable contractible special polyhedra and that of
mutually reducible balanced special presentations of the trivial group
by the generalized Nielsen operations (GNO’s). Then we show that this
version of (AC) is true when the number of generators is fewer than
four.

2. Preliminaries.

Definition. A compact, connected 2-polyhedron X is called special
if X has a CW complex structure relative to which (0) each vertex
v ∈ X(0) has a (closed) neighborhood in X which is homeomorphic to

v

Type 3 point or singular point.

(1) each nonvertex point x ∈ X(1)−X(0) has a (closed) neighborhood
in X which is homeomorphic to

x

Type 2 point or three fin point.

Such vertices are called singular points and the points in X(1) −X(0)

are called three fin points. It follows that each point x ∈ X − X(1) has
a (closed) neighborhood in X homeomorphic to

x

Type 1 point or manifold point
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and the 1-skeleton X(1) is a regular graph of valence four. Each
component of X − X(1) is called a 2-component. In the definition of
special polyhedrons, all 2-components are required to be open 2-cells.

There are several closely related, but different, definitions and names
for this concept (cf. Casler [3], Gillman and Rolfsen [5], Ikeda [6],
Matveev [8, 9]). Here I use the definition and name from Matveev [9].

Definition. A presentation π = 〈X|R〉 is called special if the number
of the total appearances of xi and x−1

i , xi in X, in R is precisely three.

Suppose that P is a special polyhedron. By collapsing a maximal tree
in its 1-skeleton, we get a polyhedron with a CW structure containing
only one vertex. Then we can write a presentation ω = ω(P ) for the
fundamental group of this new polyhedron via the standard procedure.
Since there are many choices of maximal tree in the 1-skeleton of P ,
we may get many different presentations in this way, but they are all
special. Since P is homotopic to this new polyhedron (see S. Young
[15]), the fundamental group of P has at least a special presentation.
Furthermore, if the special polyhedron P is contractible, we will have
a balanced special presentation for the trivial group.

Definition. Let π = 〈X|R〉 be a finite presentation of a group, i.e.,

π = 〈x1, . . . , xn | r1, . . . , rm〉
where n and m are nonnegative integers. The following operations on
π are called the generalized Nielsen operations:

(I) π → 〈x1, . . . , xn | r1, . . . , rix
ε
jx

−ε
j , ri+1, . . . , rm〉 where ε = ±1.

(I−1) is the inverse of (I), i.e., it removes inverse pairs from relators.

(II) π → 〈x1, . . . , xn | r1, . . . , r′i, . . . , rm〉 where ri is replaced by r′i
a cyclic permutation of ri.

(III) π → 〈x1, . . . , xn | r1, . . . , r−1
i , . . . , rm〉.

(IV) π → 〈x1, . . . , xn | r1, . . . , rirj , ri+1, . . . , rm〉, i �= j.

(V) π → 〈x1, . . . , xn, xn+1 | r1, . . . , rm, xn+1w〉 where w is a word
in x1, . . . , xn.

(V−1) is the inverse of (V), i.e., it removes a generator x and a relator
xw provided that x does not appear in any other relators or w.
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Here, I define the generalized Nielsen operations (GNO’s) as S. Young
did in his thesis [15]. Although this definition of GNO’s is somewhat
different from the original one given by Andrews and Curtis, these two
definitions are equivalent. We note that GNO’s maintain the balanced
presentations.

For later use, we will introduce a notation and quote a fact well
known to the workers in this area. Given a presentation ω, we denote
by K(ω) the 2-polyhedron with a CW structure obtained via standard
procedure. The proof of the following can be found in P. Wright [13]
or S. Young [15].

Proposition 1. If π and ω are group presentations, then the
following are equivalent:

(1) π can be transformed to ω by the generalized Nielsen operations.

(2) K(π)
3↙↘K(ω).

3. Construction and properties of (M, +). Since our primary
interest is in contractible polyhedra, in the following we only construct
the monoid for contractible special polyhedra although the construction
can be carried out in the set of all special polyhedra.

Let P = {P 2|P a contractible, compact special polyhedron}. Define
an equivalence relation ∼ on P as follows. For P and Q in P, P ∼ Q
if and only if P 3-deforms to Q. Let M = {[P ]|[P ] the equivalence
class with representative P in P}. We shall define an abelian monoid
structure on M.

First, we define a binary operation + on P. Let P, Q ∈ P be disjoint,
and p ∈ P (1)−P (0), q ∈ Q(1)−Q(0). As an intermediate step we define

P 	
 Q = (P ∪ I ∪ Q)/p ∼ 0&q ∼ 1,

where I is the unit interval (Figure 1).

Take a small closed neighborhood of p ∈ P (1) which does not
intersect P (0). We denote this neighborhood by interval notation
[p − ε, p + ε]. Similarly for q ∈ Q(1). Now we expand P 	
 Q by two
2-dimensional elementary expansions from arcs [p− ε, p]∨ I ∨ [q − ε, q]
and [p, p+ε]∨I∨ [q, q+ε], respectively, where [p−ε, p] and [p, p+ε] are
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p q

P

Q

FIGURE 1.

subarcs of [p−ε, p+ε], and [q−ε, q] and [q, q+ε] subarcs of [q−ε, q+ε].
After expansions, we get a band B connecting P and Q, denoted by

P
B	
 Q. Since there are three sheets meeting along arc [p− ε, p + ε] in

P , we take any two of them and choose one small disk in each of the
chosen sheets such that each of the two chosen disks has as part of its
boundary the arc [p − ε, p + ε] (Figure 2).

Similarly for q ∈ Q(1) ⊂ Q. The two disks in P will be called D1(P )
and D2(P ). Likewise, D1(Q) and D2(Q) are for those two disks in Q.

Now we expand P
B	
 Q by two 3-dimensional elementary expansions

from disks D1(P )∪B∪D1(Q) and D2(P )∪B∪D2(Q), respectively, and

get a solid tube connecting P and Q, denoted by P
T	
 Q. By collapsing

P
T	
 Q by two 3-dimensional elementary collapses from disks D1(Q)

p + ε
p − ε

D P2( )

D P1( )
p

FIGURE 2.
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and D2(P ), respectively, we get P +Q, which is special with four more
vertices, eight more edges (1-cells), and three more 2-components. This
procedure is illustrated in four stages in Figure 3. By our construction
of P + Q, we see that P + Q 3-deforms to P 	
 Q and hence P + Q
is contractible if P and Q are. In P, this definition of P + Q is not
well-defined, but as far as M is concerned, it is, as we will show.

Now we define + on M by [P ] + [Q] = [P + Q].

Temporarily, (P + Q)pq will denote P + Q obtained relative to p, q
and (P 	
 Q)pq will denote P 	
 Q obtained relative to p, q. Our
construction shows that (P + Q)pq 3-deforms to (P 	
 Q)pq.

Lemma 2. (P +Q)pq 3-deforms to (P +Q)pq1
, where p in P (1)−P (0)

and q, q1 are distinct in Q(1) − Q(0).

Proof.

Case 1. q and q1 lie in the same component (1-cell) of Q(1) − Q(0).

(P 	
 Q)pq

3↙↘P ∪p ∆∪
3↙↘ (P 	
 Q)pq1 (Figure 4), where ∆ is the

2-cell obtained by expanding from arc qq1 ∪ Ipq, where Ipq is the arc
connecting P and Q at point p and q, and arc qq1 ⊂ Q(1).

Case 2. q and q1 lie in different, but adjacent, components of
Q(1) − Q(0).

We may extend the method developed in Case 1 to prove this case.

Case 3. The general case. By using Case 2 repeatedly, we get

(P 	
 Q)pq

3↙↘ (P 	
 Q)pq1
, and hence (P + Q)pq

3↙↘(P + Q)pq1
.

In fact, we can define (P 	
 Q)pq for any pair of points p in P and

q in Q, and by the proof of Lemma 2 we see that (P 	
 Q)pq

3↙↘
(P 	
 Q)pq1

because we may choose a simple path in Q joining q and
q1 in place of the arc qq1 ⊂ Q(1) as in the proof of the Lemma.

Lemma 3. P + Q 3-deforms to P + Q1 if Q 3-deforms to Q1 where
P , Q, and Q1 are special.
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p q

P

Q
p + ε

p − ε
q + ε

q − ε

P

Q

p + ε

p − ε

q + ε

q − ε

D P2( ) D Q2( )

D P1( ) D Q1( )

P

Q
solid tube

P

Q

The tube is hollowed out
except for band B.

D P1( ) D Q1( )

D P2( ) D Q2( )

is removed.

is removed.

FIGURE 3.
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p

qq1

p

qq1

∆

p

qq1

FIGURE 4.
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Proof. Since P + Q 3-deforms to P 	
 Q, and P + Q1 3-deforms
to P 	
 Q1, we only need to show that under the above hypothesis,
P 	
 Q 3-deforms to P 	
 Q1. First we extend the definition of X 	
 Y
to arbitrary compact, connected polyhedra X and Y as follows: Take
disjoint copies of X and Y ; then join them by an arc A such that the
intersection of X and A is an end point of A, and the intersection of Y
and A, the other.

Since Q 3-deforms to Q1, then there exists a finite sequence of
elementary collapses and expansions such that Q = X0 → X1 →
· · · → Xn = Q1. Take a copy of P which is disjoint from each Xi,
i = 0, . . . , n. We show inductively on i that P 	
 Xi 3-deforms to
P 	
 Xi+1, i = 0, . . . , n − 1. Let A = A0 and we will assume that we
have defined arcs A0, . . . , Ai such that our model for P 	
 Xj has Aj as
its joining arc, j = 0, . . . , i, and that we have shown P 	
 X0 3-deforms
to P 	
 Xi. We now show that P 	
 Xi 3-deforms to P 	
 Xi+1.

Case 1. Xi
e↗Xi+1 = Xi ∪Ck ∪Bk+1. By the remark right after the

proof of Lemma 2, we first adjust, via a 3-deformation, the arc Ai in
P 	
 Xi getting an arc Ai+1 so that the intersection of Bk+1 and Ai+1

is empty; then expand P 	
 Xi to P 	
 Xi+1 by adding Bk+1.

Case 2. Xi ↘e Xi+1, i.e., Xi = Xi+1∪Ck ∪Bk+1. Again, by the same
token, we adjust the arc Ai in P 	
 Xi getting another arc Ai+1 so
that the intersection of Bk+1 and Ai+1 is empty; then collapse P 	
 Xi

to P 	
 Xi+1 by removing Ck and Bk+1.

Proposition 4. The operation + on M is well defined.

Proof. This is an immediate consequence of Lemmas 2 and 3.

By Lemma 2, [P +Q] is independent of the choice of p in P (1) −P (0)

and q in Q(1) − Q(0). Lemma 3 shows that [P + Q] = [P + Q1] if
[Q] = [Q1]; hence [P + Q] = [P1 + Q1] if [P ] = [P1] and [Q] = [Q1].
This completes the proof.

Definition. We define the special polyhedron T1(1) by identifying
the edges of two disks as indicated below:
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FIGURE 5.

Remark. This T1(1) is what Ikeda called Abalone [7], and he denoted
it by F 1

1,1 [6]. He showed that it is a spine of the 3-ball.

Lemma 5. T1(1) is 1-collapsible.

Proof. For a proof, see Ikeda’s paper [6].

Proposition 6. [P ] + [T1(1)] = [P ] for all [P ] in M.

Proof. By Lemma 5, T1(1) 3-deforms to a point x. Then

P + T1(1)
3↙↘P 	
 T1(1)
3↙↘P 	
 x (by the proof of Lemma 3)
3↙↘P.

Theorem 7. (M, +) is an abelian monoid.

Proof. By Propositions 4 and 6, we know + is well-defined and has
identity [T1(1)]. The associativity and commutativity of + on M are
obvious from the construction.

In the following, we are going to discuss the significance of the monoid
(M, +) and find a possible way to calculate it.
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First we observe the following

Theorem 8. (M, +) is trivial if and only if (AC) is true.

Proof. This theorem is an easy corollary to P. Wright’s theorem:
Every contractible compact 2-polyhedron 3-deforms to a contractible
special one.

For a proof, see P. Wright’s paper [14], where he showed this holds
even without the assumption of contractibility, although we can provide
an alternate proof for this particular case.

Second, we mention an analogy between (M, +) and Cohen’s geomet-
ric construction of the Whitehead groups. For Cohen’s construction,
the reader is referred to [4]. To see the analogy between Cohen’s con-
struction and ours, we need an intermediate construction. Let K be a
contractible 2-polyhedron with a distinguished point v. Two such pairs

(K, v) and (L, v) are said to be equivalent if and only if K
3↙↘L rel v.

[K, v] is the equivalence class represented by (K, v). Define an addition
among those equivalence classes by [K, v] + [L, v] = [K ∪v L, v]. It
is easy to show that the set (M, +) of all equivalence classes of con-
tractible 2-polyhedra with a fixed distinguished point v becomes an
abelian monoid under this addition and is isomorphic to (M, +), but
Cohen’s method of defining inverses, which raises dimension, does not
work in our case. Our construction is obviously similar to his, but differs
from his in that we have restrictions on both dimensions of polyhedra
and deformations.

Since the construction of (M, +) is similar to Cohen’s construction of
Wh (L) and (M, +) is isomorphic to (M, +), it may be possible to use
similar methods of calculating Wh (L) to calculate (M, +).

Third, we observe a relationship of (M, +) to the group. Let Π =
{π|π a finite balanced special presentation for the trivial group}. Define
an equivalence relation on Π by π ∼ ω if and only if π

GNO−→ ω where
“π

GNO−→ ω” means that the presentation π can be transformed to the
presentation ω by a finite sequence of generalized Nielsen operations. It
is readily seen that this is an equivalence relation on Π. Let Γ = {[π]|[π]
equivalence class of π ∈ Π}. Following the pattern of what we did for
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(M, +), we shall give a monoid structure to Γ. First we define a binary
operation + on Π by π + ω = 〈X, Y | R, S〉 where π = 〈X | R〉
and ω = 〈Y | S〉 are in Γ, and X and Y are disjoint. Obviously,
π + ω = 〈X, Y | R, S〉 is a finite balanced special presentation for the
trivial group; hence π + ω is in Π. Extending this operation to Γ, we
define [π] + [ω] = [π + ω]. Γ with this operation + is denoted (Γ, +).
To see that (Γ, +) is a monoid, we define f : (M, +) → (Γ, +) by
sending [P ] to [ω(P )], where ω(P ) was a balanced special presentation
obtained from P by standard procedure. Then it is easy to show that f
is a bijection and maintains the operations; hence, (Γ, +) is an abelian
monoid isomorphic to (M, +).

In (Γ, +) the identity class is [〈x | x2x−1〉] because T1(1) 3-deforms
to the dunce hat which is K(〈x | x2x−1〉). Since (M, +) is trivial if
and only if (AC) is true, we have that (Γ, +) is trivial if and only if
(AC) is true. So here we get another version of (AC): Every balanced
special presentation for the trivial group can be reduced to the empty
presentation by the GNO’s. We refer to this version of (AC) as the
special version of (AC).

4. Special version of (AC). Here we will give a direct algebraic
proof of the equivalence of the two versions, i.e., the original version in
[2] and the special version named above.

Theorem 9. Any finite presentation can be reduced to a special
one by finitely many generalized Nielsen operations. Furthermore, a
balanced presentation is reduced by this procedure to a balanced special
presentation.

Proof. Let π = 〈x1, . . . , xn | r1, . . . , rm〉 be a finite group presenta-
tion. Let ki denote the total number of appearances of xεi

i , εi = ±1,
in {r1, . . . , rm}, i.e., the appearances of xi in {r1, . . . , rm} plus that of
x−1

i in {r1, . . . , rm}. For simplicity, we refer to this as the total ap-
pearances of xi in {r1, . . . , rm} hereafter. We may assume at the start
that there are no inverse pairs xεi

i x−εi
i in any rj , where εj = ±1 for all

i, for if there were such a pair, we could use (I−1) to get rid of it.

It is easy to see that for k1 = 0, 1, 2, 3, we can reduce π by a couple
of GNO’s to a new presentation such that each of x1 and a possible
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new generator has exactly three appearances in total. From now on,
we shall assume k1 ≥ 4. In this case,

π −→ 〈x1, . . . , xn, a1,1 | r1, . . . , rm, a1,1x
−1
1 〉 (by using (V) once)

−→ 〈x1, . . . , xn, a1,1 | r′1, . . . , r′m, a1,1x
−1
1 〉

(by using (I) (V) several times)

where {r′j , j = 1, . . . , m} is obtained from {rj , j = 1, . . . , m} by
replacing all but two xε1

1 by aε1
1,1. So at this point, the total appearances

of x1 in the new set of relators are three and the total appearances of
a1,1 in the new set of relators are k1−1 while ki, i = 2, . . . , n are fixed.
Since k1 ≥ 4, k1 −1 ≥ 3. If k1 −1 = 3, then we can now turn to k2 and
start from the very beginning. If k1 − 1 ≥ 4, we just repeat the above
procedure by introducing a1,2 as a generator, and a1,2a

−1
1,1 as a relator.

By doing this k1 − 3 times, we shall reach the point where in the new
set of relators the total appearances of each of x1, a1,1, . . . , a1,k1−3 are
three while all ki, i = 2, . . . , n, remain unchanged.

Now we repeat for k2, then k3, and so on. Finally, we will get the
desired special presentation.

Furthermore, from the above argument, we see that whenever we
introduce a new generator, we introduce a new relator. So if we start
with a balance presentation, we shall end up with a balanced special
presentation.

For example, we may apply the method given in the proof of Theo-
rem 9 to reduce the presentation 〈x, y | x3yx−2y−1, y3xy−2x−1〉 to a
balanced special presentation of ten generators. This presentation has
been suggested as a counterexample to (AC) (cf. [10] and [15]).

By Theorem 9, it is easy to see the equivalence of the original (AC)
and the special version of (AC).

Since given a balanced special presentation we do not know whether it
represents the trivial group, so we rephrase (AC) as follows and denote
it as (AC)′: Let π = 〈x1, . . . , xn | r1, . . . , rn〉 be a balanced special
presentation. Then π is either nontrivial, or may be reduced to the
empty presentation by the generalized Nielsen operations.

Theorem 10. (AC)′ is true if n = 1, 2, 3.
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Proof. The case n = 1 is very easy and is left to the reader. The proof
of the cases n = 2, 3 are based on a discussion of several subcases.

Let π be a balanced special presentation with two or three generators.
Given r as a relator in π, denote by l(r) the total number of appearances
of generators in r, e.g., l(r1r

−2
1 ) = 3. There is no loss of generality in

assuming that l(r1) ≤ l(r2) where r1, r2 are the two relators in π for
the case n = 2, and l(r1) ≤ l(ri), i = 2, 3, where r1, r2, and r3 are the
three relators in π for the case n = 3.

In each of the two cases n = 2, 3, we need to consider the following
three cases l(r1) = 1, 2, and 3. The case l(r1) = 1 is easy to verify for
both n = 2 and 3. The case l(r1) = 2 is divided into three subcases,
and the case l(r1) = 3, four subcases in both cases n = 2 and 3. The
verification of these cases and subcases is left to the interested reader.
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