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PHASE PORTRAITS FOR QUADRATIC SYSTEMS
HAVING A FOCUS AND ONE ANTISADDLE

JOAN C. ARTÉS AND JAUME LLIBRE

ABSTRACT. We determine all possible phase portraits for
quadratic systems having a focus and one antisaddle modulus
limit cycles and antisaddle behavior.

1. Introduction. In 1984 Cherkas and Gaiko [9] proved that if a
quadratic system has a focus (or a center) at the origin and no other
finite critical point except an antisaddle (an elementary critical point
with index +1), it can be transformed by a linear change of variables
into the form

(1)
x′ = αx − y − αx2 + (a + αγ)xy + (b − γ + cα)y2 = P (x, y),
y′ = x + αy − x2 + (γ − aα)xy + (αγ + c − bα)y2 = Q(x, y),

where

(2) b2 − 4(a − 1)c < 0 and a > 1.

When α = 0 and the three focal quantities at (0, 0) are zero, the origin
is a center. In general, the problem of separating a focus from a center,
and once the focus is separated from the center, to discriminate the
order and stability of the nonhyperbolic (weak) focus, is not easy. For
quadratic systems this problem was solved partially by Kapteyn [17]
and completely by Bautin [6] (see also Li Chengzhi [19]), by using the
three independent focal quantities associated to a center of a quadratic
system.

Also, for suitable values of the parameters, the antisaddle of system
(1) can become a center. Since the quadratic systems having a center
were classified by Vulpe [30] we do not consider them in this paper.

Our main result is the following one.
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FIGURE 1. The 29 phase portraits on the Poincaré disc of the quadratic
systems having one focus and one antisaddle different from a center. Here
◦ denotes a focus surrounded by perhaps several limit cycles, and • denotes
either ◦ or a node.

Theorem A. The phase portrait of any quadratic system having
one focus and one antisaddle different from a center is topologically
equivalent to one of the 29 configurations of Figure 1 without taking into
account limit cycles and the nature of the antisaddle. Moreover, each
of the configurations of Figure 1 is realizable for a quadratic system.
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Theorem A is proved in the next section.

Other families of quadratic systems have been studied: bounded
quadratic systems (see [14] and [10]), homogeneous quadratic systems
(see [21], [13], and [29]), quadratic systems having a star nodal point
[7], chordal quadratic systems [15], quadratic systems with a unique
finite critical point [11], quadratic systems with a weak focus of third
order [4], quadratic systems with four finite critical points and one
invariant straight line (see [5] and [27]), Hamiltonian quadratic systems
[1], gradient quadratic systems [2], . . . . For more information on
quadratic systems and their applications, see the good bibliographical
survey of J.W. Reyn [25] containing a summary of approximately 600
papers on quadratic systems.

2. Proof of Theorem A. Let

(3)

x′ =
2∑

i+j=0
i,j≥0

aijx
iyj = P (x, y),

y′ =
2∑

i+j=0
i,j≥0

bijx
iyj = Q(x, y),

be a quadratic system. If (x0, y0) is a critical point of (3), then x0 is a
root of the resultant of P and Q with respect to y, i.e., of R(P, Q)(x) =
Ax4+Bx3 +Cx2+Dx+E; and y0 is a root of the resultant of P and Q
with respect to x, i.e., of R(P, Q)(y) = A′y4 + B′y3 + C ′y2 + D′y + E′.
We remark that

(4) A = A′ =
∣∣∣∣ a20 a02

b20 b02

∣∣∣∣
2

−
∣∣∣∣ a20 a11

b20 b11

∣∣∣∣
∣∣∣∣ a11 a02

b11 b02

∣∣∣∣ .

Proposition 1. A quadratic system with a focus or a center and no
other finite critical point except an antisaddle has A < 0.

Proof. From [9] such a quadratic system can be written as system (1)
satisfying conditions (2). The resultant of P (x, y) and Q(x, y) in (1)
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with respect to the variable x is Ay4 +B′y3 +C ′y2 where A is given by
(4). Notice that the coefficient of y and the independent term of the
above resultant are zero because (0, 0) and (0, 1) are critical points of
system (1). After some easy calculations from (2), we have

C ′ = −(α2 + 1)2(a − 1) < 0,

B′2 − 4AC ′ = a2(α2 + 1)4[b2 − 4(a − 1)c] < 0.

Hence, A < 0.

As usual, we compactify the quadratic system to a system on the
Poincaré sphere, obtaining two copies of the phase portrait, one on
the northern hemisphere and the other on the southern hemisphere.
The equator S1 of the Poincaré sphere is invariant for the compactified
system, and the critical points of the compactified system on S1 are
called infinite critical points of the quadratic system; for more details
see, for instance, [16]. We represent the phase portrait of any quadratic
system on the closed northern hemisphere of the Poincaré sphere, also
called the Poincaré disc.

In order to obtain the analytic expression of the compactified system,
the sphere S2 is considered as a differential manifold. We consider six
local charts given by Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0}
for k = 1, 2, 3. The corresponding coordinate maps Fk : Uk → R2

and Gk : Vk → R2, are defined by Fk(y) = Gk(y) = (ymy−1
k , yny−1

k ) for
m < n and m, n �= k. We shall denote by z = (z1, z2) the value of Fk(y)
or Gk(y) for any k, so that z represents different things according to
the local chart that we are considering. Note that the points of S1 in
any local chart have z2 = 0.

The compactified system in the local chart (U1, F1) is given by

(5)
z′1 = z2

2

[
− z1P

(
1
z2

,
z1

z2

)
+ Q

(
1
z2

,
z1

z2

)]
,

z′2 = −z3
2P

(
1
z2

,
z1

z2

)
.
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The expression for (U2, F2) is

(6)
z′1 = z2

2

[
P

(
z1

z2
,

1
z2

)
− z1Q

(
z1

z2
,

1
z2

)]
,

z′2 = −z3
2Q

(
z1

z2
,

1
z2

)
,

and for (U3, F3) is

z′1 = P (z1, z2), z′2 = Q(z1, z2).

For k = 1, 2, 3, the expression in (Vk, Gk) is the same as that in
(Uk, Fk) multiplied by −1.

In this paper we say that the phase portraits of two quadratic systems
are topologically equivalent if there exists a homeomorphism of the
Poincaré sphere carrying orbits of one phase portrait onto orbits of
the other one, preserving sense but not necessarily parameterization.

After proving the next proposition, we saw that it follows from
Theorem 12 of Reyn [24] but for the sake of completeness we will
prove it.

Proposition 2. The infinite critical points of any quadratic system
with A �= 0 have nonzero eigenvalues associated to the eigenvector
transversal to infinity.

Proof. Let (z1, 0) be an infinite critical point of (3) in the local chart
U1. Then z1 is a root of the polynomial

F (z) = Q2(1, z) − zP2(1, z),

where P2 and Q2 are the homogeneous parts of P and Q of degree 2
(see (5)). Therefore,

(7) F (z) = −a02z
3 − (a11 − b02)z2 − (a20 − b11)z + b20.

From (5) the eigenvalue associated to the eigenvector transversal to
infinity at (z1, 0) is

−P2(1, z1) = −(a02z
2
1 + a11z1 + a20).
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So, from (7), this eigenvalue will be zero if and only if z1 satisfies

(8)
a02z

2 + a11z + a20 = 0,

b02z
2 + b11z + b20 = 0.

We claim that if system (8) has a solution then A (defined in (4)) is
zero. Therefore, from the claim, the proposition follows for the infinite
critical points in U1.

Now we shall prove the claim. First, if a02 = b02 = 0, then A = 0 (see
(4)). Suppose that a02 = 0 and b02 �= 0, the case a02 �= 0 and b02 = 0
follows in a similar way. Clearly A = 0 if a11 = a20 = 0. Therefore,
in order that system (8) has a solution z1 = α, we must assume that
a11 �= 0. Then system (8) becomes

a11(z − α) = 0, b02(z2 − (α + β)z + αβ) = 0,

with α = −a20/a11, b11 = −b02(α + β) and b20 = b02αβ. Therefore

A =
∣∣∣∣−a11α 0
b02αβ b02

∣∣∣∣
2

−
∣∣∣∣−a11α a11

b02αβ −b02(α+β)

∣∣∣∣
∣∣∣∣ a11 0
−b02(α+β) b02

∣∣∣∣ = 0.

Hence, we can assume that a02 �= 0 and b02 �= 0, and consequently,
system (8) goes over to

a02(z − α)(z − β) = 0,

b02(z − α)(z − γ) = 0,

with a11 = −a02(α + β), a20 = a02αβ, b11 = −b02(α + γ) and
b20 = b02αγ. Therefore

A =
∣∣∣∣ a02αβ a02

b02αγ b02

∣∣∣∣
2

−
∣∣∣∣ a02αβ −a02(α+β)
b02αγ −b02(α+γ)

∣∣∣∣
∣∣∣∣−a02(α+β) a02

−b02(α+γ) b02

∣∣∣∣ = 0.

In short, we have proved the claim.

To end the proof of the proposition we need to show that if the origin
of the local chart U2 is an infinite critical point then its eigenvalue
associated to the eigenvector transversal to infinity is nonzero.
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Let (z1, 0) be an infinite critical point of (3) in the local chart U2.
Then z1 is a root of the polynomial

G(z) = P2(z, 1) − zQ2(z, 1),

(see (6)); i.e.,

G(z) = −b20z
3 − (b11 − a20)z2 − (b02 − a11)z + a02.

From (6) the eigenvalue associated to the eigenvector transversal to
infinity at (z1, 0) is

−Q2(z1, 1) = −(b20z
2
1 + b11z1 + b02).

So, from G(z1) = 0, this eigenvalue will be zero if and only if z1 satisfies

(9)
a20z

2 + a11z + a02 = 0,

b20z
2 + b11z + b02 = 0.

Now we need to show that if z1 = 0 is a solution of system (9), then
A = 0. Since the solution 0 implies a02 = b02 = 0, from (4) it follows
immediately that A = 0.

A critical point (x0, y0) is called elementary if

det
∣∣∣
(x0,y0)

=
∂P

∂x
(x0, y0)

∂Q

∂y
(x0, y0) − ∂P

∂y
(x0, y0)

∂Q

∂x
(x0, y0) �= 0.

It is well-known that an elementary critical point must be either a
saddle, a node, a focus or a center. The critical point is called semi-
elementary if det |(x0,y0) = 0 and

tr
∣∣∣
(x0,y0)

=
∂P

∂x
(x0, y0) +

∂Q

∂y
(x0, y0) �= 0.

The semi-elementary critical points can only be either a saddle, a node
or a saddle-node. For more details on elementary and semi-elementary
critical points, see [3].

From the well-known Poincaré-Hopf theorem (see, for instance, [18]),
we have that if the compactified system on the Poincaré sphere S2
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associated to system (3) has finitely many critical points, then the sum
of the indices of all its critical points is equal to 2. Now we will apply
this result to our quadratic system (1).

First we will show that the compactified system associated to system
(1) has finitely many critical points. We know that system (1) has only
two finite critical points. From (5) the infinite critical points (z1, 0) of
(1) in the local chart U1 must be roots of the polynomial

F (z) = Q2(1, z) − zP2(1, z)
= −(−γ + b + cα)z3 + (−a + c − bα)z2

+ (α + γ − aα)z − 1.

Since F (z) is not identically zero it follows that there are at most
three infinite critical points on U1. Therefore, from (5) and (6) system
(1) has at most three pairs of diametrically opposite infinite critical
points. Notice that if system (1) has an infinite critical point, then its
diametrically opposite point on the Poincaré sphere is also critical and
has the same local phase portrait reparameterized in converse sense. In
particular, an infinite critical point and its diametrically opposite have
the same index.

Since both finite critical points of system (1) have index 1, the sum
of the indices of the critical points on the northern and southern open
hemispheres for the compactified system associated to (1) is 4. As the
sum of the indices of all its critical points is 2, it follows that the sum
of the indices of all its infinite critical points is −2.

From Propositions 1 and 2 we get that all infinite critical points of
system (1) are elementary or semi-elementary, and since the sum of
their indices is −2, we only have the following three possibilities for the
infinite critical points of system (1):

(A) a pair of diametrically opposite saddles,

(B) one pair of diametrically opposite saddles and one pair of
diametrically opposite saddle-nodes,

(C) two pairs of diametrically opposite saddles and one pair of
diametrically opposite nodes.

Notice that from Coll [12] (see also [26]) it is not possible to have a
quadratic system with one pair of diametrically opposite saddles and
two pairs of diametrically opposite saddle-nodes at infinity.
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A B C

FIGURE 2. Local behavior at infinity; 2 separatrices for Case A and 4 for
Cases B and C.

The closed northern hemisphere of the Poincaré sphere is called the
Poincaré disk. As usual we draw the phase portrait of a polynomial
system on the Poincaré disk.

The local behavior of the flow of system (1) in a neighborhood
of infinity is given in Figure 2 according with the Case A, B or C.
We remark that the saddle-nodes at infinity with non-zero eigenvalue
associated to the eigenvector transversal to infinity must have local
phase portrait as in Figure 2(B), for more details see Theorem 65 of
[3].

From the local behavior of the flow of system (1) in a neighborhood of
infinity, we will prove that only the 29 phase portraits (modulus limit
cycles) given in Figure 1 are realizable for system (1); 3 in Case A and
13 for each of the Cases B and C. For more details, see [20] and [22].

In Case A we have two separatrices of the two saddles at infinity
contained in the interior of the Poincaré disc, one stable γs and one
unstable γu, and two finite critical points with index +1 (nodes or
foci). We must try to find the α-limit of γs and the ω-limit of γu. The
α-limit of γs can only be the focus, the antisaddle or the saddle point
at infinity with separatrix γu, thus γs = γu in the latter case. Each
one of these options forces the ω-limit of γu, giving the phase portraits
A.1, A.2 and A.3.

In Case B there are two pairs of infinite critical points, the pair s
and s′ of saddles and the pair sn and sn′ of saddle-nodes. They define
four separatrices contained in the interior of the Poincaré disc, two
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stable γs1 , γs2 and two unstable γu1 , γu2 . Moreover, we have two finite
critical points with index +1 (nodes or foci). The pair of saddle-nodes
at infinity defines two parabolic sectors contained in the interior of
the Poincaré disc, one stable and the other unstable. If we follow
the infinity S1 in counterclockwise direction, we find the above four
separatrices with the following ordering γs1 , γs2 , γu1 and γu2 . The
separatrices γs1 and γu1 are defined by the pair of saddle-nodes at
infinity, and the separatrices γs2 and γu2 by the pair of saddles at
infinity. The attractor parabolic sector has γs1 as a separatrix and the
repellor parabolic sector has γu1 as a separatrix. We must find the
α-limit of γs1 and γs2 and the ω-limit of γu1 and γu2 .

From Lemma 11.5 of [31] it follows for quadratic systems that a
noninvariant straight line under the flow passing through a finite critical
point and ending at a pair of infinite critical points cannot contain any
other finite critical point. Since one of the two finite critical points of
system (1) is a focus, it follows that there must exist a straight line M
ending at the pair of infinite saddles which separates the plane into two
open half-planes, each one containing one finite critical point. In what
follows we denote by r and l the two finite critical points. Moreover,
we may assume that l is the focus and r is the antisaddle (the other
possibility would follow by doing an axial symmetry with respect to the
straight line M). We say that an orbit has α- or ω-limit R (respectively
L) when its α- or ω- limit is either the point r (respectively l) or a limit
cycle surrounding it.

Suppose that R is the α-limit of γs2 . Then γs1 may have up to five
different α-limits, namely,

(1) R,

(2) sn′ and γs1 = γu1 ,

(3) sn′ and γs1 �= γu1 ,

(4) s′ and γs1 = γu2 ,

(5) L.

Once its α-limit is decided, both unstable separatrices γu1 and γu2 have
forced their ω-limits. These five different possibilities give the phase
portraits B.1, B.2, B.3, B.4 and B.5.

Suppose that sn′ is the α-limit of γs2 and γs2 = γu1 . Since the
sum of the indices of the critical points inside the graphic formed by
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γs2 = γu1 , s, sn′ and the orbit at infinity going from s to sn′, is +1
(see for instance [23, p. 279]), r is the unique critical point inside such
a graphic. Then γs1 may have up to three different α-limits, namely

(1) sn′ and γs1 �= γu1 ,

(2) s′ and γs1 = γu2 ,

(3) L.

These three different possibilities give the phase portraits B.6, B.7 and
B.8.

Assume that sn′ is the α-limit of γs2 and γs2 �= γu1 . By similar
arguments to the ones of the previous case, r is the unique critical
point inside the region bounded by γs2 , s, sn′ and the orbit at infinity
going from s to sn′. Then γs1 may have up to three different α-limits,
namely

(1) sn′ and γs1 �= γu1 ,

(2) s′ and γs1 = γu2 ,

(3) L.

These three different possibilities give the phase portraits B.9, B.10 and
B.11.

Assume that s′ is the α-limit of γs2 . Then γs2 = γu2 is an invariant
straight line by the flow (see [28]). Consequently, we get the phase
portrait B.12.

Suppose that L is the α-limit of γs2 . Then γs1 may have up to five
different α-limits, namely,

(1) R,

(2) sn′ and γs1 = γu1 ,

(3) sn′ and γs1 �= γu1 ,

(4) s′ and γs1 = γu2 ,

(5) L.

However, we will see that the former four cases are not possible. From
the proof of Lemma 11.5 of [31], it follows for quadratic systems that a
noninvariant straight line under the flow ending in two infinite critical
points, can only have one contact point (i.e., the vector field at that
point is tangent to the straight line). If we draw the phase portraits in
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the first four cases, we get that on the straight line M (going from s to s′

and separating the points r and l), there are at least two contact points,
a contradiction. Then, the possibility (5) forces the phase portrait B.13.

Case C can be argued exactly in the same way as Case B, just
substituting the behavior of the nodal sectors at infinity in Case B
by the nodal points in Case C.

We can realize all 29 cases. First we realize the 3 phase portraits of
Case A, and all 13 of Case B. Either by a perturbation of these systems
or by proceeding in a similar way, we can realize the 13 phase portraits
of Case C.

Let γ = b + cα, a = 2, b = 0 and c = 1. Then system (1) has phase
portrait

A.1. if α = −0.1,

A.2. if α = 0,

A.3. if α = 0.1.

Let a = 3, b = 1, γ = b + cα and c be the convenient real solution of

α2c2 − 2(aα2 − bα − α2 − 2)c + (aα − b)2 − 2aα2 − 2bα + α2 = 0.

Then system (1) has phase portrait

B.1. if α = −0.1,

B.2. if α = 0,

B.3. if α = 0.1,

B.4. if α ≈ 0.134,

B.5. if α = 0.2.

Similarly, let a = 3, b = 1, γ = b + cα and c = a + bα. Then system
(1) has phase portrait

B.13. if α = −0.1,

B.12. if α = 0,

B.11. if α = 0.1,

B.10. if α ≈ 0.2534,

B.9. if α = 0.3.
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In the first group, we have put a saddle on the point (0, 0) of the local
chart U2 while, in the second group we have put a saddle-node there.
If we put in both cases a saddle, or a saddle-node on the point (0, 0)
of the local cart U2, then the coefficients become more complicated.
However, as it is possible to have both cases in this same position, then
we deduce, by continuity arguments that there must exist Cases B.6
and B.8, the former by continuity between the Cases B.3 and B.9, and
the latter by continuity between the Cases B.5 and B.11.

Finally, Case B.7 appears in the following way. Shen Bo-qian [8]
proves that the system

x′ = α1(xy − 1) + β1 + β2x + β3x
2,

y′ = α2(xy − 1) − β3 − β2y − β1y
2,

has the hyperbola xy = 1 as an integral curve. Moreover, if β2
2 −

4β1β3 < 0, then there are only two foci and no other finite critical
points. Then, for example, if α2 = β1 = β3 = 2, α1 = −3 and β2 = 0,
we have exactly one infinite saddle and one infinite saddle-node with
nonzero eigenvalue associated to the eigenvector transversal to infinity.
So Case B.7 is realizable. This case is not written as system (1) but a
change of variables can bring it to such a natural form.

Finally, we remark that reversing the orientation of the orbits, the
phase portraits A.1 and A.3, and C.i and C.14-i for i = 1, . . . , 6, are
topologically equivalent.
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