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ABELIAN GROUPS WITH SEMI-SIMPLE
ARTINIAN QUASI-ENDOMORPHISM RINGS

ULRICH ALBRECHT

1. Introduction. In 1937, Baer published a paper which can still be
considered as probably the most important contribution to the theory
of torsion-free abelian groups [8]. In it, he gave a complete set of
numerical invariants for the subgroups of the rational numbers, Q,
and their direct sums. Particular attention was given to homogeneous
completely decomposable groups, which are groups of the form &;A
for some subgroup A of Q. Baer’s investigations resulted in a series
of splitting properties for these groups, which have become important
tools in the discussion of torsion-free abelian groups of finite rank [10,
Section 86].

Because of this, the question arose whether it is possible to replace
the subgroup A of Q in the definition of a homogeneous completely
decomposable group by a more general group without losing the previ-
ously mentioned splitting properties. Although it soon became appar-
ent that some restrictions on A are needed, it was not until 1975 that
Arnold and Lady showed that the most natural way to introduce these
restrictions is in terms of the endomorphism ring, E(A) of A.

Following their approach, we consider a torsion-free abelian group
A and call a group PA-projective of finite A-rank if P is a direct
summand of A™ for some n < w. If G is an abelian group, then
Sa(G) = (f(A) | f € Hom (A, GQ)) is the A-socle of G, while R4(G) =
N{ker f | f € Hom (G, A)} denotes the A-radical of G.

[6,2] and [3] were mainly concerned with the splitting and quasi-
splitting of exact sequences of the form 0 — P = G % B 50

and 0 - B > G ﬁ) P — 0 in which P is a quasi-summand
of an A-projective group of finite A-rank. We say that A has the
radical-splitting property if every such sequence 0 — P = G with
a(P) N R4(G) = 0 quasi-splits, while A has the finite quasi-Baer-
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splitting property if every sequence of the form 0 - B 3 G ﬁ) P—0
with a(B) + Sa(G) = G quasi-splits.

However, these efforts failed to capture one of the most important
properties of homogeneous completely decomposable groups of finite
rank, namely that their pure subgroups are direct summands [10,
Lemma 86.8]. The author and Goeters attempted to recover this prop-
erty in [4] but the obtained results were not completely satisfactory.
Several of the difficulties encountered in [4] can be avoided if we follow
the approach taken in [2] and [3], and consider the following quasi-
version of [10, Lemma 86.8]: We say that a torsion-free group A has
the socle splitting property if every exact sequence 0 — B — A" with
n < w and Sa(B) = B quasi-splits. A torsion-free group of finite
rank with the socle splitting property clearly has the radical splitting
property, too. However, the converse fails in general.

In Section 2, we investigate the socle splitting property in conjunction
with the finite quasi-Baer-splitting property. Theorem 2.3 yields that
the socle splitting- and the finite quasi-Baer-splitting property for
A, together, imply that the quasi-endomorphism ring, QFE(A), of
A is semi-simple Artinian, provided A is self-small, i.e., Hom (A4, —)
preserves direct sums of copies of A (for details on self-small groups,
see [7]). Because of Corollary 2.4, a strongly indecomposable group A
of finite rank has the socle-splitting property if and only if QE(A) is a
division algebra. In contrast, every strongly indecomposable group A
has the radical- and the finite quasi-Baer splitting property.

The results of Section 2 raise the immediate question of whether
there are groups with the socle splitting property which do not have
the quasi-Baer splitting property. Such groups are constructed as a
consequence of Theorem 3.1, which completely determines the structure
of the torsion-free groups of finite rank which have the socle-splitting
property. This structure result is used in Corollary 3.3 to construct a
group A of rank 3 which has the socle-splitting property, but whose
quasi-endomorphism ring is not semi-simple Artinian. In particular,
this group A does not have the finite quasi-Baer-splitting property.

As an application of the results of this paper, we discuss the relation
between the class of quasi-summands of A-projective groups of finite A-
rank and the class of groups which are quasi-isomorphic to A-projective
groups of finite A-rank. While the latter class is a subclass of the
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former, the converse fails, in general, as is shown in Section 4.

Another application of the results in the first two sections of this
paper was found during the Oberwolfach conference on abelian groups
in 1989, where Hausen and the author used them to determine the
torsion-free abelian groups A of finite rank without proper, nonzero
fully-invariant quasi-summands, such that A™ has the quasi-summand
intersection property for all 0 < n < w.

The notation of this paper is the standard one which was introduced
in [5] and [10]. The symbol w denotes the first infinite ordinal and
all maps are written on the left. In particular, = and ~ denote quasi-
equality and quasi-isomorphism, respectively.

2. Semi-simple quasi-endomorphism rings. We consider an
abelian group A and define an adjoint pair (H4, T4 ) of functors between
the category A of abelian groups and the category Mpa) of right
E(A)-modules. If G is an abelian group, then the group H4(G) =
Hom (A, Q) carries a natural right E(A)-module structure which is
induced by composition of functions. Since A itself is a left F(A)-
module, Ta(M) = M ®pg4) A defines an abelian group for all M €
Mp(ay. There exist natural maps g : TaHA(G) — G and ¢ :
M — HsTa(M) for all G € A and M € Mg4) which are defined
by fc(a ® a) = a(a) and [pp(m)](a) = m @ a for all a € Hy(G),
m € M, and a € A. The maps 65 and ¢,; are isomorphisms, if G is
A-projective of finite A-rank, and M is a finitely generated projective
right E(A)-module [6].

Before we begin our discussion of the socle splitting property, we
shortly summarize the results of [2] which are needed in the following.

Lemma 2.1 [2, Proposition 2.1]. Let A be a torsion-free abelian
group.

(a) The functors Ha and T4 preserve quasi-isomorphisms and quasi-
splitting homomorphisms.

(b) If B and G are abelian groups, such that B is a quasi-summand
of G, and O s a quasi-isomorphism, then Op is a quasi-isomorphism.

Furthermore, we obtained the following description of the self-small
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torsion-free abelian groups with the finite quasi-Baer-splitting property:

Proposition 2.2 [2, Corollary 2.5]. The following conditions are
equivalent for a self-small torsion-free abelian group A:

(a) A has the finite quasi-Baer-splitting property.

(b) If I is a right ideal of E(A) such that A/IA is bounded, then
E(A)/I is bounded as an abelian group.

Condition (b) is obviously satisfied if QFE/(A) is semi-simple Artinian.
Moreover, groups with semi-simple Artinian quasi-endomorphism rings
arise immediately if we consider the socle splitting property in conjunc-
tion with the finite Baer-splitting property:

Theorem 2.3. A torsion-free abelian group A has a semi-simple
Artinian quasi-endomorphism ring, if and only if A is self-small and
has the finite quasi-Baer- and the socle-splitting property.

Proof. Suppose that QE(A) is semi-simple Artinian. It remains to
show that A has the socle-splitting property. We consider an exact
sequence 0 — B 3 A" where n < w and Sa(B) = B. It induces

the exact sequence 0 — Q ®z H4(B) “a@Ha(e) Q ®z Ha(A™) of
right QE(A)-modules. Since QE(A) is semi-simple Artinian, there is
a QE(A)-module homomorphism v : Q ®z Ha(A") - Q ®z Ha(B)
with ¢ (idq ® Ha(c)) = idqQe, Ha(B)- Using the fact that H,(A™) is
finitely generated as an E(A)-module, we can find a nonzero integer m
with my(Ha(A™)) C Ha(B). Thus, my : Ha(A™) — H4(B) satisfies
(my)Ha(a) =m - idy,(B)-

We obtain the following commutative diagram whose rows are ex-
act:

TaHA(B) e Ty Ha (A™)

JOB ngAn

0 B = A"

Choose a nonzero integer k with kB C S4(B) = imfp C B and define
amap 3 : A" — B by f = 0pTa(m)0 (k- idan). If z € B,
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then there is a y € TaH4(B) with 0p(y) = kz. Hence, fa(z) =
05Ta(my)0400p(y) = 05Ta(m - idy,(3)(y) = Op(my) = (mk)a.
Thus, Sa = (mk) - idp and « quasi-splits.

Conversely, suppose that A is self-small and satisfies the two quasi-
splitting properties. Let I be a right ideal of QE(A) and set J =
INE(A). We have that J is a right ideal of E(A) with QJ = I. There

exists an exact sequence 0 — U > F L 50o0f right F(A)-modules
in which F is free. Define a map 6 : T4(J) = JA by §(j ® a) = j(a)
for all j € J and a € A.

Since A has the socle splitting property J, A is a quasi-summand of A.
Because A has the finite quasi-Baer-splitting property, the epimorphism
0Ta(B) : Ta(F) — JA quasi-splits. Choose a nonzero integer m and a
homomorphism ¢ : JA — T4 (F) with 6T4(B)y = m-idj4. We obtain
the diagram

HATy(F) et Hy(JA)
I%SF [j.}
F —2 L g0

in which j; is the evaluation map. For all x € F and a € A, we

have [H4(674(8))¢r(z)l(a) = [6T4(B)¢r(2)l(a) = §Ta(B)(z ® a) =
§(B(z) ® a) = [B(z)](a) = [jsB(x)](a). Thus the diagram commutes.

Hence,

JiBéE Ha()js = Ha(STa(B))drér" Ha(v)js
= HA(éTA(B)¢)]J = (m : idHA(JA) )]J
- jJ (m - idJ).

Since j; is one-to-one as an evaluation map, (B¢p' Ha(v))js = m -

idJ. Moreover, ]J,Bgﬁ;.lHA((ﬁ) = HA((STA(ﬁ))(ﬁF(f);lHA('l/)) = HA(m .
idya) = m - idg ,(ya). Thus, j; is a quasi-isomorphism.

Consider the inclusion Ay : J — E(A). The inclusion map Aj4 :
JA — A quasi-splits since A has the socle splitting property. For all
z € J and all a € A, we have [Ha(Asa)js(2)](a) = [Asaj(z)](a) =
)\JA(I(U/)) = x(a) Thus, HA()\JA)jJ = )\J. Since jJ is a quasi—
isomorphism, and Aj4 quasi-splits, the map \; : J — E(A) quasi-
splits by Lemma 2.1. Then, I = QJ is a direct summand of QE(A).
In particular, QFE(A) is semi-simple Artinian.
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Corollary 2.4. Let A be a strongly indecomposable group whose
endomorphism ring has finite rank. Then, A has the socle splitting
property if and only if QE(A) is a division algebra.

Proof. Every strongly indecomposable torsion-free group whose endo-
morphism ring has finite rank has the finite quasi-Baer-splitting prop-
erty by [2]. If A has the socle splitting property, then F(A) is semi-
simple Artinian by Theorem 2.3. The fact that A is strongly indecom-
posable yields that QE(A) does not have any nontrivial idempotents.
However, a semi-simple Artinian ring with this property has to be a
division algebra. Conversely, if QE(A) is a division algebra, then A
has the socle splitting property by Theorem 2.3. ]

Furthermore, the arguments used in the proof of Theorem 2.3 can be
used to verify

Corollary 2.5. Let A be a torsion-free abelian group whose quasi-
endomorphism ring is semi-simple Artinian. The evaluation map
Jr : Ha(IA) is a quasi-isomorphism for all right ideals I of E(A).

3. The finite rank case. A family {4,,...,A,} of torsion-free
abelian groups is almost rigid if the following conditions are satisfied
for all indices 4,5 € {1,... ,n}:

(i) If Ra,(A;) =0, then i = j.

(i) If Uy,...,U;-1,Uit1,...,U, are subgroups of A; with
Ry, (A;/U;j) = 0 for j # i, then A;/(N;xU;) is quasi-isomorphic to
EB]'#A;j for some indices 81, ... ,8; 1,8i41,--- ,5n < W.

Theorem 3.1. The following conditions are equivalent for a torsion-
free abelian group A of finite rank:

a) A has the socle-splitting-property.

b) If 0 = B = G is an exact sequence of torsion-free abelian groups,
where B has finite rank, Ss(B) = B and a(B) N R4(G) = 0, then B
s a quasi-summand of G.

c) A~ AT ®--- @A where {Aq,... , A} is an almost rigid family
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of strongly indecomposable groups whose quasi-endomorphism ring is a
division algebra.

Proof. a) = b). There exists a homomorphism 3 : G — A’ for some
index-set I such that Ker § = R4(G). If J is a subset of I, then denote
the canonical projection AT — A7, whose kernel is AT\’ by ;.

Suppose that 7;8a is not a monomorphismm if J is a finite subset
of I. Since Ba is one-to-one, there is a jo € I with m;,8a # 0. If we
have found indices jo,... ,j, € I such that U, = N?_yker (7;,Ba) # 0,
then choose a nonzero = € U,, and an index jn+1 € I\{jo,--- ;Jn} with
Tj..1Ba(x) # 0. By our assumption, ﬂ?:olker (mj;Ba) # 0. We obtain
a properly descending chain Uy D --- D U, D ... of infinite length of
pure subgroups of B, which is not possible since B has finite rank.

Thus, there exists a finite subset J of I such that the map 78« is
one-to-one. By a), there exist a nonzero integer s and amap § : A7 — B
with 67TJBO[ =S idB.

b) = ¢). Suppose A ~ AT @ --- ® A"~ where the Als are nonzero
strongly indecomposable, and A; ~ A; only if i = j. Since A, is a quasi-
summand of A, we have S4(A4;) = A;. Let f be a nonzero element of
E(A;). Then Sa(f(A4:)) = f(A;) # 0 and f(A;) is a quasi-summand
of A by b) which is contained in A;. Thus, f(A;) is a nonzero quasi-
summand of A;. Since A; is strongly indecomposable, f(A;) = A;.
In particular, ker f = 0 because ro(A;) = 7o(f(4;)) + ro(ker f) < oco.
Thus, f is a quasi-isomorphism and QF(4;) is a division algebra.

Let 4,5 € {1,...,n} with R4,(A4;) = 0. Since r9(4;) < oo, there
exist s < w and a monomorphism o : A; — Af. The map o quasi-splits
by b) since S4(A4;) = A;. Since A; and A; are strongly indecomposable,
A; ~ A; by Jénsson’s theorem [11]. Hence, i = j.

Finally, let i€ {1,... ,n} and suppose that Uy, ... ,U;—1,Uit+1,... ,Un
are subgroups of A; with R4, (A;/U;) = 0 for all j # i. For each of
these j’s, there exist t; < w and a homomorphism §; : A; — A;j
whose kernel is U;. We define ¢ : A4; — Ga#iA;j by 6(z) = (6;(x));j-
for all z € A;. Then N;xU; = kerd, and A; = Sa(A4;) as a quasi-
summand of A yields that §(4;) is a quasi-summand of @j#A;j.

By Jénsson’s theorem, there exist s1,...,8;-1,Si+1,--- , 8, < w with
Ai/ M Uj = 5(Ai) ~ @j;éiA;J.
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c) = a). We consider an exact sequence 0 — B 5 A* in which
Sa(B) = B # 0 and k < w. By Jénsson’s theorem, and because
of c), we have A¥ ~ A' @ ... ® A3~ for some s;,...,8, < w. No
generality is hence lost if we consider a sequence 0 — B % F, in which
F=A"® --® A’ and « is the inclusion map.

In the first step, we consider the case that B satisfies S4, (B) = B but
fails to be a quasi-summand of F'. We choose B to be of minimal rank
with respect to these properties. For each j € {1,... ,n}, m; : F — A;j
denotes the projection whose kernel is @;x;A7". Let ¢ be a nonzero
element of Hom (A;, B) and set U; = ker ;¢ for all j. Since A;/U; is
isomorphic to a subgroup of A;j, the subgroup V. = Us N ---NU,
of A; satisfies A1)V ~ AR @ ---@ Al» by ¢). If V = 0, then
Ay ~ A% @ --- @ Alr which is not possible by c) and Jénsson’s
theorem since A; is strongly indecomposable for i = 1,... ,n. Thus,
V # 0. By Theorem 2.3, A; has the finite quasi-Baer- and the socle-
splitting property. Thus, m¢(A;) is a quasi-summand of Aj*. The
finite quasi-Baer-splitting property for A; yields the quasi-splitting of
0 — Uy — A — m¢(A1) — 0. Since A; is strongly indecomposable,
we have either U; = 0 or Uy = A;j.

If Uy = 0, then m¢ : Ay — AJ* a monomorphism which quasi-
splits by Theorem 2.3. Choose a map 7 : A]' — A; and a nonzero
integer m with 7m1¢ = m -ids,. Then ¢ : Ay — F quasi-splits.
We write F = ¢(A1) @ E for some subgroup E of F. This yields
B = ¢(A;1) ® (E N B). Moreover, B = S4,(B) implies S4,(ENB) =
E N B. Since ro(E N B) < r9(B) < o0, the group E N B is a quasi-
summand of F, say F' = (EN B) @ D for some subgroup D of F. Then,
E =(ENB)®(END)and F = ¢(A;)@®(ENB)®(END) = BN(END),
because of B = ¢(A1) @ (ENB), and F is torsion-free. This contradicts
the choice of B.

On the other hand, U; = A; implies U; = A; since U; is a pure
subgroup of A;. Then m¢ = 0 and ¢(A;) C A2 @ --- P As». In
particular, ker¢ = N7_,kerm;¢ = V. This yields ¢(A;) = A/V ~
AR @ ... @ Alr. Once we have shown that A has the radical-splitting
property, then ¢(4;) C A3* @ --- @ AS implies that ¢(4;) is a
quasi-summand of A3* @ --- @ AS~. This yields a quasi-decomposition
F = ¢(A;) @ E for some subgroup E of F. Now we proceed to obtain
a contradiction as in the case U; = 0.
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To see that A has the radical-splitting property, we consider nonzero
subgroups Wi,..., W, of A; for some i € {l,...,n} such that
Ry, (A;/W;) = 0 for all j. Since Ra,(A;) # 0 for i # j by c), it
suffices to show N7_; W # 0 to guarantee that A has the radical split-
ting property by [3, Theorem 3.1]. There is an r; < w such that A;/W;
is isomorphic to a subgroup of A}*. By Theorem 2.3, A;/W; is a quasi-
summand of A}*, and the sequence 0 — W; — A; — A;/W; — 0
quasi-splits. Since A; is strongly indecomposable, and 0 # W; is pure
in A;, we have W; = A;. As in the case of V, we show N;x;W; # 0.
Consequently, N7_; W; = N;2W; # 0.

Thus, we have shown that a subgroup B of F with Sy4,(B) = B for
some i € {1,...,n} is a quasi-summand of F. In the general case we
assume that B is a nonzero subgroup of F with S4(B) = B which is
not a quasi-summand of F', but of minimal rank with this property.
Because of S4(B) = B # 0, there is a nonzero map ¢ € Hom (A, B).
Since A ~ AT @--- @ A", thereisan i € {1,... ,n} with ¢(4;) # 0.
Thus, B; = S4,(B) is nonzero. The results of the first step yield
F = B; ® F for some subgroup FE of F. Hence, B = B; & (EN B). We
have ro(E N B) < ro(B) < 0o and S4(E N B) = EN B. Consequently,
F = (ENB)®D for some subgroup D of F. Then E = (ENB)®(END)
vields F =B, E=B; o (ENB)®(END)=B® (END)since F
is torsion-free and B = B; @ (E N B). Thus, B is a quasi-summand of
F', a contradiction. ]

For the sake of comparison, we mention a related result for semi-
simple Artinian quasi-endomorphism ring from [12]:

Proposition 3.2. A torsion-free abelian group A of finite rank
has a semi-simple Artinian quasi-endomorphism ring if and only if
A~ AT @ --- ® A’ where the A;’s are strongly indecompos-
able groups whose quasi-endomorphism ring is a division algebra and

Hom (A;, A;) =0 for i # j.

However, there exists a group A which has the socle-splitting prop-
erty, but whose quasi-endomorphism ring is not semi-simple:

Corollary 3.3. a) There exists a torsion-free abelian group A of
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rank 3 with
~(Q 0
e =(g J)

which has the socle-splitting property.

b) There exists a torsion-free group of rank 3 which does not have

the socle-splitting property with
( >

Proof. a) For primes pq,... ,p, of Z, let Z,, .., be the subgroup of
Q whose elements can be represented by fractions of the form r/s such
that p; does not divide s for i =1,...,n.

1%

QE(4A)

Choose distinct primes p1,p2,ps and ps of Z and a two-dimensional
Q-vector space V = Qe; @ Qea. Set G = Zy, p, ps€1, G2 = Zip, p, ps€2,
and G = (G1,G2,p; "(e1 + €2) | n < w). By [5, Example 2.4], G is a
strongly indecomposable group with QE(G) = Q and G; and G2 are
pure, fully invariant subgroups of G.

If pg(G/Gz) = G/Gg, then p3G = @ since p3G2 = GQ. Then
psG1 = Gy N psG = G4, which is not possible. Now assume that
p2(G/G2) = G/G2. For each n < w, we can find a, € Zp, py.ps,
bn € Zyp, py.ps» Mn € Z and k, < w such that e; + bpea = phlaner +
mnpl_k"(el + e2)]. Comparing the coefficients of e; and ey, we obtain
b = pi(pFra, + m,) and ptb, = pim,. Hence, 1 has infinite po-
height in Z,, p, p, since p;"a, + m, is an element of the latter group.
This contradiction shows that p2(G/G2) # G/G3. On the other hand,
G/Gs is g-divisible for all primes ¢ of Z different from p, and ps, since
<61 + €2>* N G2 =0 yields pl(G/Gg) = G/G2 ThHS, G/G2 = sz,pg-

Let B = Zy,p, and A = G & B. Since psGa2 = Ga, we have
#(G2) = 0 for all ¢ € Hom (G, B). In particular, Rg(G) = G2 # 0.
Since B is divisible by p; and p4, any image of B in G is contained in
PYG = (e1 + e2)«, which is not divisible by ps. Thus, Hom (B, G) = 0.
Since B has rank 1, there is no subgroup U of B with Rg(B/U) = 0.
On the other hand, suppose that there is a subgroup V of G with
Rp(G/V) = 0. Then Gy = Rg(G) C V implies V/G2 C G/Gy. If
V # G4, then V has rank at least 2. Since V is pure in G, we have
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G =V. Thus, G/V = B or G/V = 0. Thus {B,G} is almost rigid.
Since QE(G) =2 QE(B) = Q, A has the socle splitting property by
Theorem 3.1. Moreover, Hom (G, B) = Hom (G /G2, B) has rank 1 and
Hom (B, G) = 0. Hence,

QE(4) = <QHC§I§((Z),B) QHSE((% G)> = <8 ‘3>

b) We use the notation of part a) and let A = G @ Z,,. As before

QE(A)%(S g)

Since G /Gy = Zy, p, is not quasi-isomorphic to a direct sum of copies
of Z,,, although Rz, (G/G2) is zero, the group A cannot have the
socle-splitting property by Theorem 3.1. a

If A has rank 2, then the situation improves in comparison to
Corollary 3.3:

Corollary 3.4. The following conditions are equivalent for a torsion-
free group of rank 2.

a) QE(A) is semi-simple Artinian.
b) A has the socle splitting property.

Proof. Tt remains to show b) = a). Suppose A has the socle condition,
but QE(A) is not semi-simple Artinian. By Corollary 2.4, A cannot
be strongly indecomposable. Thus, A~A; & Ay for rank 1 groups A,
and As. If Ay & Ay or if A; and A have incomparable type, then
QE(A) is semi-simple. Hence Hom (A4;, A2) # 0 and Hom (A2, 4;) =0
or vice-versa. No generality is lost if we assume Hom (A;, A3) # 0 and
Hom (A2, A4;) = 0. If ¢ : Ay — A, is nonzero, then ¢(A;) = A;, and
#(A;) is not quasi-equal to A;. By b), ¢(A;1) is a quasi-summand of
As. Hence, ¢(A1) = As, a contradiction. o

4. Applications. In the discussion of the various splitting prop-
erties in [6, 2] and [3], quasi-summands of A-projective groups of fi-
nite A-rank play a central role. It is the goal of this section to show
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that such a quasi-summand is not always quasi-isomorphic to an A-
projective group of finite A-rank as the next two results show, although
the converse always holds:

Theorem 4.1. The following conditions are equivalent for a torsion-
free abelian group A, whose quasi-endomorphism ring is semi-simple
Artinian:

a) Every nonzero right ideal I of E(A) contains a nonzero projective
right ideal.

b) If B is a quasi-summand of an A-projective group of finite A-rank,
then B is quasi-isomorphic to an A-projective group of finite A-rank.

Proof. a) = b). Let B be a quasi-summand of A" for some
n < w. Choose a subgroup W of A™ and a nonzero integer m with
mA™ C B® W C A" Then mH4(A") = Ha(mA™) C Hu(B) ®
Hs(W) C Ha(A™). Since E(A) has finite Goldie-dimension, we can
find an essential submodule U of H4(B) which is the direct sum of
nonzero, uniform cyclic submodules Uy, ... ,U,. Because H4(A") is a
nonsingular right E(A)-module, each U; contains a nonzero submodule
V; which is isomorphic to a right ideal of E(A). By a), we may assume
that each V; is projective. Consequently, V = V;®---@V,. is an essential
projective submodule of H4(B). Since QE(A) is semi-simple Artinian,
H4(B)/V is torsion as an abelian group.

Let m: Ha(B) ® Ha(W) — H4(B) be the projection whose kernel is
Hao(W). Then N = w(mH4(A"™)) is a finitely generated submodule of
H4(B) withmH(B) = n(m(Ha(B)®HA(W))) C m(mH4(A™)) = N.
Since (N,V)/V =2 N/N NV is finitely generated as an F(A)-module
and (N,V)/V C Hu(B)/V is torsion as an abelian group, there exists
a nonzero integer k with kN C V. Thus, (km)Hs(B) C kN C
V C Ha(B). Thus, Ha(B) and V are quasi-equal. By Lemma 2.1,
T4 H,4(B) is quasi-isomorphic to T'4(V'), and the latter is A-projective
of finite A-rank. Since B is a quasi-summand of A™, the map f0p is a
quasi-isomorphism by Lemma 2.1. Consequently, B is quasi-isomorphic
to T4 (V) which is A-projective of finite A-rank.

b) = a). Let I be a nonzero right ideal of E(A). No generality is lost if
we assume that [ is cyclic, say I = ¢E(A). By Theorem 2.3, A = ¢(A)
is a quasi-summand of A. Because of b), there exists a nonzero integer n
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and an A-projective group V of finite A-rank with ng(A) C V C ¢(A).
Then nHA(¢(A)) = Ha(np(A)) C Ha(V) C Ha(¢(A)), and we obtain
that Ha(#(A)) is quasi-equal to the projective module H4 (V) since
A is self-small. Since QE/(A) is semi-simple Artinian, the evaluation
map jy : J — Ha(JA) is a quasi-isomorphism for every right ideal
J of E(A) by Corollary 2.5. Thus, I = ¢FE(A) is quasi-isomorphic to
Ha(ITA) = Ha(¢(A)). This shows I~H,4(V), and hence I contains a
nonzero projective submodule. u]

Corollary 4.2. Let A be a torsion-free abelian group such that
QE(A) is a division algebra. Then quasi-summands of A-projective
groups of finite A-rank are quasi-isomorphic to A-projective groups of
finite A-rank.

Proof. Let I be a nonzero right ideal of E(A). Then I is essential in
E(A) and nE(A) C I for some nonzero integer n. Now apply Theorem
4.1. o

Example 4.3. There exists a torsion-free abelian group A of finite
rank for which there is a quasi-summand of an A-projective group of
finite A-rank which is not quasi-isomorphic to an A-projective group.

Proof. Let R = {(n+ 2k,n+2m) | n,k,m € Z}, a subring of Z x Z.
The ideal I = (2,0) - R = {(2n,0) | n € Z} of R is nonzero, and
every ideal J of R, which is contained in I, is cyclic. If (2m,0)R is
a projective ideal for some nonzero integer m, then the annihilator of
(2m, 0) is generated by some idempotent e of R. Choose integers r, s,
and ¢t with e = (r + 2s,7 + 2t). Then the equations 2m(r + 2s) = 0
and (r + 2t)% = r + 2t yield 7 = —2s and r(t — s)? = (t — s). Hence,
t =s. Thus, r + 2t = 0 and e = 0. But then (2m,0) = R which is not
possible. Therefore, I does not contain a nonzero projective ideal of R.

If A is an abelian group with F(A) = R (such an A exists by either
Corner’s or Zassenhaus’s realization theorem [8] or [12]), then there
exists a quasi-summand of an A-projective group of finite A-rank which
is not quasi-isomorphic to an A-projective group. ]
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