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ON BIFURCATION AND EXISTENCE
OF POSITIVE SOLUTIONS
FOR A CERTAIN p-LAPLACIAN SYSTEM

YIN XI HUANG AND JOSEPH W.-H. SO

1. Introduction. In this paper we study bifurcation of positive
solutions for an elliptic system of the form

(1.1) —Apui+ gi(@,ur,uz) = NP QL 1,2
u; =0 on 012

on a smooth bounded domain 2 in RY, where A,u = div (|Vul|P2Vu)
is the p-Laplacian with p > 1. We will prove that under appropriate
conditions on g;, (1.1) has a continuum of positive solutions bifurcating
from the trivial solution. In particular, it follows from our main result
(Theorem 3.1) that the following competitive system

prul = \ul\p72u1()\1 —aj1uy — alguz) in Q
(12) —Apu2 = ‘u2‘p72’u,2(>\2 — A21U1 — a22u2) in Q
u; =0, i=1,2 on 0N

admits positive solutions (u1,uz), with w; > 0, for some positive A; and
a,-j, ’L,j = 1,2.

When p = 2, the p-Laplacian becomes the usual Laplacian and system
(1.1) has been studied extensively. We refer to the work of Cantrell
[5] and the reference therein. In the case when p # 2, A, appears in
numerous situations. For example, in the context of reaction-diffusions,
Murray [16] suggested using diffusion of the form Apu in the study of
diffusion-kinetic enzymes problems. We mention [7] and [4] for other
references. Recently, systems associated with the p-Laplacian have
commanded growing interest. Fleckinger et al. [11, 12] studied the
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cooperative system

—Dpui = Y aijlu;Puy + fi in Q
(1.3) ~

u; =0 on 0N

where a;5, 4,5 = 1,...,n, are constants and a;; > 0 for ¢ # j. They
obtained, among other results, the existence of positive solutions. For
the system

—Apu = A |u[* tufp]fT in Q
(1.4) —Apv = Xo|v|f ofu*T in Q
u=v=0 on 0

de Thélin [18] obtained the existence of a positive eigenvalue (A; = A2)
associated with positive eigenfunction (u,v), while the existence and
non-existence of solutions of (1.4) with A\; # Ay are considered by de
Thélin and Vélin [19]. Felmer et al. [10] investigated the system

—Ayu —ala+ D)ul* tulo/Pt = AuP2u in Q
(1.5) —A,v —a(B+ Du/*T o~ v = ApP~20  in Q
u=v=0 on Q.

Bifurcation of a p-Laplacian system coupled only by eigenvalues is
studied by Binding and Huang [4]. Note that our prototype (1.2) is
not included in (1.3)—(1.5).

The present work is motivated mainly by the work of Cantrell [5]
and Huang and So [14] for the case p = 2. In [14], abstract bifurcation
results were used to show the existence of positive equilibrium solutions
for a gradostat model with n-vessels as well as for a model of a
chemostat with diffusion. In the case p # 2, the main differential
operator is no longer linear nor self-adjoint, consequently the usual
compact linear operator theory, which is used in [5] and [14], is
not directly applicable. Our bifurcation result for (1.1) is proved
via the Alexander-Antman bifurcation theorem [1], by calculating the
topological degree of certain nonlinear operators. The proof relies on a
variational characterization of the first variational eigenvalue, which is
given in Section 2, as well as a result in [3] which enables us to detect



p-LAPLACIAN SYSTEM 287

a change in the topological degree as a parameter crosses a certain
eigenvalue.

The rest of the paper is organized as follows. In Section 2, the
necessary notations and facts concerning the p-Laplacian are given as
well as a proof of the aforementioned variational characterization of the
first eigenvalue. The statement of our main result on the bifurcation
and existence of positive solutions for (1.1) and its proof are given in
Section 3.

2. Preliminaries. Let p > 1 and (2 be a smooth bounded domain in
RY. In this paper, we work in the Sobolev space WO1 P(Q) and consider
only weak solutions. More precisely, u € W, "* () is a (weak) solution
of the “general” problem

—Apu =g(z,u) inQ

2.1
(2.1) u=0 on o

if the following holds for all “test functions” ¢ € C§°(Q):
(2.2) / |VulP2VuVe = / g(z,u)d.
Q Q

Since all our integrals will be taken on the whole of €2, for simplicity,
we will suppress the notation €2 from the integrals from now on.

We define the operator K, = (—A,) ! : L (Q) — W, *(Q) with
1/p+1/p’ =1 as follows: K,w = u if and only if u € Wol’p(Q) and
—Apu =w in Q. It is well known that K, is well defined and is strictly
positive, i.e., 0 Z w > 0 implies v > 0 in Q. Moreover, K, is compact
(cf. [13] and [15]). We further denote ¢, (u) := |u|P~2u.

Next we will recall a bifurcation result whose variants and proof can
be found in [3, Theorem 5.1, 8, Theorem 1.1] and [9, Theorem 4].

Proposition 2.1. Assume f :  x R — R is Carathéodory and
satisfies

(2.3) li_I)l}) flz,s)=0
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and

(2.4) lim f(z,s)|sP"9=0

|s|—o0

uniformly for x € §, for some q € (p,p), where p = p + p?/N.
Assume that a(z) € LP(QY), where p = N/p if p < N and p = 1 if
p > N. Then for any sufficiently small o > 0, there exist positive
u € WyP(Q) N L®(Q) with J|ulP = af and X € R such that (X, u)

satisfies

—Ayu+ 6y(w)la(e) + f(z,w)] = Ay(u) in O

2.
(25) u=0 onoN.

Note that p < p*, where p* = Np/(N —p) if p < N and p* = oo if
p > N. Our next theorem provides the variational characterization we
need of a certain eigenvalue.

Theorem 2.2. Assume that f : Q x R? = R is continuous and there
exists ¢ > 0 such that

(2.6) If(z,u,v)| < e(|ul??P + |v|®), zeQ, ueR, veR

where q € (p,p) and ¢1 € [0,p*p/N). Then
(i) For a > 0 sufficiently small, the solution (A(v),u(v)) of

_Apu + f(waua v)¢P(u) = )‘¢P(U) Z’I’L Q

2.7
(27) u=0 on 09,

given by Proposition 2.1 with [|u(v)]? = af and u(v) > 0 is a
continuous function from LP(Q) to R x Wol’p(Q), i.e., if v = U in
LP(Q), then A(v) — A(?) in R and u(v) — u(?) in Wy'*(R), and

(i) (A\,u) is also continuous in o, and A — X as a — 0, where A
is the first eigenvalue of

—Apu+ f(z,0,v)pp(u) = App(u) in Q

2.8
(28) u=0 on 09,
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(iii)

29 A= b a_p< / IVl + / |u|pf(m,u(v),v)>

and (A(v),u(v)) is unique provided f(z,u,v) is increasing in u for
u>0.

Proof. The first two parts of the theorem follow from a standard
procedure, see, e.g., the proof of [3, Theorem 4.1]. To prove (iii), fix
v € LP(Q). Let (A1, u1) be the corresponding eigenpair given by part
(i), i.e., ug >0, [|u1|? = o and

—Apuy + f(z,ur,v)Pp(u1) = Adp(ug) in Q

(2.10)
u; =0 on 0.

Let (Mg, uz) be the eigenpair of the “homogeneous” problem

—Apu+ f(z,u1,v)¢p(u) = Agp(u) in Q

(2.11)
u=0 ondf

with [ |uz|P = aP, up > 0. Then (cf. [17])

Aa :a_p</|Vuz|p+/|uz|pf(w,u1(v),v)>
- f‘ilr;f:ap ap</|Vu|P+/|u|1’f(x,u1(v),v))-

Multiplying (2.10) by (u? — ub)/dp(ui) = (uf —uB)/ul™" and (2.11)
(with (X, u) replaced by (A2, u2)) by (u) — uh)/dp(uz) and integrating
the difference of the two resulting equations, we obtain

p p p p
U — U U — U
— 1 2 1 2
I(ul, UQ) = / ( — Apul, =1 > — / < — APUQ, 1 >
Uy U

= (M) / (luaf? — Jusl?) = 0.




290 Y.X. HUANG AND J.W.-H. SO

By Proposition 2 of [2], u; is a constant multiple of us. Thus, u; = us.
Consequently A\; = Xy and (2.9) follows. Furthermore, Theorem 2.2
of [3] implies the uniqueness of (A(v),u(v)) and the proof is complete.
O

Remark 2.3. In general, the minimizer of the quotient

ORI AT B 9 CAD)

[ lulr=ar J lulp

is not necessarily a solution of
—Apu + f(z,u)pp(u) = Ady(u)

unless D, (uf(z,u)) = f(z,u), i.e., f(z,u) = a(z) is independent of u.

3. Main theorem. Consider the following p-Laplacian system

—Apu; + fi(z,ur, u2)dp(wi) = Nigp(u;) in .

1 P A b =1,2.

(3:1) { u =0 omaQ’ T

Assume that f; : Q@ x R? — R (i = 1,2) are continuous functions and
they satisfy the following hypotheses:

(H1) There exists ¢ > 0 such that

(3.2) |f1(z,wr, u2)| < e(fua|T™P + [uz|™)
and
(3-3) | f2(z, w1, u2)| < e(uz|?P + |ug|™)

for all z € Q and uy,us € R, where g € (p,p) and ¢; € [0,pp*/N), and

(H2) fy is strictly increasing in u; for u; > 0, f2 is increasing in ug
for ug > 0, f1(z,0,0) > 0, and

(34) \fl(ac,u,O)—fl(w,v,Oﬂ Scl'|u_v‘q7p7

for some constant ¢; > 0.
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Note that by modifying fi; and fo as follows: f;(z,u1,us) =
fi(z,0,uz) if u; <0 and f;(z,u1,us2) = fi(z,u1,0) if ug <0 (i =1,2),
one can apply the maximum principle in [17] to each equation in (3.1)
to ensure that any non-trivial solution (u1, uz) must be positive in Q.

We remark that, for a;; > 0, 7,j = 1, 2, functions of the forms

a11U1
fi = aniur + araug, =",
14 aious
and -
22U2
f2 = Faziu1 + azgus, fo=———,
1+ asuy

satisfy hypotheses (H1) and (H2). These functions appear in various
competitive and predator-prey models.

For 8 > 0 fixed and sufficiently small, we denote by (A{,u{) the
solution of

—Apul + fl(:n, uy, O)¢p(u1) = Alqﬁp(ul) in

(3.5)
u; =0 on 0N

with u > 0 and [(u?)? = BP. The existence of the pair (\?,u?) is
guaranteed by Theorem 2.2. Then (A?,u9, A2, 0) is a solution of (3.1)
for any Ay. We will refer to this solution as the trivial branch and
consider it as parametrized by § > 0 and A;. In addition, we will
denote by (A9, u9) the solution of the homogeneous problem

—Aqu + fg(w, u(l), 0)¢p(’u,2) = )\2¢p(u2) in Q

(3.6)
uy =0 on 00

with 43 > 0 and [(u3)? = BP. The existence of (A}, u3) again follows
from Theorem 2.2. Note that, under the above assumptions, A} > A,
where )¢ is the first eigenvalue of

—Apu = App(u) inQ
u=0 on 0f2

However, A might be negative if f, is sufficiently negative.

We are now ready to state our main theorem.
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Theorem 3.1. Assume fi and fo satisfy (H1) and (H2). Then there
exists a continuum A C R? x [WP(Q) N L®°(Q))? of solutions to (3.1)
(in the sense of [1] and [5]). Moreover, A contains the “trivial branch”
(A%, X2, ul,0), given as above, and a positive branch (A1, A2, u1,u2) with
u; > 0, i = 1,2, bifurcating out from (A9, A3, 49,0).

As a corollary of Theorem 3.1, we have the following existence result.

Theorem 3.2. Consider the system

—Apur = ¢p(ur) (M — a1(z)ur — b1 (x)u2) in Q
(3.7) —Apug = ¢p(uz) (A2 £ az(z)ug — ba(x)uz) in Q
u; =0, i=1,2, on0Q,

with 0 < a;,b; € L®(Q), ¢ = 1,2. Then (3.7) has a solution
(A1, Ao, ug,u9) satisfying X\; >0 and u; > 0,1 =1,2.

Proof of Theorem 3.1. Define the operator T : R? x [Wol’p(ﬂ) N
L= (Q)]2 = [WyP(Q) N L®(Q))? as follows:

Kplpp(uw)(M — Fl(uhu2))]>
Kplpp(uz) (A2 — Fauy,uz))] )’

where F; is the Nemytskii operator induced by f;, i = 1,2. Evidently, T’
is well defined and for fixed (A1, A2), T(A1, A2) = [Wo P () N L=(Q)]? —
[WoP(€2) N L>®(Q)]? is compact, since ¢, (-) and F; are continuous and
K, is compact. We also note that, T'(A1, A2, w1, us) = (Z; ) if and only if
(A1, A2, u1,uz) is a solution of (3.1). According to [1], it suffices to show
that there is a change in the fixed point index ind (7'(\, u), (u$,0)) of
the operator T'(A}, 1) at the fixed point (u§,0) as u crosses 3.

(3.8) T(M1, g, un, ) — <

We introduce two auxiliary operators T and T as follows:
~ K, )\0 _F 0,
T, 1, z) = ( pldp ()N~ Fi(u w))])

Ky [¢p(u2)(p — Fa(ur, uz))]

and

0 e 1) — TYw _ (Eplbp(u)(N] — Fi(uy, 0))]
) <T20(M)U2> <Kp[¢p(u2)(u—F2(U(1J,U2))]>'
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We further introduce the sets

B‘l":{ueWOl’p(Q) : /|u—u?|p<ap},

B§ = {u e WyP(Q) : /|u|p < ap},
B* = {(u,v) € (Wy"(Q))* : (u,) € Bf x Bg},

and
ST = 0BT, S5 = 0By, S = 0B“.

Fix any u # A3 and |u— 9| small so that there exists o > 0 sufficiently
small (in fact also assume « < ) such that

_APU’Z = (ﬁp(’U/z)([l, - fZ(xau17u2)) in

3.9
(3:9) uy =0 on 0.

has no positive solution us € B_g‘ as long as u; € B_‘f‘ This is possible
due to the continuity of eigenpair on parameters (cf. Theorem 2.2).

We now show that, for 0 < [u — N3] < 1,
(310)  ind (T ), (u, 0)) = ind (F(u), (a2, 0).

Of course we have to show that (u{, 0) is an isolated fixed point of both
T(A), 1) and T(u) in order that the fixed point indices in (3.10) are
well defined. We will present a proof which guarantees that the indices
in (3.10) do make sense and they are equal.

Define, for ¢ € [0, 1],

Kp[¢p (ur) (M) —tFy (u, ug) — (1—1) F1 (uy, up))] > _
Kp[pp(u2)(p—Fo(u1, uz))]

We claim that I — Hy(t) does not vanish on S¢ for ¢ € [0, 1]. Suppose
not. Then Hiy(¢,u1,u2) = (Z;) for some t € [0,1] and (ug,us) € S*.
Assume us > 0. Then [(u2)? < af, [|u; — u}|P < oP, and (3.9)
is satisfied. This contradicts the choice of a. Note that since our
solutions (i.e., fixed points of H;(t)) are nonnegative, uz % 0 implies
uz = 0. Consequently us =0 and 0 < u; € S¢. Then u; satisfies

(3.11)  —Apur = dp(ur) (A} — thi(w,uf, 0) — (1 8)fi(z,u1,0)).

Hi(t,ug,us) = (
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Let [ |uq[P =P, v > 0. Multiplying (3.11) by (u} — (u?)?)/¢p(u1) and
(3.5) by (uf — (u?)P)/¢p(u?), and integrating the difference of the two
resulting equations, we have

o< [(-am. “;&) - (- ant 7“’1;;?)2“_?3”)
=1 0) [ (Aleyun,0) - Ao 0) (- ().

Using (H2), one can easily see that the right hand side of the above is
nonpositive. We thus deduce (from [2, Proposition 2]) that u; = §u,
for some § > 0. There are three possibilities.

(i) 6 =1, then u{ = u; € S¢, a contradiction.
(ii) & € (0,1), i.e. v < B. Substituting u; = duf into (3.11), we
obtain (again using (H2))
7AP’U’(1) > ¢P(u(1))()‘(1) - fl(xau?ao))a
which contradicts (3.5).
(iii) Finally, § > 1, i.e. v > 3. As before, replacing u; by du{ in
(3.11), we obtain

_APU(IJ < QZSIF(U’(I))()‘(IJ - fl(waulao))a

which is again a contradiction.
Hence, I — H;(t) does not vanish on S* for ¢ € [0, 1].

Notice that it follows from the above arguments that for ¢ = 0,1,
I — Hy(t) equals to zero only at (ul,0). In other words, (u?,0) is the
only fixed point of T'(A?, 1) and T'(1) in the neighborhood B* of (u?, 0).
(3.10) now follows from the homotopy invariance of the degree.

Next, we prove,
(3.12) ind (Z'(p), (uf,0)) = ind (1°(n), (u, 0)).
We proceed in a similar manner as before. Define, for ¢ € [0, 1],

Kpl¢p(u1)(A] — Fi(u}, tus))] > ‘

Halt, ug, uz) = (KP[QSIJ(UQ)(“ — Fa(tur + (1 = t)uf, uz))]
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We claim that I — H»(t) does not vanish on S* for ¢ € [0,1]. Indeed,
suppose Hy(t,ui,ug) = (Z;), for some t € [0,1] and (uj,us) € S°.
Assume first that us > 0. Then uy satisfies

—Apuz = dp(un) (i — o, tur + (1 = t)ul, up)).

Again our choice of o implies that this is impossible.

Thus, we must have u; > 0 and us = 0. In that case u; satisfies

—Apul = ¢p(u1)()\? - fl(wau(l)ao))

But, as proved above, this equation has no positive solution on S{.
Thus we obtain another contradiction. Checking the cases t = 0,1
further shows that 7°(u) has no fixed point in B* other than (u!,0).
Consequently (3.12) holds.

According to a result in the degree theory (cf. Theorems 8.5, 8.7 and
Proposition 8.4 of Deimling [6])

(3.13) ind (77, (u,0)) = ind (77, u)) - ind (T3 (u), 0).
We deduce from Lemma 5.1 and the proof of Theorem 5.1 of [3] that
ind (T3 ('), 0) # ind (T3 (), 0)
provided g/ < A§ < fi. On the other hand, it is easily seen that
ind (T¢, uf) = ind (K, ()6, (), u?) = 1

provided A{ > \o.

Using the above two facts and together with (3.10), (3.12) and (3.13),
we have shown that ind (T'(\}, 1), u}) indeed changes its value as
crosses . Our conclusion now follows from the global bifurcation
theorem of Alexander and Antman [1]. This completes the proof. ]

Remark. We can only deal with the “true” bifurcation case. If f; is
not strictly increasing in uq, for example, if f; is independent of u;,
then our method breaks down.
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