SYMMETRIC PERIODIC SOLUTIONS OF RATIONAL RECURSIVE SEQUENCES

YULIN CAO AND G. LADAS

ABSTRACT. We consider the rational recursive sequence
$(*) \quad x_{n+1}=\frac{a+\sum_{i=0}^{k-1} b_{i} x_{n-i}}{x_{n-k}}, \quad n=0, \pm 1, \pm 2, \ldots$
where

$$
a \in(0, \infty) \quad \text { and } \quad b_{0}, \ldots, b_{k-1} \in[0, \infty)
$$

and show that, under appropriate hypotheses, when the linearized equation

$$
E y_{n+1}+E y_{n-k}=\sum_{i=0}^{k-1} b_{i} y_{n-i}, \quad n=0, \pm 1, \pm 2 \ldots
$$

about the positive equilibrium E of $(*)$ has a periodic solution with minimal period $2(k+1)$, then $(*)$ also has a periodic solution with the same minimal period.

1. Introduction. Consider the rational recursive sequence

$$
\begin{equation*}
x_{n+1}=\frac{a+\sum_{i=0}^{k-1} b_{i} x_{n-i}}{x_{n-k}}, \quad n=0, \pm 1, \pm 2, \ldots \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a \in(0, \infty) \quad \text { and } \quad b_{0}, \ldots, b_{k-1} \in[0, \infty) \tag{2}
\end{equation*}
$$

Our aim in this paper is to show that, under appropriate hypotheses, when the linearized equation

$$
\begin{equation*}
E y_{n+1}+E y_{n-k}=\sum_{i=0}^{k-1} b_{i} y_{n-i}, \quad n=0, \pm 1, \pm 2, \ldots \tag{3}
\end{equation*}
$$

[^0]about the positive equilibrium E of (1) has a periodic solution with minimal period $2(k+1)$, then (1) also has a periodic solution of the same minimal period.

A finite sequence of real numbers $\left\{c_{l}, c_{l+1}, \ldots, c_{m-1}, c_{m}\right\}$ is called symmetric if

$$
c_{i}=c_{l+m-i} \quad \text { for } i=l, \ldots, m
$$

Throughout this paper we will assume, without further mention, that the coefficients $\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$ form a symmetric sequence of nonnegative numbers, that is

$$
\begin{equation*}
0 \leq b_{i}=b_{k-1-i} \quad \text { for } i=0, \ldots, k-1 \tag{4}
\end{equation*}
$$

and that the initial conditions for a solution of Equation (1) are of the form

$$
\begin{equation*}
x_{n}=\varphi_{n} \quad \text { for } n=1, \ldots, k+1 \tag{5}
\end{equation*}
$$

where the numbers φ_{n} are positive and the sequence $\left\{\varphi_{1}, \ldots, \varphi_{k+1}\right\}$ is symmetric, that is,

$$
\begin{equation*}
0<\varphi_{i}=\varphi_{k+2-i} \quad \text { for } i=1, \ldots, k+1 \tag{6}
\end{equation*}
$$

One can now show that, with such initial conditions given, (1) has a unique solution $\left\{x_{n}\right\}_{n=-\infty}^{\infty}$ which is positive and symmetric in the sense that

$$
\begin{equation*}
0<x_{n}=x_{k+2-n} \quad \text { for } n=0, \pm 1, \pm 2, \ldots \tag{7}
\end{equation*}
$$

A sequence $\left\{x_{n}\right\}_{n=-\infty}^{\infty}$ is called periodic of period p if

$$
\begin{equation*}
x_{n+p}=x_{n} \quad \text { for } n=0, \pm 1, \pm 2, \ldots \tag{8}
\end{equation*}
$$

The least positive number p for which (8) holds is called the minimal period of the sequence. Equation (1) has a unique positive equilibrium, E. The equilibrium, E, satisfies the quadratic equation

$$
E^{2}-\left(\sum_{i=0}^{k-1} b_{i}\right) E-a=0
$$

and is given by

$$
\begin{equation*}
E=\frac{\left(\sum_{i=0}^{k-1} b_{i}\right)+\sqrt{\left(\sum_{i=0}^{k-1} b_{i}\right)^{2}+4 a}}{2} \tag{9}
\end{equation*}
$$

Equation (3) is the linearized equation of (1) about E. The main result in this paper is the following:

Theorem 1. Assume k is odd. Suppose that the linearized equation (3) has a periodic solution with (minimal) period $2(k+1)$. Then Equation (1) has infinitely many symmetric periodic solutions, each with (minimal) period $2(k+1)$ and arbitrarily near the equilibrium E.

The oscillation and stability of (1) was investigated in [2]. The periodic character of solutions of some special cases of (1) were investigated by Lyness [3]. See also [1] and [2].
2. A system of algebraic equations. In this section we will establish a system of algebraic equations which yields symmetric periodic solution of (1). Suppose $k=2 m-1$ is an odd number. If $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (1) with period $2(k+1)=4 m$, then

$$
\begin{equation*}
x_{n}=x_{2 m+1-n} \quad \text { and } \quad x_{n+4 m}=x_{n} \quad \text { for all } n . \tag{10}
\end{equation*}
$$

Let

$$
D=\left[\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1 \tag{11}\\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & 1 & 0 & 0 \\
& \vdots & & & \\
1 & \cdots & 0 & 0 & 0
\end{array}\right]
$$

be the $m \times m$-antidiagonal matrix. Define

$$
\begin{equation*}
X_{i}=\left(x_{i m+1}, x_{i m+2}, \ldots, x_{i m+m}\right)^{T} \in \Re^{m} \quad \text { for all } i \tag{12}
\end{equation*}
$$

and set

$$
\begin{equation*}
W=X_{2}-X_{0}=\left(x_{2 m+1}-x_{1}, \ldots, x_{3 m}-x_{m}\right)^{T} \in \Re^{m} \tag{13}
\end{equation*}
$$

Then, (10) yields

$$
\begin{equation*}
X_{1}=D X_{0}, \quad X_{2}=X_{0}+W, \quad X_{3}=D X_{2}=D\left(X_{0}+W\right) \tag{14}
\end{equation*}
$$

and

$$
X_{4+i}=X_{i} \quad \text { for } i=0, \pm 1, \pm 2, \ldots
$$

where the equality $X_{3}=D X_{2}$ is because $x_{3 m+n}=x_{2 m+1-3 m-n}=$ $x_{2 m+m+1-n}$ for $n=1,2, \ldots, m$. On the other hand, if X_{i} satisfies (14) for some $W \in \Re^{m}$ and $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ is determined by (12), then it is easy to verify that $\left\{x_{n}\right\}$ satisfies (10). Now let

$$
\begin{aligned}
B_{0} & =\left(\begin{array}{cccccc}
0 & b_{0} & b_{1} & \cdots & b_{m-3} & b_{m-2} \\
0 & 0 & b_{0} & \cdots & b_{m-4} & b_{m-3} \\
0 & 0 & 0 & \cdots & b_{m-5} & b_{m-4} \\
& \cdots & & \cdots & \\
0 & 0 & 0 & \cdots & 0 & b_{0} \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), \\
B_{2} & =\left(\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
b_{2 m-2} & 0 & 0 & \cdots & 0 & 0 & 0 \\
b_{2 m-3} & b_{2 m-2} & 0 & \cdots & 0 & 0 & 0 \\
b_{m+1} & \cdots & b_{m+2} & b_{m+3} & \cdots & b_{2 m-2} & 0 \\
b_{m} & b_{m+1} & b_{m+2} & \cdots & b_{2 m-3} & b_{2 m-2} & 0
\end{array}\right)
\end{aligned}
$$

and

$$
B_{1}=\left(\begin{array}{cccccc}
b_{m-1} & b_{m} & b_{m+1} & \cdots & b_{2 m-3} & b_{2 m-2} \\
b_{m-2} & b_{m-1} & b_{m} & \cdots & b_{2 m-4} & b_{2 m-3} \\
b_{m-3} & b_{m-2} & b_{m-1} & \cdots & b_{2 m-5} & b_{2 m-4} \\
& \cdots & & & \cdots & \\
b_{1} & b_{2} & b_{3} & \cdots & b_{m-1} & b_{m} \\
b_{0} & b_{1} & b_{2} & \cdots & b_{m-2} & b_{m-1}
\end{array}\right)
$$

and let $A=(a, a, \ldots, a)^{T} \in \Re^{m}$. Clearly,

$$
\begin{equation*}
D B_{0} D=B_{2}, \quad D B_{1} D=B_{1} \quad \text { and } \quad D B_{2} D=B_{0} \tag{15}
\end{equation*}
$$

or, equivalently,

$$
D B_{0}=B_{2} D, \quad D B_{1}=B_{1} D \quad \text { and } \quad D B_{2}=B_{0} D
$$

For any $U=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{T}$ and $V=\left(v_{1}, v_{2}, \ldots, v_{m}\right)^{T}$ in \Re^{m}, define

$$
\begin{equation*}
U * V=\left(u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{m} v_{m}\right)^{T} \in \Re^{m} \tag{16}
\end{equation*}
$$

With this notation, (1) can be rewritten in the form

$$
\begin{gather*}
X_{i+2} * X_{i}=A+B_{0} X_{i}+B_{1} X_{i+1}+B_{2} X_{i+2} \tag{17}\\
i=0, \pm 1, \pm 2, \ldots
\end{gather*}
$$

For $i=0$ and 1, Equation (17) becomes

$$
\begin{align*}
\left(X_{0}+W\right) * X_{0}= & A+\left(B_{0}+B_{1} D+B_{2}\right) X_{0}+B_{2} W \\
\left(D\left(X_{0}+W\right)\right) *\left(D X_{0}\right)= & A+B_{0} D X_{0}+B_{1}\left(X_{0}+W\right) \tag{18}\\
& +B_{2} D\left(X_{0}+W\right)
\end{align*}
$$

where the relations in (14) were used. Notice that $D^{2}=I$ (identity matrix $), D A=A$, and $(D U) *(D V)=D(U * V)$ for any U, V in \Re^{m}. By multiplying by D and by using (15), the second equation in (18) becomes

$$
\left(X_{0}+W\right) * X_{0}=A+\left(B_{2}+B_{1} D+B_{0}\right) X_{0}+B_{1} D W+B_{0} W
$$

By subtracting this equation from the first equation in (18), Equation (18) is equivalent to the following equations

$$
\begin{align*}
\left(X_{0}+W\right) * X_{0} & =A+\left(B_{0}+B_{1} D+B_{2}\right) X_{0}+B_{2} W \\
\widetilde{B}_{1} W & =0 \tag{19}
\end{align*}
$$

where $\widetilde{B}_{1}=B_{0}+B_{1} D-B_{2}$. Therefore, a symmetric periodic sequence $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ with period $4 m$ (that is, satisfying (10)) is a solution of (1) if and only if (17) is satisfied for $i=0,1,2,3$. When $i=2,3,(17)$ becomes

$$
\begin{align*}
& X_{4} * X_{2}=A+B_{0} X_{2}+B_{1} X_{3}+B_{2} X_{4} \\
& X_{5} * X_{3}=A+B_{0} X_{3}+B_{1} X_{4}+B_{2} X_{5} \tag{20}
\end{align*}
$$

Since

$$
X_{4} * X_{2}=X_{0} * X_{2}=X_{2} * X_{0}, \quad X_{5} * X_{3}=X_{3} * X_{1}
$$

$$
\begin{aligned}
B_{0} X_{2}+B_{1} X_{3}+B_{2} X_{4} & =B_{0}\left(X_{0}+W\right)+B_{1} D\left(X_{0}+W\right)+B_{2} X_{0} \\
& =\left(B_{0}+B_{1} D+B_{2}\right) X_{0}+B_{0} W+B_{1} D W
\end{aligned}
$$

and

$$
\begin{aligned}
B_{0} X_{3}+B_{1} X_{4}+B X_{5} & =B_{0} D\left(X_{0}+W\right)+B_{1} X_{0}+B_{2} D X_{0} \\
& =B_{0} D X_{0}+B_{1} X_{0}+B_{2} D X_{0}+B_{0} D W
\end{aligned}
$$

we see that (20) is also equivalent to (19). In summary, we have established the following lemma.

Lemma 1. Suppose $k=2 m-1$ is an odd number. If $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (1) with period $4 m$, then $\left(X_{0}, W\right)$ as given by (12) and (13) is a solution of (19). On the other hand, if $\left(X_{0}, W\right) \in \Re^{m} \times \Re^{m}$ is a solution of (19) and X_{i} for $i= \pm 1, \pm 2, \ldots$, and $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ are given by (14) and (12), respectively, then $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (1) with period $4 m$.

In a similar way, consider (3), and suppose that $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (3) with period $2(k+1)=4 m$. Define

$$
\begin{equation*}
Y_{i}=\left(y_{i m+1}, y_{i m+2}, \ldots, y_{i m+m}\right)^{T} \in \Re^{m}, \quad i=0, \pm 1, \pm 2, \ldots \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
V=Y_{2}-Y_{0} \tag{22}
\end{equation*}
$$

Then (14) becomes

$$
\begin{gather*}
Y_{1}=D Y_{0}, \quad Y_{2}=Y_{0}+V, \quad Y_{3}=D\left(Y_{0}+V\right) \\
\text { and } \quad Y_{4+i}=Y_{i} \quad \text { for all } i . \tag{23}
\end{gather*}
$$

As in the above discussion with (1), (3) is reduced to the following equations:

$$
\begin{aligned}
E\left(Y_{0}+V\right)+E Y_{0} & =\left(B_{0}+B_{1} D+B_{2}\right) Y_{0}+B_{2} V \\
\widetilde{B}_{1} V & =0
\end{aligned}
$$

That is,

$$
\begin{align*}
\left(2 E I-\left(B_{0}+B_{1} D+B_{2}\right)\right) Y_{0} & =\left(B_{2}-E I\right) V \\
\widetilde{B}_{1} V & =0 \tag{24}
\end{align*}
$$

where $\widetilde{B}_{1}=B_{0}+B_{1} D-B_{2}$.

Lemma 2. Suppose $k=2 m-1$ is an odd number. If $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (3) with period $4 m$, then $\left(Y_{0}, V\right)$ as defined by (21) and (22) is a solution of (24). On the other hand, if $\left(Y_{0}, V\right) \in \Re^{m} \times \Re^{m}$ is a solution of (24) and Y_{i} for $i= \pm 1, \pm 2, \ldots$, and $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ are defined by (23) and (21), respectively, then $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (3) with period $4 m$.
3. The proof of Theorem 1. In view of Lemma 1, finding a symmetric periodic solution of (1) with period $2(k+1)=4 m$ is equivalent to finding a solution of (19). Since $x_{n} \equiv E$ is an equilibrium of (1), if $\widehat{X}_{0}=(E, E, \ldots, E)^{T} \in \Re^{m}$, then $\left(X_{0}, W\right)=\left(\widehat{X}_{0}, 0\right)$ is a solution of (19). It is clear that the linearization of (19) for $\left(X_{0}, W\right)$ around $(\widehat{X}, 0)$ is just (24). Since (24) is equivalent to (3), by Lemma 2 we have the following result about the symmetric periodic solutions of (3).

Lemma 3. Suppose that $a>0$ and $b_{i} \geq 0$ for $i=0,1,2, \ldots, k-1$. Then the following statements are true:
(i) Equation (3) has a nontrivial periodic solution with period p if and only if, for some integer $q, \lambda=e^{2 q \pi i / p}, i^{2}=-1$, is a solution of the equation

$$
\begin{equation*}
E\left(\lambda^{k+1}+1\right)=\sum_{j=0}^{k-1} b_{j} \lambda^{k-j} \tag{25}
\end{equation*}
$$

(ii) Equation (3) has no nontrivial periodic solution with period $(k+1)$.
(iii) If $k=2 m-1$ is odd and (3) has a nontrivial periodic solution with (minimal) period $4 m$, then (3) has a nontrivial symmetric periodic solution with (minimal) period $4 m$.

Proof. (i) is obviously true because (25) is the eigen-equation of (3).

Since

$$
\left|\sum_{j=0}^{k-1} b_{j} \lambda^{k-j}\right| \leq \sum_{j=0}^{k-1} b_{j} \quad \text { for any }|\lambda|=1
$$

and

$$
E=\frac{\sum_{j=0}^{k-1} b_{j}+\sqrt{\left(\sum_{j=0}^{k-1} b_{j}\right)^{2}+4 a}}{2}>\sum_{j=0}^{k-1} b_{j},
$$

there is no solution of (25) satisfying $\lambda^{k+1}-1=0$. Therefore, it follows from (i) that there is no nontrivial periodic solution of (3) with period $(k+1)$. Finally, if (3) has a nontrivial periodic solution of period $2(k+1)=4 m$, then it follows from (i) that there exists a solution $\lambda=e^{2 q \pi i / 4 m}$ of (25), for some integer q. According to (ii), the integer q is odd. Since $\lambda=e^{-2 q \pi i / 4 m}$ is also a solution of (25), $\{c \sin (n q \pi /(2 m)+\theta)\}_{n=-\infty}^{+\infty}$ is a periodic solution of (3) for any fixed $c, \theta \in \Re$. In particular, if $c=1$ and $\theta=-q \pi / 2$, then $\{\sin [(2 n-1) q \pi / 4 m]\}_{n=-\infty}^{+\infty}$ is a symmetric periodic solution of (3) with period $4 m$. If the nontrivial periodic solution is of minimal period $4 m$, then q is relatively prime to $4 m$. Therefore, the symmetric periodic solution is of minimal period 4 m also. The proof is complete.

Now we are ready to establish Theorem 1.

Proof of Theorem 1. Let $k=2 m-1$, and suppose that (3) has a nontrivial periodic solution $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ with period $4 m$. According to (iii) of Lemma 3, we may assume that $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ is symmetric. By Lemma 2, there is a nonzero solution $\left(\widehat{Y}_{0}, \widehat{V}\right)$ of (24) corresponding to $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$. Notice that if $\left(Y_{0}, 0\right)$ is a nonzero solution of (24), then $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ as defined by (23) and (21), it is a periodic solution of (3) with period $k+1=2 m$. Therefore, it follows from (ii) of Lemma 3 that

$$
\operatorname{det}\left(2 E I-\left(B_{0}+B_{1} D+B_{2}\right)\right) \neq 0
$$

Consequently, the existence of $\left(\widehat{Y}_{0}, \widehat{V}\right)$ implies that

$$
\widehat{V} \neq 0 \quad \text { and } \quad \operatorname{det}\left(\widehat{B}_{1}\right)=0
$$

By the discussion about the linearization of (19) at the beginning of this section, it follows from the implicit function theorem that there
exists $\alpha_{0}>0$ and a continuous function $X_{0}=X_{0}(\alpha)$ from $\left(-\alpha_{0}, \alpha_{0}\right)$ into \Re^{m} such that $\left(X_{0}(\alpha), \alpha \widehat{V}\right)$ satisfies (19) for all $\alpha \in\left(-\alpha_{0}, \alpha_{0}\right)$ and $X_{0}(0)=(E, E, \ldots, E)^{T} \in \Re^{m}$. Moreover, one can write

$$
\begin{equation*}
X_{0}(\alpha)=(E, E, \ldots, E)^{T}+\alpha \widehat{Y}_{0}+\alpha^{2} \widehat{X}_{0}(\alpha) \tag{26}
\end{equation*}
$$

where $\widehat{X}_{0}(\alpha)$ is a continuous function from $\left(-\alpha_{0}, \alpha_{0}\right)$ to \Re^{m}. By Lemma $1,\left(X_{0}, W\right)=\left(X_{0}(\alpha), \alpha \widehat{V}\right)$ yields a symmetric periodic solution $\left\{x_{n}(\alpha)\right\}_{n=-\infty}^{+\infty}$ of (1) with period $4 m$ for each $\alpha \in\left(-\alpha_{0}, \alpha_{0}\right)$. Moreover, it follows from (26) that one can write

$$
x_{n}(\alpha)=E+\alpha y_{n}+\alpha^{2} \tilde{x}_{n}(\alpha) \text { for } n=0, \pm 1, \pm 2, \ldots
$$

and

$$
\alpha \in\left(-\alpha_{0}, \alpha_{0}\right)
$$

where $\tilde{x}_{n}(\alpha)$ for $n=0, \pm 1, \pm 2, \ldots$, are continuous functions in $\alpha \in$ $\left(-\alpha_{0}, \alpha_{0}\right)$. Consequently, if $\left\{y_{n}\right\}_{n=-\infty}^{+\infty}$ is of minimal period $4 m$, then $\left\{x_{n}\right\}_{n=-\infty}^{+\infty}$ is also of minimal period $4 m$ for α near zero. The proof is complete.
4. Examples. Before we present some examples, we obtain the following consequence of Lemma 3.

Lemma 4. Assume that $k=2 m-1$. Then (3) has a nontrivial (symmetric) periodic solution of period $4 m$ if and only if the polynomials $\left(\sum_{j=0}^{2 m-2} b_{j} \lambda^{2 m-1-j}\right)$ and $\left(\lambda^{2 m}+1\right)$ have a common factor. If there is a solution $\lambda=e^{q \pi i / 2 m}$ of the equation

$$
\sum_{j=0}^{2 m-2} b_{j} \lambda^{2 m-1-j}=0
$$

with q and $2 m$ being relatively prime, then this λ is a solution of (25), and the corresponding symmetric periodic solution of (3) in (iii) of Lemma 3 is of minimal period $4 m$.

Proof. According to Lemma 3, Equation (3) has a nontrivial (symmetric) periodic solution of period $4 m$ if and only if there exists a
solution $\lambda_{0}=e^{2 q \pi i / 4 m}$ (q integer) of (25). By (ii) of Lemma 3, q is an odd integer. Therefore, $\lambda_{0}^{2 m}+1=0$. This is equivalent to the statement that the polynomials $\left(\sum_{j=0}^{2 m-2} b_{j} \lambda^{2 m-1-j}\right)$ and $\left(\lambda^{2 m}+1\right)$ have a common factor. From this equivalence, the last part of Lemma 4 is a consequence of part (iii) of Lemma 3.

Example 1. For $k=2 m-1=3$, (1) becomes

$$
\begin{gather*}
x_{n+1}=\frac{a+b_{0} x_{n}+b_{1} x_{n-1}+b_{0} x_{n-2}}{x_{n-3}} \tag{27}\\
n=0, \pm 1, \pm 2, \ldots
\end{gather*}
$$

where $b_{2}=b_{0}$, for the symmetry. By Lemma 4 we compare the polynomial $\left(b_{0} \lambda^{3}+b_{1} \lambda^{2}+b_{0} \lambda\right)$ and $\left(\lambda^{4}+1\right)$. Since

$$
\lambda^{4}+1=\left(\lambda^{2}+\sqrt{2} \lambda+1\right)\left(\lambda^{2}-\sqrt{2} \lambda+1\right)
$$

these two polynomials have a common factor if and only if $b_{1}=\sqrt{2} b_{0}$. $\lambda^{2}+\sqrt{2} \lambda+1=0$ has two solutions $\lambda=e^{3 \pi i / 4}$ and $\lambda=e^{5 \pi i / 4}$, which yield symmetric periodic solutions of (3) with minimal period 8 according to Lemma 4. Therefore, by Theorem 1 we have the following:

Theorem 2. If $b_{1}=\sqrt{2} b_{0}>0$ and $a>0$, then there exist infinitely many symmetric periodic solutions of (27) with minimal period 8 near the positive equilibrium E of (27).

Example 2. For $k=2 m-1=5$, (1) becomes

$$
\begin{gather*}
x_{n+1}=\frac{a+b_{0} x_{n}+b_{1} x_{n-1}+b_{0} x_{n-2}}{x_{n-3}} \tag{28}\\
n=0, \pm 1, \pm 2, \ldots
\end{gather*}
$$

where $b_{3}=b_{1}$ and $b_{4}=b_{0}$ for the symmetry. Since

$$
\lambda^{6}+1=\left(\lambda^{2}+1\right)\left(\lambda^{2}+\sqrt{3} \lambda+1\right)\left(\lambda^{2}-\sqrt{3} \lambda+1\right)
$$

one can write

$$
\begin{aligned}
f(\lambda) & =b_{0} \lambda^{5}+b_{1} \lambda^{4}+b_{2} \lambda^{3}+b_{1} \lambda^{2}+b_{0} \lambda \\
& =\lambda\left[\left(b_{0} \lambda^{2}+b_{1} \lambda+b_{2}-b_{0}\right)\left(\lambda^{2}+1\right)+\left(2 b_{0}-b_{2}\right)\right]
\end{aligned}
$$

or

$$
\begin{gathered}
f(\lambda)=\lambda\left[\left(b_{0} \lambda^{2}+\left(b_{1} \mp \sqrt{3} b_{0}\right)\right)\left(\lambda^{2} \pm \sqrt{3} \lambda+1\right)\right. \\
\left.+\left(b_{2} \mp \sqrt{3} b_{1}+b_{0}\right) \lambda^{2}\right] .
\end{gathered}
$$

By Lemma 4 , if $b_{2}=2 b_{0}$ or $b_{2}-\sqrt{3} b_{1}+b_{0}=0$, then (3) has nontrivial symmetric periodic solutions of period 12. Observe that $\lambda^{2}+\sqrt{3} \lambda+1=0$ yields solutions $\lambda=e^{11 \pi i / 12}$ and $e^{13 \pi i / 12}$. Therefore, it follows from Lemma 4 that if $b_{2}-\sqrt{3} b_{1}+b_{0}=0$, then there exist periodic solutions of (3) with minimal period 12. In view of the above, we have the following result:

Theorem 3. Assume that $b_{1}, b_{2} \in[0, \infty)$ and $a>0$. If $b_{2}=2 b_{0}$ or $b_{2}-\sqrt{3} b_{1}+b_{0}=0$, then (28) has infinitely many symmetric periodic solutions of period 12 near the positive equilibrium E of (28). More precisely, if $b_{2}-\sqrt{3} b_{1}+b_{0}=0$, then (28) has infinitely many symmetric periodic solutions, each with minimal period 12 and arbitrarily near the positive equilibrium E.

REFERENCES

1. R.L. Graham, Problem \#1343, Math. Mag. 63 (1990), 125.
2. V. Lj. Kocic, G. Ladas and I.W. Rodrigues, On rational recursive sequences, J. Math. Anal. Appl. 173 (1993), 127-157.
3. R.C. Lyness, Notes 1581, 1847 and 2952, Math. Gaz. 26 (1942), 62; 29 (1945), 231; and 45 (1961), 201.

Department of Mathematics, University of Georgia, Athens, Georgia 30602

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

[^0]: Received by the editors on November 13, 1992.
 Key words. Rational recursive sequence, periodic solution, symmetric solution, symmetric periodic solution.

 1990 AMS Subject Classification. 39A12.

