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NONLINEAR FOURTH-ORDER TWO-POINT
BOUNDARY VALUE PROBLEMS

FELIX SADYRBAEV

ABSTRACT. Existence results formulated in terms of up-
per and lower functions and Nagumo type conditions are pre-
sented for fourth order equations and systems of two second
order equations with nonlinear boundary constraints.

1. Introduction. This paper deals with the solvability of boundary
value problems associated with fourth order differential equations

(1) "'E(4) = f(t7 m? ml""vl,’x”,)
as well as with systems of the form

37” = fl(t7m7yawl7y,)7
y” = fg(t,x,y,x',y').

(2)
The results are inspired by the ones given by Bebernes and Fraker [3]
for the boundary value problem

(3) z" = f(t,x,a;'),
(4) (x(0),2'(0)) € S, (z(1),2'(1)) € Sa,

where the function f is supposed to be continuous on [0,1] x R? and
the boundary sets S; and Sy are subsets of R%Z. The main idea in [3]
is to investigate the dependence of S; and S on the a priori bounds in
order that the BVP (3), (4) have a solution.

The standard set of conditions ensuring a priori bounds is the follow-
ing.

(A) Lower and upper functions. There exist functions o and
satisfying on [0, 1] the inequalities a < 3,

(5) o = f(t,a,0f), BT < f(B,8).

Received by the editors on May 28, 1991, and in revised form on March 30, 1993.
Key words. Nonlinear boundary value problems, a priori bounds, upper and

lower functions.
AMS 1991 Mathematics Subject Classification. 34B15.

Copyright ©1995 Rocky Mountain Mathematics Consortium

757



758 F. SADYRBAEV

(B) The Nagumo type condition. There exists a continuous function
¢ : [\,N] = (0,+00) such that |f(t,z,y)| < ¢(|ly|) for all (t,z,y) €
wx{y: A<y <N} and

N

d

/ 545 > max ((t) — min a(t),
A p(s) T 0 [0,1]

where
A = max{|5(0) — (1)}, [8(1) — a(0)|},
w={(t,z):0<t<1,a() <z<B(t)}

One may show that the problem (3), (4) has a solution with the graph
(t,z(t),z'(t)) lying in G = w X [~N, N]| if some additional hypotheses
are satisfied.

For example, these additional conditions in the case of the boundary
constraints

z(a) = A, z(b) =B

are

afa) <A< B(a),  ab) < B<B(O).

Let G(t) stand for the intersection of G with the plane ¢t =const. In
the principal result of Bebernes and Fraker [3] S; and Sy have to be
closed connected subsets of G(0) and G(1), respectively and such that
S;+1 intersects the boundary of G(i) in a certain way, i = 0, 1.

Note that boundary conditions (4) may be written in the form

90((0),2(0)) =0, gi(x(1),2'(1)) =0,

where g; is a function which vanishes if and only if (z,2’) € S;. Then
the conditions imposed above on S; are reduced to inequalities which
a continuous function g; must satisfy on the boundary of G(7). The
construction of g; whenever S; is given easily may be carried out (see,
for instance, Gudkov [14]).

Problems of the type (3) and (4) were investigated by Kiguradze and
Lezhawa [18], Muldowney and Willett [21] (see also references in [5]
and [15]).

The case of the system

z' = h(t,z,y), Y = f(t,z,y)
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was treated by Bebernes and Wilhelmsen [4], Kiguradze and Lezhawa
[19] and the author [24].

Results similar to the ones given in [3] for the problem (3), (4) have
been obtained by Gudkov [14] in the case of nonseparated boundary
conditions

The same type problems were considered by Muldowney and Willett
[21] (for the intermediate value approach see [22]), Erbe [11], Baxley
and Brown [2], Fabry and Habets [13], Virzhbitsky and Sadyrbaev [27]
(see also the books [15, 20]).

In this paper we consider the equation (1) together with separated
boundary conditions

(6 9:(2(0),2'(0),2"(0),2"(0)) =0,  i=0,1,
(7 hi(z(1),2'(1),2"(1),2"(1)) =0,  i=0,1,
and

(8) g:(z(0),2'(0),2"(0),z"(0)) = 0, i=0,1,2,
(9) h(z(1),2'(1),2"(1),2" (1)) = 0,

as well as the system (2) with boundary constraints

(10) 9i((0),y(0),2'(0),3'(0)) = 0
(11) hi(z(1),y(1),2'(1),4'(1)) =0,  i=0,L

In Section 2 we present the main results for the problem (1), (6),
(7) analogous to the ones given in [3]. Existence results for special
cases of boundary conditions (6) and (7) have been obtained in [1, 7,
10, 28]. Our results are fairly general both in boundary constraints
and in hypotheses on the right side of (1). Besides, functions « and
(3, which take on the roles of lower and upper functions for fourth
order equations, appear in the statements of the results in Section 2.
In the Appendix an example of the problem arising in the theory of
semiconductors is considered.
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In Section 3 the problem (2), (10), (11) is investigated. An existence
result is presented in terms of vector upper and lower functions and
Nagumo type conditions, which are imposed on both f; and fo sepa-
rately. Usually growth restrictions are imposed on the norm of vector
function f (see [5, Chapter 1, 16, Chapter 12]). Vector upper and
lower functions were used in [23, 15, 6, 12].

Our approach may be described as follows. The basic idea is to modify
the given boundary value problem to a quasilinear one, to prove a priori
bounds for solutions of a modified problem and then to use the theory
of quasilinear problems to establish the desired existence results for the
problem under consideration.

We shall assume throughout the paper that f,f; : I x R* = R,
gi, hi : R* — R are continuous functions, i = 1,2, I = [0,1].

2. A fourth order equation. Boundary value problems of the
type (1), (6), (7) are essential in describing a vast class of elastic de-
flections. For example, when investigating the equilibrium states of
elastic beams, one must treat extremal problems for the functional of
potential energy. This integral functional depends on the second deriva-
tive of unknown function and the Euler-Lagrange equation therefore is
of the form (1). For a number of linear models obtained under some
simplifying assumptions of smallness, see the book by Ya. Panovko and
I. Gubanova [23].

Consider the boundary value problem (1), (6), (7) with the following
assumptions.

(A1) There exist functions o, 8 € C%([0,1],R), u,v € C3([0,1],R)
such that:
() For all t € [0,1], alt) < B(1), /(1) < v/(8), u(t) < o'(t) < v(t)
u(t) < B'(t) < o(t);
(ii) For all ¢t € [0,1], B"(t) < '(t), &”(t) > V' (¢);
(iii) For all (t,z,y) €0, 1]x[a, B]x[u, v], v"'(t) < f(¢, 2, y,v'(t),v"(2)),
u"(t) > f(t,z,y,u (t),U”(t))-
(A2) There exist a continuous function ¢ : [\, +00) — (0,400) and
a number N > 0 such that:
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(i) For all (¢,z,y,2) € I X [, B] X [u,v] X [u/,v'], for all w:
lwl = A, |f(t 2y, 2,0)] < @(lw)),

(i)

N
/ sds > maxv'(t) — minu'(t),
xop(s) T o] [0.1]

where A\ = max{|v'(0) — «/(1)], [v'(1) — «/(0)|};
(iii) For all t € [0,1], =N <u"(t) < N, =N <v"(t) < N.

(A3) The functions go, ho, g1, h1 in (6) and (7) satisfy the following
sign conditions:

(i) For all (z,w) € [«/(0),v'(0)] x [-N, N]

90(a(0),y,2,w) 20 if &/(0) <y < v(0),
go(z,v(0),z,w) >0 if a(0) <z < 5(0),
90(8(0),y,2,w) <0 if u(0) <y < B'(0),
go(z,u(0),z,w) <0 if a(0) <z < B(0);
(ii) For all (z,w) € [v/(1),v'(1)] x [-N, N]
ho(a(l),y,z,w) >0 if u(l) <y <a'(1),
ho(B(1),y,2,w) <0 if B'(1) <y < w(1);

0 if u”(0) <w < N,
0 if — N <w<d"(0);
(iv) For all (z,y) € [a(1),8(1)] x [u(1),v(1)]

0 if — N <w<d"(1),
0 if v"(0) <w < N.

Theorem 2.1. Suppose assumptions (Al) to (A3) are satisfied.
Then the boundary value problem (1), (6) and (7) has a solution.
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The proof of Theorem 2.1 will use a modified problem defined as
follows. Let

z, ify>z
oz, y,2) =gy, ifz<y<z,
z, ify<uwz;

X1 = d(a(t), z1,B(t)) X2 = 0(u(t), z2,v(t)),

(12) X3 = 5(U’(t),l’3,’l) (t);, X4 = 5(—N, x4,N),

and consider the system

'y = X,
zh = X3+ 6(0,71 — B(t),1) — §(0,a(t) — z1, 1),
(13) sy = Xu,
zy = f(t, X1, X2, X3, X4) +6(0, 23 — v'(t),1)
—8(0,u'(t) — x3,1),

with boundary constraints

(14) Il(O) - IQ(O) = Go(.l'(())) + Xl(O) — X2(0 R

(15) x3(0 - I4(0 = Gl(.l'(())) + X3(0) — X4(0 R
$3(1 +$4(1 = Hl(ac(l) +X3 ].) +X4(1 y

where

(16) Gl(l‘) = gz(Xl,Xg,Xg,X4),

Lemma 2.1. The boundary value problem (13)—(15) has a solution.

Proof. Since the right hand sides of (13), (14) and (15) are continuous
and bounded, and the corresponding homogeneous boundary value
problem has only the trivial solution, the solvability of (13)—(15) follows
from well-known results (see, for example, [15, Theorem 4.1]. O
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Lemma 2.2. For any solution x = (x1,22,23,24) of the problem
(13)—(15) the following is true for all t € I

a(t) < @i (t) < B(H).

Proof. 'The proof is by contradiction, considering several cases.
Suppose there exists ¢ty € (0,1) such that x1(¢o) > B(to).

a) Consider the case za(tg) > B'(to). Let us show that for all
te (t(), 1],

(17) z1(t) > B(t) and wa(t) > B'(¢).

If it were not the case, two behaviors are possible.

First, there might exist t; € (tg,1] such that for all ¢ € (¢o,t1),
z1(t) > B(t), z2(t) > B'(t) and z1(¢t1) = B(¢1). From (13) we deduce

i () — B(t) = 6(u(t), z2(t), v(t)) — B'(t) = 0.

Hence the difference x4 (t) — 3(¢) is increasing on (¢, t1) and must be
positive at ¢;.

Second, there might exist ¢; € (to, 1] such that for all ¢ € (¢o, 1)

:Eg(t) Z ﬂl(t), ml(tl) > 6(t1) and Ig(tl) = 6’(1‘51).

Then z4(t1) < £”(t1). On the other hand, from (13) and (A1) (ii) it
follows that

zh(t1) — B (t1) = d(u'(t1), x3(t1), V' (t1))
+ 5(0,$1(t1) — 6(t1), ].) — ﬂ”(tl) > 0

Thus we have shown that (17) is true and, specifically,
(18) z1(1) > B(1),  22(1) > B'(1).
From (11) one gets

(19) 21(1) = B(1) + 22(1) — Xa(1) = ho(B(1), X2(1), X5(1), X4(1))-
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It follows from (A3) (ii) that if 22(1) > £'(1) holds then the right hand
side of (19) is not positive, which contradicts (18).

b) In the case of z3(to) < B'(¢o) we can show that z1(0) > 5(0),
z2(0) < pB'(0) and the first of boundary conditions (14) cannot be
satisfied.

Thus we have shown that in fact for all ¢ € (0,1), z1(t) < B8(¢). The
estimation from below can be carried out in a similar manner. ]

Lemma 2.3. For any solution of the problem (13)—(15) the following
is true for all t € I:
u(t) < zo(t) < v(t).

Proof. Assume that x2(tg) > wv(tg) for some ¢y € (0,1). Then
22(0) > v(0). If this were not the case, there exists t; € [0,ty) such
that za(t1) > v(t1), 5(t1) > v'(¢t1). On the other hand, from (13) we
obtain

x'g(tl) - ’Ul(tl) = (5(u'(t1),w3(t1),v'(t1)) - ’U’(tl) < 0.
The contradiction shows that in fact z2(0) > v(0). From (14) one gets
(20) 0 > v(0) — z2(0) = go(X1(0), v(0), X3(0), X4(0)).

By assumption (A3) (i) the right hand side of (20) is not negative.
The contradiction proves that x5 (t) < v(t) for any ¢ € I.
A similar proof shows that for any ¢ € I, z2(t) > u(¢). O

Lemma 2.4. For any solution of the problem (13)—(15) the following
is true for all t € [a,b]:

u'(t) < zs(t) < '(t).

Proof. The arguments are essentially the same as in the proof of
Lemma 2.2. Suppose that z3(ty) > v'(t9) for some ¢y € (0,1).

There are two cases to consider, depending on whether z4(¢9) >
v"(to) or x4(to) < V" (to).
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a) Let us show that if the former inequality above holds then

(21) z3(1) > v'(1) and z4(1) > v"(1).

If it were not the case, two behaviors are possible.

First, there might exist ¢; € (to, 1] such that for all ¢ € (¢o, 1)
(22) z3(t) > v'(t), z4(t) > 0" (t) and w3(t1) = v (t1).

As in the proof of Lemma 2.2, one may show that z5(t) —v" (¢) > 0 for
any t € (to,t1). Hence, the latter equality in (22) is impossible.

Secondly, it may occur that for all t € (to,t1), za(t) > v"(¢),
z3(ty) > v'(t1) and x4(t;) = v"(t1). Then z)(t1) < v"(¢t;). On
the other hand, from (13) and (A1) (iii) we deduce 2/ (t1) — v"'(t1) =
ft, X1 (t1), Xa(tr), ' (81), Xa(t1)) +6(0, m3(t1) = (£1), 1) =0 (t1) > 0,
which contradicts the previous inequality. This shows that in fact (21)
holds.

It follows from (15) that
(23) 23(1) = v'(1) +@a(1) — Xa(1) = ha (X1 (1), X2(1),0'(1), Xa(1)).

From (A3) (iv) and the second inequality in (21), we deduce that the
right hand side in (23) is not positive, which contradicts (21) since the
left hand side in (23) must be greater than zero.

b) The case of z4(tg) < v"(to) may be treated analogously, and the
conclusion we are led to is that x3(0) > v'(0), x4(0) < v”(0). Then
it may be shown that the first boundary condition in (15) fails to be
satisfied.

Hence, it is proven that for all ¢ € (0, 1)

z3(t) < V'(t).
A similar proof shows the boundedness of z3(t) from below. O

Lemma 2.5. For any solution of the problem (13)—(15) the following
is true for allt € I:
|z4(t) < N.
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Proof. By standard arguments (see [5, Chapter I, 1.4]) treating the
equation (1) as the second order equation with respect to z'', making
use of the boundedness of z” (z3) and noting that (A2) (i) holds
uniformly in (¢, z, y).

The proof of Theorem 2.1 is now a simple consequence of Lemmas
2.1-2.5. For functions = = (z1, z2, 3, x4) satisfying the inequalities in
assertions of Lemmas 2.2-2.5, the modified system (13)—(15) reduces
to (1), (6), (7) and Theorem 2.1 follows.

Consider now equation (1) with the following boundary conditions
having physical meaning:

(24a)
z(0) = Ay, z''(0) = As, z(1) = By, z''(1) = B,
(24b)
z'(0) = Ay, z"'(0) = As, z'(1) = By, z'"(1) = Ba,

z(0) = Ao,  2"'(0) = pz"(0),
(24c) z(1) = Bo,  z"'(1) = ¢z"(0),
p,9>0,p+q>0

Consider also the following set of sign conditions:

a(0) = Ao = B(0),  a(l) < Bo < B(1),

(252) W(0) < Ay <0'(0), /(1) < By < '(1)
a'(0) > Ay > 4'(0), (1) £ B < 8'(1),
(25b) UH(O) > Ay > II(O)’ ull(l) < By < Il(l)
OC(O)ZA():B(O), a(]-) < Bo S/B(]-)a
pu'(0) < " (0), pv’'(0) > 2" (0),
(25¢) pv'(0) = —N, pu'(0) < N
—qu'(1) = u'(1), —qv'(1) < 0"(1),
—qv'(1) > —N, —qu'(1) < N.
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Corollary 2.1. The problems (1) and (24a,b,c) are solvable if in
addition to (A1) and (A2) the condition (25a,b,c) holds.

Proof. By verifying that sign conditions (A3) are fulfilled for the
boundary constraints (24a,b,c) if (25a,b,c) holds. O

Corollary 2.2. Let the following hypotheses hold.
(B1) There exist functions o, 3 € C*(I,R) such that

(i) forallt €I, a(t) <B(t), B'(t) < o/(t), B"(t) < a"(1);
(il) for all (t,z,y) € I x [a, B] x [B', ]

(B2) ((B3)) The conditions (A2) ((A3)) hold with « and v replaced
by 5, o’ respectively.

Then the assertion of Theorem 2.1 is valid.

Remark 2.1. The following observations may be of value when
constructing functions «, for problems of the type (1), (6), (7).
Suppose f = p(t,z,z’,z", ")+ (¢, 2", z""), where |p]| is bounded by a
positive constant M and there exist functions A, u such that A(¢) < pu(t)
and \"(t) = ¥(t, A(t), N () + M, p"(t) < (¢, pu(t), ' (t)) — M for any
t in [0,1]. Then for o and 8 such that o = p, 8" = A, the inequalities
(B1)(ii) hold uniformly on ¢,z and y.

In case f in (1) satisfies the inequalities f > f; and f < fo in some
appropriate (t,z)-domain solutions a and 3 of the equations z(*) = f
and z(*) = f, respectively, also satisfies the condition (B1)(ii).

Remark 2.2. The conditions of Theorem 2.1 are also necessary in the
class of functions f(t,z,y, z,w) quadratic with respect to w since then
the condition (A2) is always met for any choice of @ and 3. To prove
the necessity, one might choose a solution z(t) as both « and 3.
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Remark 2.3. The sign conditions (B3) in the case of the boundary
constraints

(26) I(O) == Ao, II(O) == Al, I(l) = Bo, I,(l) = Bl

take the form

a(0) = Ao = 5(0), a(l) < By < (1),
a'(0) = A; = B(0), o'(1) =B =8(1).

Then it readily follows from (B1)(i) (8'(¢) < &/(t)) that a(t) = 5(t) on
I. In the works [7] and [10] less trivial results on problems of the type
(1) and (24) employing a- and S-like functions may be found.

Corollary 2.3. The problem (1),
(27) 2'(0)=A1, 2"(0)=4;  =z(1)=By, 2"(1)=Bs,

is solvable if in addition to (B1) and (B2) the following sign conditions
hold:
o/ (0) > Ay > f'(0), a(l) < By < B(1),

B7(0) < Ay <a”(0),  B"(1) < Bs < a”'(1).

Remark 2.4. The problems (1) and (27) were considered among others
in the work [1] where it was shown that they are solvable provided f
is bounded. Let us construct o and 3 for this problem.

Suppose f is bounded in modulus by a number K > 0. Take
B(t) = —a(t) = (1/24)Kt*— (1/6) (K +|Bs|)t3 — (1/2)| Ao|t* — | A1 |t + C,
where C' is defined by the equality 5(1) = |By|. An easy computation
shows that 8” < 0 in (0,1). Then 8’ < 0 also in [0,1) since 5'(0) =
—|A1|. Since B(1) = |By| > 0 and S is decreasing, (3 is positive for
¢ € [0,1). By verifying that 5(0) = | Bol, /(1) = —|A1], 8(0) < —|4s],
B8"'(1) = —|Bs/, the construction of o and 3 satisfying the conditions
of Corollary 2.2 is completed.

Consider (1) with the boundary conditions

(28)  2'(0) = ro, z(1) = ry, 2'"(0) = ra, 2" (1) =rs,
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where r; = r;(z(j),2'(j), 2" (j),z"'(§)) are odd continuous functions
and j(2) = 0 for ¢ even, j(¢) = 1 for ¢ odd.

Corollary 2.4. Suppose a and B ezist as in (B1); the condition (B2)
is fulfilled and the inequalities

B'(0) <minrg,  maxry < a'(0),

29) a(l) <minr;,  maxr < B(1),
a"(0) <minry,  maxry, < 3"(0),

A" (1) < minrs, maxrs < a'(1),

hold, where mazxima and minima are taken over the set

T = [a(j), B()] x [B'(), e/ (5)]
x [B"(5), " ()] x [-N,NJ, - j =j(0).

Then solutions to the problems (1) and (29) exist.
Proof. By straightforward application of Corollary 2.2. o

In order to state the next assertion, consider the following sign
conditions:

(C3) The functions go, ho, g1, h1 in (6) and (7) satisfy the following
sign conditions:

(i) For all (y, z,w) € ['(0), 3'(0)] x [8"(0), " (0)] x [N, N]
gO(Q(O)ayazaw) >0, gO(ﬂ(U)ayazaw) <05
(i) For all (z, z,w) € [a(1), B(1)] x [8"(1),a”(1)] x [=N, N]

hO(x,a’(l)azaw) >0, ho(x,ﬁ'(l),z,w) < 0;

(iii) For all (z,y) € [«(0), 5(0)] x [/(0), (0)]

91(z,y,2"(0), w) if " (0) <w < N,

if —N <w<p"(0);
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(iv) For all (z,y) € [a(1),5(1)] x [o/(1), 5'(1)]

h1 (:E, Y, a”(l)a w)
hl (CL’, Y, ﬁ”(l)a w)

Corollary 2.5. Let the following assumptions be satisfied:
(C1) There ezist functions «, 3 € C*(I,R) such that

(i) Forallte I, a(t) < B(t), o/(t) < B'(t), B”(t) < (1),
(i) for all (t,z,y) € I x [, B] x [&/, 5]

S f(t7 x, y? al’(t), al/,(t))’
> f(t,z,y,8"(t), 8" (t));

(C2) the conditions (A2) hold with (u,v), (u',v") replaced by (&', '),
(B",a), respectively.

Then if, in addition, sign conditions (C3) hold, solutions to the
problems (1), (6) and (7) exist.

Proof. By variable change t to 1 — ¢ and application of Corollary 2.2.
mi

The next result relates to that of M.Cvercko [9] (see also W. Kelley
[17] for nth order version).

Consider the folllowing hypotheses:
(D1) There exist fucntions a, 3 € C*(I,R) such that
(i) forallt eI, a(t) <B(1), o'(t) < B'(t), &' (t) < B"(t);

(i) for all (t,z,y) € I x [, B] x [&/, 5]
Z f(t7 x, y? a//(t)’ al/,(t))’
< f(t .y, 87(1), 87 (1));

(D2) the condition (A2) holds with u and v replaced by o and B',
respectively.
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(D3) The functions go, ho, g1, h1 in (8) and (9) satisfy the following
sign conditions:

(i) For all (y,z,w) € [a'(0), 8'(0)] x [@"(0),8"(0)] x [~
90(a(0),y, 2, w) > 0, 90(8(0),y, 2, w) < 0;

B
Q\
o)
(=}
u\/
N
S
SN—r
v
L
<
=
—
B
S
}/
n
S
IN

(iv) for all (z,y) € [a(1), B(1)] x [&/(1), B'(1)]
h(z,y,a"(1),w) >0 if — N <w<a"(1),
h(z,y,"(1),w) <0 if (1) <w < N.

Theorem 2.2. Suppose assumptions (D1)—(D3) are satisfied. Then
the boundary value problems (1), (8) and (9) have a solution x(t) such
that for any t € I,

(30) a<z<p, o <a'<p, o' <z <p", —N <z <N.

Proof. Consider the system
(31)
=X, — (5(0,%1 - ﬁ(t)a 1) + 5(Oa Ol(t) — T, 1);
zh = X3 —6(0,z2 — B'(t),1) + 6(0,a'(t) — x2,1),
=X, —6(0,z3 — B"(t),1) + (0,0 (t) — x3,1),
xil = f(ta Xla X2a X37 X4) + (5(07 T3 — ﬁ”(t)a 1) - 6(07 a”(t) — T3, 1)
where X; have the same meaning as in (13) with « and v replaced by
o' and @', respectively, together with boundary conditions

1(0 )—Go( (0)) + 6(a(0), 21(0), 5(0)),
22(0) = G1(2(0)) + 6(’(0), z2(0), 5'(0)),
23(0) = Ga(x(0)) + 5(a"(0), 23(0), 8(0)),
z4(1) = H(z(1)) + 6(=N, z4(1), N),

(32)
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where G; and H are defined similar to (16).

Since the right hand sides of (31) and (32) are bounded and the
corresponding homogeneous BVP has only the trivial solution, to prove
the theorem one must show (30).

Suppose, for example, that z(ty) > B(ty) for some ¢y € (0,1]. Then
there exists a t1 € (a,to] such that z1(¢1) > B(¢t1) and 2 (¢t1) > B'(¢1).
On the other hand,

:Ell(tl) — ﬁl(tl) = X9 — 5(0,1’1(t1) — ,B(tl), 1) — ,Bl(tl) < 0.

Analogously, one can show that z(t) > «(t) for any ¢ € (0,1].

In a similar manner estimates for x5 and x3 can be proved. The
boundedness of 4 is derived from the Nagumo type condition (D2) in
a standard way. Hence, the proof. o

For Cvercko-Kelley’s boundary conditions
(33) z(0) = Ao, z'(0) = Ay, 2" (0) = As, z"(1) = Bs

one gets

Corollary 2.6. The problems (1) and (33) are solvable if, in addition
o (D1) and (D2), the following conditions hold:

a(0) < 4o < B(0), o (0) < 4 < B'(1),
a’(0) < Ay < B7(0), (1) < B < B"(1).

Remark 2.5. Theorem 2.2 remains valid if the Nagumo type condition
(D2) is substituted by either (D2'): the condition 2 of Theorem 1 in [9]
(extendability of solutions to [0,1]) or (D”): the condition H ([0, 1]) in
[17] (for any solution z defined on [0, 1] the boundedness of 2" implies
the boundedness of ). The constants N and —N in (D3)(iii) and
(D3)(iv) in that case must be replaced by +oco and —oo, respectively.

Corollary 2.6 with (D2) replaced by either (D2') or (D2") is exactly
the result of Cvercko [9] on the boundary conditions (33) or the four-
dimensional version of the result by Kelley [17], respectively.
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Remark 2.6. In the work [6] the generalization of the result by Kelley
[17] is presented. In the four dimensional version of the result in [6] the
function h in (9) may be dependent on the values of unknown functions
at both ends of the interval I, although gy and g; in (8) have the specific
form go = (0) — Ao, g1 = 2'(0) — A;.

3. A system of two second order equations. In this section
we consider the boundary value problems (2), (10) and (11) with the
following assumptions.

(E1) There exist functions oy, 3; € C*(I, R), i = 1,2, and numbers
N; and N3 such that

(1) forallt € I, i = 1,2, Oli(t) < ﬂi(t), —N; < Oé’v(t) < N,
—N; < Bi(t) < Ni;

(ii) for all (t,y,y") € I x [ava, Ba] X [Nz, Na]

Ill(t) < fl(t7 ﬂl(t)v y:ﬁi(t)v y,)7
O/ll(t) > fl(tval(t)vya all(t)ayl);

(111) for all (t,m,x') el x [Oél,ﬁl] X [—Nl,Nl]

g(t) S fZ(tama/BQ(t))mlaﬂg(t))a
ag(t) > f2(t7$7a2(t)7$17a’2(t))'

(E2) There exist continuous functions ¢; : [A;, +00) — (0, +00) such
that

(1) for all (t,I,y,x’,yl) €Ix [alvﬁl] X [a25ﬂ2] X {ml : >\1 S |xl| S
Ni} x{y' : A2 < |y'| < N},

|fit z,y, 2", y")] < pa(l2')),
|f2(t,x,y,w',y')| < @2(|y")7

N;
i sds
—— > max (;(t) — min oy (t),
/Ai o) (t) — min a; ()
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Ai = max{|3;(0) — ci(1)|, |6:i(1) — s (0)]},  i=1,2;

(E3) The functions g; and h; in (10) and (11) satisfy the following
sign conditions:

(i) for all (y,y') € [a2(0), B2(0)] x [~Nz, No]

go(1(0),y,2",9') >0 if 01(0) <z’ < Ny,
90(B1(0),y,2",y') <0 if — N <2’ < B1(0);

(ii) for all (y,y') € [a2(1), B2(1)] x [~ N2, No],

if — N <z’ <aj(1),
if B1(1) <2’ < Ny;

(iii) for all (z,2) € [a1(0), B1(0)] x [~Ny, Ni]

0 ifa5(0) <y <Ny,
0 if — Ny <y <B5(0);

(iv) for all (z,2') € [a1(1), B1(1)] x [-N1, V1],

(
0 if — Ny <y’ <ajh(1),
0

B
hl (.T, 0[2(1), '1.17 y,) Z
< if 85(1) <y’ < Na.

hy (:II, 52(1)a LL‘/, y’)

Theorem 3.1. Suppose assumptions (E1)—(E3) are satisfied. Then
the boundary value problems (2), (10) and (11) have a solution (x,y)
such that, for anyt € I,

) B1(t),

a(t)
Ny, ~No

t)
(t)

2(1),

z(t)
' Ny,

y(
(t) '

< < < <Pp
Sz(t) < Sy(t) <

(t
(35) ~N;

The modified boundary value problem to consider is now

' = f1t, X, Y, X", Y') + 60,z — B1(t),1) — 6(0, a1 (¢) — z,1),

B0y — ol X, ¥, X, Y1) + 60,y — Ba(t),1) — 5(0, s (t) 9, 1),
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where
X =6(ay(t), z, B1(t)), X' = §(—Ny, 2, Ny)
Y = §(aalt),y, B2(t)), Y' = 6(=Na,y', Ny),
(37) z(0) — 2'(0) = Go(z(0), y(0)) + X (0) — X'(0),
z(1) + 2’ (1) = Ho(z(1),y(1)) + X (1) + X'(1),
s O 50 = Gi(e(0),(0) +Y(0) - Y0
y(1) +y'(1) = Hi(x(1),y(1)) + Y (1) + Y'(1),

where Gl(xa y) = gl(Xv Y, X,a YI)? Hl(ma y) = h’l(Xa Y, le Yl)a i=1,2.
Lemma 3.1. The boundary value problems (36)—(38) have a solution.

Proof. The right hand sides of (36)—(38) are bounded continuous
functions. Hence, the proof follows from the fact that the homogeneous
boundary value problem 2z’ = 0, y"" = 0, (0)—2'(0) = 0, z(1)+2'(1) =
0, y(0) — ¥'(0) =0, y(1) + ¥'(1) = 0 has only the trivial solution. o

Lemma 3.2. For any solution (z,y) of the problem (36)—(38) the
inequalities (34) hold.

Proof. Sketch. Essentially by the same arguments as in the proofs
of Lemmas 2.2-2.4. First consider the case z(tg) > B1(to) at some
to € (0,1). Then it might be shown that z(1) > 81(1), z{(1) > B1(1) if
z'(to) > B1(to) and z(0) > 51(0), 2'(0) < B1(0) if 2’ (¢p) < B1(to). Both
possibilities are ruled out by assumptions (E3) (ii) or (E3) (i) since the
boundary conditions (37) fail to be satisfied.

Analogously, one can treat the case of () < as (tp)-

The estimation of y(¢) may be given in a similar manner. u]

Lemma 3.3. For any solution (x,y) of the problem (36)—(38) the
inequalities (35) hold.

Proof. By standard arguments, employing the conditions (E2) and
boundedness of (z, y).
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In view of (34) and (35), a solution (z,y) of a modified problem
(36)—(38) is also a solution to the boundary problems (2), (10) and
(11). o

Hence the proof of Theorem 3.1 is complete. O

Remark 3.1. Theorem 3.1 can be easily formulated for the case of a
system of n second order equations.

In the results of [15, 6] and [12] vector o and (3 functions are used
to get a priori bounds for a solution, but a Nagumo type condition is
substituted by the assumption of existence of the so-called bounding
functions. However, the application of bounding functions in the case
of boundary conditions of the type (40) require @ = 8 at one of the
ends of the interval I. For discussion on the interrelation of Nagumo
condition and bounding functions in the case of scalar second order
equations, we refer the interested reader to [13].

Corollary 3.1. Suppose positive numbers My, My, N1, No exist such
that

(F1) foranytel, |y| < M, |2'| < Ny, |y| < No,
zfi(t,z,y,0,y") >0 if |z| > My,

for any t € I, o] < My, /] < Ny, ly'| < No
yfa(t,z,y,2',0) > 0 if [yl > Moy;

(F2) ((F3)) The condition (E2) ((E3)) holds with «; and ; replaced
by —M; and M;, respectively, i = 1,2;

Then the assertion of Theorem 3.1 is valid.

Example. Consider the functional

1
/ o(t,z,y) (1 + 2 +y*)2 dt,
0
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often arising in applications (geodesics, geometrical optics, etc., see [8]
for examples), and the associated Euler-Lagrange system

(39) " = v (v, — v ) (1L + 2 +9?)
y// _ v—l(vw _ vty')(l +$’2 +y/2)’

where v is supposed to be a positive valued continuous function.

Suppose that a positive constant M exists such that

zvg(t,z,y) >0 if|le| > M, tel, |y<M
yoy(t,z,y) 20 i ly[ > M, tel, |zf<M.

Let
W = max{V(t,z,y) : ¢t € I, |a| < M, |y| < M},

where V(t,z,y) = max{|v v, |v,v™], [uyo~[}. Obviously, the right
sides of (39) are majorized by the functions W (1+|z'|)(1+N?+z'?) and
W (1+ |y'])(1+ N? +y'2), respectively, where N is a positive constant
to define. Then the condition (F2) is fulfilled if a number N exists such

that N
sds
wt > 2M.
am (14 5)(L+ N2 + %)
This is the case if either M or W is sufficiently small. Then, for
instance, the boundary value problems (39) and (40) are solvable if,
in addition, numbers A; and B; in the conditions

(40)  =z(0)=Ao, y(0)=A;, z(1)=By, y(l)=5B

are such that |4;] < M and |B;| < M.

Acknowledgment. The author wishes to thank the referee for
useful suggestions.

APPENDIX

Consider the problem

(A1) y(4) =aly’ +b(y'y" + y"z)],
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y(0) = u=(0), y/(0) = v2(0),
(42) 0 =A-2(1), o) = d=(1),
where
(A3) 2= Fy" — By(C + Dy

and a,b, u,v,v,6, A, B,C, D, F are positive numbers.

This problem arises in the theory of transport phenomena of amor-
pheus semiconductors [26]. A solution y(t) of the problem (Al), (A2),
represents potential and z(t) defined in (A3) means current in a semi-
conductor. Results on the existence of a solution to this problem were
obtained in [26] by reducing this problem to a second order one making
use of the standing assumption

(A4) Fab— BD = 0.

The case of Fab # BD is referred to in [26] as complicated. In order
to apply Corollary 2.4 to the problem above, rewrite the boundary
conditions (A2) in the form

y(l) =A-v2(1 y'(0) = v2(0) = 7o,

)=,
(A5)  y"(0) = (W/F)I(1/m)y(0) + By 0)(C + Dy (0))] =
y"'(1) = (1/F)(1/n)y(D) + By (1)(C + Dy’ (1))

Choose
at) = —B(t) = (1/24)t* — (1/12)t3 + (1/2) Mat? + Myt — My,

where M; are positive constants. In order for the conditions of Corollary
2.4 to be satisfied, choose M; such that

o (t) = (1/2)t* — (1/2)t + My > 0,
o (t) = (1/6)t® — (1/4)t* + Mot + M, > 0,
a(t) <0

hold for any ¢ € I. The inequalities above imply that
InIino/'(t) = M, — (1/8), mIina'(t) =M, >0,
mIaxoz(t) = —mg = (—1/24) + (1/2) Mz + My + M, < 0.
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Besides, a must satisfy the inequality

o "2

a® < aa + aby'a’” + aba
for y' € [#’,a'] and t € I. It will hold if

(A6) 1 < a(Mp—(1/8)) — (1/2)ab(M:+ Mz — (1/2)) + (M2 — (1/8))*.

Since § = —a and the Nagumo type condition holds with ¢(w) a lin-
ear function, all the hypotheses of Corollary 2.4 are met if additionally
the sign conditions

—M; = f'(0) < minry, maxry < o'(0) = M,

—mo = a(1) < minry, maxr; < B(1) = my,
(A'7) n "

—1/2 =" (0) < minr,, maxry < 3"(0) =1/2,

—1/2 =" (1) < minrs, maxrs < a'’(1) =1/2,

fulfill, where minima and maxima are over the compact set T (see
Corollary 2.4) depending on the choice of « and 3.

Suppose a, b, i1,7,0, A, B, C, D are given. Choose M; and M5 in order
for (A6) to be satisfied. Then N = N(Mj, Mz) in the condition (D2) is
defined which bounds y"’(¢). Since r; = A —~yz(1), a constant M, can
be found sufficiently large in order for the inequalities in the second
line of (A7) to be satisfied. From ry = vz(0) one deduces that v can
be chosen sufficiently small in order the inequalities in the first line of
(A7) to be satisfied. Analogously for F large enough the rest of (A7)
holds.

We summarize the results obtained in the following

Proposition. Given a,b, u,7,0, A, B, C, D positive numbers € and A
can be found such that for v < e and F > A a solution to the problem
(A1), (A2) exzists.

Note that since A in (A2) is positive a solution to the problem (A1)
and (A2) is nontrivial.
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