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WEAK AND SUPPORT-OPEN TOPOLOGIES ON (C(X)

S. KUNDU AND R.A. MCCOY

ABSTRACT. This paper studies the weak topology w on
the set C(X) of all continuous real valued functions on X, with
respect to the dual of Cy(X) where Ck(X) has the compact-
open topology. A related set-open topology s on C(X) is
introduced using sets that are supports of the continuous
linear functionals in the dual of Cj(X). It is shown that s is
finer than w, and that under certain conditions if a set-open
topology on C'(X) is finer than s, then the dual of this function
space is equal to the dual of Ck(X). Characterizations of
metrizability and completeness of these function spaces are
given in terms of topological properties of X. Also an Ascoli
theorem is established for Cs(X), and from this it follows that
Ck(X) is the k-extension of Cs(X) for certain X.

1. Introduction. The set C'(X) of all continuous real-valued func-
tions on a Tychonoff space X has a number of natural topologies. Three
commonly used topologies on C(X) are the point-open topology p,
the compact-open topology k and the topology of uniform convergence
u. The corresponding topological spaces are respectively denoted by
Cp(X), Cx(X) and C,(X). It is easily seen that p = k if and only
if the compact subsets of X are finite, and that £ = w if and only
if X is compact. These two conditions are quite extreme in nature.
So there are considerable differences among these topologies. The gap
between k and u has been especially felt in measure theory, and conse-
quently in the last four decades there have been quite a few topologies
introduced that lie between k and u, such as the strict topology, the
o-compact-open topology, the topology of uniform convergence on o-
compact subsets, and the topology of uniform convergence on bounded
subsets (see, for example, [6, 23, 8, 9, 14, 16, 3 or 22]).
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In this paper we concentrate on topologies for C(X) that lie between
p and k. One of the two topologies we study here is the weak topology
on C(X) that is induced by the set of all continuous linear functionals
on Ck(X). This topology has been used, for example, in [27]. To help
understand this weak topology on Cy(X), we introduce a new related
set-open topology in which the sets are the compact support sets of the
continuous linear functionals on C%(X). We compare these topologies
to each other and to other standard topologies on C(X). Of special
interest is the interaction of properties of C'(X) under these topologies
with certain topological properties of X.

Let M(X) (respectively, Mp(X)) be the set of all real-valued con-
tinuous linear functionals on Cj(X) (respectively, on Cp(X)). The set
M(X) is called the dual of Cy(X) and can be identified with the set
of all regular finite Borel measures on X with compact support. Our
definitions of the two topologies mentioned above are based on the fact
that Cp(X) can be viewed in the following two different ways. First,
the point-open topology can be viewed as a ‘set-open topology’ where
a subbasic open set looks like [A,V] = {f € C(X) : f(A) C V'} where
A is a finite subset of X and V is an open subset of the reals. But also
the point-open topology can be viewed as the weak topology on C(X)
induced by M,(X).

The following conventions are used throughout the paper. All spaces
are Tychonoff spaces. If X and Y are two spaces with the same
underlying set, then X =Y, X <Y, X <Y indicate, respectively,
that X and Y have the same topology, that the topology on Y is
finer than or equal to the topology on X, and that the topology on
Y is strictly finer than the topology on X. The symbols R and N
denote the spaces of real and natural numbers, respectively. Also SN
denotes the Stone-Cech compactification of N, and N* = BN\N. The
cardinality of a set X and the dimension of a linear space X are denoted
by card (X) and dim X, respectively. The constant zero function on
C(X) is denoted by fo. Finally, for f € C(X), A C X and € > 0,
define (f,A,e) = {9 € C(X) : |f(x) —g(z)] < eforallz € A};
and pa(f) = sup{|f(z)| : © € A} whenever f is bounded on A. For
functional analytic properties on function spaces, such as barreled or
bornological spaces, one may refer to [20, 24 or 4].
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2. Weak and support-open topologies. Let L be a subset of
M (X). For each finite subset F' of L, define a seminorm pr on C'(X) by
pr(f) = max{|A(f)|: A € F} for each f € C(X). Then the collection
of seminorms {pp : F' is a finite subset of L} generates a locally convex
topology on C(X), called the weak topology on C'(X) generated by L.
For each x € X, let ¢, be the evaluation functional defined on C(X)
by ¢.(f) = f(x) for each f € C(X). Now if L = {¢, : = € X},
then the linear space generated by L is M, (X ), and the weak topology
on C(X) generated by L is the same as the point-open topology
on C(X). The set {¢, : * € X} is actually linearly independent,
and consequently dim M, (X) = card (X). This in turn implies that
dim M(X) > card (X). On the other hand, if L = M(X), then the
weak topology on C(X) generated by L is called the weak topology on
Cr(X). We denote this topology by w and the corresponding space
by Cy(X). It is clear that Cp(X) < Cy(X) < Ck(X). In particular,
Cw(X) is a Hausdorff space since Cp,(X) is a Hausdorff space.

Since C,,(X) is a locally convex space, its topology is determined by
the neighborhoods at fy. Given a finite subset F' of M(X) and an
e > 0, define Vpe = {f € C(X) : |A(f)| < € for each A\ € F}. Then
the collection {Vp, : F' is a finite subset of M (X) and € > 0} forms a
neighborhood base at fy for C\,(X).

Next we define the support-open topology on C(X). To do this, we
need to first discuss the concept of support sets. The following ideas
play a key role. If A € M(X) and A C X, then ) is said to be supported
on A if whenever f € C(X) with f|a = 0 then A(f) = 0. The set K,
defined by Ky = N{K : K is compact in X and A is supported on K},
is compact; and K is nonempty if and only if A # 0. Now K is
called the support of A and is the smallest compact set on which \ is
supported. Note that A € M,(X) if and only if K is a finite set.

An element A\ of M(X) is called positive provided that A(f) > 0 for
all f € C(X) with f > 0. Let M1 (X) be the set of all positive elements
of M(X). It can be shown that if A is positive and if f > g on K, then
A(f) = A(g). For each A € M(X) and f € C(X) with f > 0, define
A*(f) =sup{A(g) : 0 < g < f}, A7(f) = sup{-A(g) : 0 < g < f} and
[IAI(f) = sup{A(g) : |g| < f}. These give elements of M(X): extend
AT, A7 and || to all of C(X) by linearity and by using f = f* — f~
with their obvious meanings. A reference for these ideas is [1]; also see
[15] or [13].
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We define a space X to be a support space provided that X = K
for some A € M*(X). If a subspace Y of X is a support space, then
we call Y a support set in X. In particular, Y is a support set in X if
and only if Y = K, for some A € M (X). We denote the family of all
support sets in X by s(X).

Characterizations of the concept of support space can be made by
both measure-theoretic and topological ideas. The measure-theoretic
characterization of support space is given by the following theorem (see
[10, 7.6.1 and 7.6.5]).

Theorem 2.1. A space X is a support space if and only if X is
compact and there exists a regular finite Borel measure on X which is
strictly positive on each nonempty open subset.

A topological characterization of support space is given by the fol-
lowing property due to J.L. Kelley [11]. For each nonempty finite
family ¥ = {Ui,...,U,} of nonempty open subsets of X, define
cal F to be the largest integer k such that N{U; : i € S} # @ for
some S C {l,...,n} with card (S) = k. Then for each family ¢/ of
nonempty open subsets of X, define (U ) = inf{cal F /n : n € N and
F ={U,...,Un} CU}. Now we say that X has property K pro-
vided that the set of all nonempty open subsets of X can be written as
a countable union U2 U ,, where each k(U ) > 0. The next theorem
relates this property to that of support spaces (see [7, Theorem 6.4]).

Theorem 2.2. A space is a support space if and only if it is a
compact space having property K.

A space is said to have the countable chain condition (abbreviated
to ccc) if every family of pairwise disjoint nonempty open subsets is
countable. It is easily seen that every space having property K has
ccc, and that every separable space has property K. In particular,
a compact separable space is a support space. This means that in a
metrizable space every compact subset is a support set.

Like separability and ccc, property K is preserved by open subsets,
by countable unions, by closures, and by continuous images. It is also
preserved by taking a coarser topology. For these results see [7, pp. 34,
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35 and 127, or 19].

The support-open topology is an example of a ‘set-open topology’
in the following general sense. If a is a compact family from X,
that is, a family of compact subsets of X, then let C,(X) denote the
space C'(X) with the topology having subbasic open sets of the form
[A,V] = {f € C(X) : f(A) C V} where A € o and V is open in
R. The set-open topology on C,(X) is a completely regular topology
that is coarser than or equal to the topology of uniform convergence on
members of a (i.e., the topology generated by sets of the form (f, A, )
for f € C(X), A € a and € > 0; or equivalently, the topology generated
by the seminorms p4 for A € ). Now if « = s(X), we call the topology
on Cy(X) the support-open topology, and denote this space by Cs(X).

Following the ideas in [17], we use an ‘admissible’ family a to
establish needed properties of Cy,(X). If a is a compact family from X,
we say that o is admissible provided that (1) for every A, B € «, there
exists ¢ € a such that AU B C C, and (2) for each A € a, each closed
subset B of A and each open set U in X with B C U, there exists a
finite 8 C « such that B C U C U.

Lemma 2.3. If a is an admissible compact family from X, then for
each A € a and each finite open cover U of A in X, there exists a finite
B C a such that A C UB and (3 refines U .

Proof. Let A € o, and let U be a finite open cover of A in X. Since
A is compact, there exist closed subsets Bi,...,B, of A such that
A=BjU---UB, and, foreachn=1,... ,n, B; C U; for some U; € U .
Then, for each i, there exists a finite 8; C « such that B; C Ug; C U;.
Soif =8 U---UpB,, then A C UB and [ refines U/ . a

Lemma 2.4. If o is an admissible compact family from X, then the
collection {{f, A,e) : A € a and € > 0} forms a neighborhood base at f

for Co(X).

Proof. Let f € C(X), A € a and € > 0. Since A is compact,
there exist z1,...,z, € A such that f(4) C V; U--- U V,, where
each V; is the interval (f(x;) —¢/2, f(z;) + €/2). Then, by Lemma
2.3, there exists a finite 8 C « such that A C UB and [ refines
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{f~Y(V;):i=1,... ,n}. Now it is easily seen that f € N{[B,V;] : B €
B, f(B) CV;,i=1,...,n} C (f, A,¢e), which shows that (f, A,¢) is a
neighborhood of f in C,(X). The fact that each basic neighborhood
of f in C,(X) contains some (f, A, &) now follows from property (1) of
the admissibility of a. O

Lemma 2.5. Let o be an admissible compact family from X, and let
B be any family of closed subsets of X. Then Cp(X) < Co(X) if and
only if every member of B is contained in a finite union of members of
a.

Proof. For the sufficiency, let f € [A,V] where A € @ and V is open
in R. Then there exist By,...,B, € 8 with A C B; U---U B,,.
Since [ is admissible, for each i = 1,...,n, there exists a finite
Bi € B such that AN B; C UB; C fY(V). It then follows that
fen{B,V]:BepU---UB,} C[AV], so that [A, V] is open
in Cg(X). The necessity follows from the fact that X is completely
regular (see [18, Theorem 1.1.1]). O

We now apply these lemmas to the case that a = s(X). Lemma 2.4
has the following consequence.

Theorem 2.6. For any space X, s(X) is an admissible compact
family from X, and so the support-open topology on Cs(X) is a locally
convex topology generated by the collection of seminorms {pa : A €

s(X)}.

Proof. To show that s(X) is admissible, let A € s(X), let B be a
closed subset of A, and let U be an open subset of X with B C U.
Since B is compact, there exists an open subset V of X with B C V
and V C U. Now VNA has property K, so that V N A also has property
K. Then since VN A C A, it is compact; and hence VN A € s(X).
Finally, note that VN A C V C U. This shows that s(X) is admissible,
and hence the last part of the theorem follows from Lemma 2.4. a

By definition, the support-open topology s on C(X) is coarser than
or equal to the compact-open topology k. The next theorem shows
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that the support-open topology on C(X) is finer than or equal to the
weak topology on C(X).

Theorem 2.7. Every member of M (X) is continuous on Cs(X).

Proof. Let A € M(X). Now A = AT — A7; let A be the support Ky+
of AT. Then, for any £ > 0, choose § such that 0 < § < e/(2AT (1) +1).
For any f € (fo,4,d), AT(f)| < AT (|f]) < AT(6) < e. Then since
(fo, A, 8) is a neighborhood of fy in Cs(X), AT must be continuous on
Cs(X). A similar argument shows that A~ is continuous on Cs(X), so
that X is indeed continuous on Cs(X). O

Note that Theorem 2.7 says that the dual of Cs(X) is equal to M(X).
We now show that s(X) is, in a sense, the smallest admissible compact
family o from X such that the dual of C(X) is equal to M(X).

Theorem 2.8. Let o be an admissible compact family from X. Then
the following are equivalent.

(a) COs(X) < Co(X).
(b) s(X) refines a.
(¢) The dual of Cyo(X) is equal to M(X).

Proof. Lemma 2.5 shows that (b) implies (a), and Theorem 2.7 shows
that (a) implies (c). So to show that (c) implies (b), let A € s(X). Then
A = K for some A € MT(X). Since A is continuous on C,(X), it is
easy to show that A is supported on some A’ € « (see [15, Lemma 1.1
and 13, Lemma 2.1]). But then Ky C A’, so that s(X) refines . o

It is Theorem 2.8 that motivates our introduction of the support-open
topology. This theorem shows that, for studying the dual of Ct(X), it
is the set of all support sets in X that plays a vital role rather than the
set of all compact subsets of X.

3. Comparison of topologies and examples. In this section we
compare the weak and the support-open topologies to each other and
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to other standard topologies. First, using basic facts and Theorem 2.7,
we have for any space X,

Cp(X) < Cu(X) < Cs(X) < Ci(X) < Cu(X).

The next two theorems indicate when these inequalities are equalities.
The proof of the first theorem follows from Lemma 2.5. In this theorem,
‘X is compactly supported’ means that every compact subset of X is
contained in a support set in X.

Theorem 3.1. For any space X, Cs(X) = Cx(X) if and only if X
is compactly supported.

Since Ci(X) = Cy(X) if and only if X is compact, we have the
following corollary.

Corollary 3.2. For any space X, Cs(X) = Cu(X) if and only if X
is a support space.

For the next result, we need to introduce some terms. First, a space
is called pseudofinite if all of its compact subsets are finite. Next, in a
locally convex space, a set is called bounded if it is absorbed by every
neighborhood of the origin. Finally, a subset A of a locally convex
space is called precompact if for every neighborhood U of the origin,
there exist aq,...,a, € A such that A C U{a; + U : 1 < i < n}. Every
bounded set is precompact (see [21, p. 50]).

The equivalence of conditions (b) and (c) in the next theorem is an
extension of Theorem 9 in [27].

Theorem 3.3. For any space X, the following are equivalent.
(a) Cp(X) = Cu(X).
(c) X is pseudofinite.

Proof. If X is pseudofinite, then C,,(X) = Ci(X), so that (c) implies
both (a) and (b). Now suppose that (a) is true. Then the members of
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M (X) are continuous on Cj(X), so that the support sets in X are finite.
Since the closure of a countable set has property K, every compact
subset of X must be finite. Thus (a) implies (c).

Finally, suppose that (b) is true. We argue as in the proof of Theorem
9 in [27]. Suppose that there exists an infinite support set K of
X. Let B = {f € C(X) : sup{|f(z)] : v € X} < 1}, which is
a bounded set in C4(X) = C,(X). So B is precompact in C(X).
Let V = {f € C(X) : pg(f) < 1}, which is a neighborhood of
fo in Cs(X) = Cw(X). Then since B is precompact, there exist
fi,--. s fn € B such that B C U{(fi + V) :1 < i < n}. Now K is
infinite, so we may choose n distinct points z1,... ,z, from K. Since
X is completely regular, there exists a continuous f : X — [0,1]
such that, for 1 < j < n, f(z;) = -1 if f;(z;) > 0 and f(z;) =1
if fj(z;) < 0. Then f € B, but pg(f — f;) > 1 for all j. Then
F¢U{(fi+V):1<i<n}, which is a contradiction. o

Using the previous theorems, we illustrate with examples all of the
possible combinations of equalities and inequalities among the five
topologies that we have been considering.

Example 3.4. Cp(X) = Cp(X) = Cs(X) = Cr(X) = Cu(X) if and
only if X is a finite space.

Example 3.5. C,(X) = C,(X) = Cs(X) = Cp(X) < C(X) if and
only if X is an infinite pseudofinite space. Such spaces include infinite
discrete spaces and countably infinite subspaces of SIN.

Example 3.6. C,(X) < Cy(X) < Cs(X) = Ci(X) = Cu(X) if
and only if X is an infinite support space. Such spaces include infinite
separable compact spaces, for example SN and cubes (powers of [0, 1])
with no more than 2% factors.

Example 3.7. Cp(X) < Cp(X) < Cy(X) < Cp(X) = Cy(X) if and
only if X is compact, but not a support space. Such spaces include
compact spaces which do not have ccc, for example N* and the space
w; of ordinals less than or equal to the first uncountable ordinal w.
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Example 3.8. C,(X) < Cy(X) < Cs(X) = Cp(X) < Cu(X) if and
only if X is compactly supported, but not compact or pseudofinite.
Such spaces include noncompact nondiscrete metric spaces and the
space wy of countable ordinals.

Example 3.9. Cp(X) < Cyu(X) < C5(X) < Cp(X) < Cu(X)
if and only if X is neither compact nor compactly supported. Such
spaces include the disjoint topological sum X; & X5 and the topological
product X; x X5, where X; satisfies Example 3.7 and X, satisfies
Example 3.8; for example N*® R, N* xR, w{" Pwi = 2wy and wf‘ X w1 .

4. Metrizability. In this section we characterize when C),(X) and
Cs(X) are metrizable in terms of topological properties on X. Since
the weak topology on Cj(X) and the point-open topology are weak
topologies on C(X) generated by collections of continuous linear func-
tionals on C%(X) that are total, it follows (see [25, p. 157]) that Cy, (X)
(Cp(X), respectively) is metrizable if and only if M (X) (M,(X), re-
spectively) has a countable Hamel basis. In particular, the character-
ization of C,(X) being metrizable resembles the characterization of
C,(X) being metrizable. Now C,(X) is metrizable (first countable) if
and only if X is countable (see [18]). The next theorem is an analogous
theorem for C\,(X).

Theorem 4.1. For any space X, the following are equivalent.
(a) Cw(X) is metrizable.

(b) Cw(X) is first countable.

(¢) M(X) has a countable Hamel basis.

(d) X is a countable pseudofinite space.

Proof. See [25, p. 159] for the equivalence of (a), (b) and (c). If X
is pseudofinite, then C,,(X) = C,(X) by Theorem 3.3. So if X is also
countable, then C\,(X) is metrizable, which shows that (d) implies (a).
Finally, to show that (a) implies (d), suppose C,(X) is metrizable.
Since dim M (X) > card (X), X must be countable. Let K be any
compact subset of X. Then M(X) contains a copy of M(K) (see
[15]). Therefore dim M(X) > dim M(K). But M(K) is the norm
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dual of C(K) equipped with the supremum norm. Under this norm,
M(K) is a Banach space. Therefore, dim M (K) is either uncountable
or finite. Since dim M (X) is countable, dim M (K) must be finite. But
dim M (K) > card (K), so that K must be finite. o

We now turn to the metrizability of Cs(X). Since the topology of
Cs(X) is a set-open topology like that of Ci(X), the characterization of
C;s(X) being metrizable resembles more the characterization of Cy(X)
being metrizable. Now Cj(X) is metrizable (first countable) if and
only if X is hemicompact (see [2]), where a hemicompact space is
a space containing a countable family of compact subsets such that
every compact subset of the space is contained in some member of
this countable family. The analogous property for Cs(X) is that of
hemisupport space, by which we mean a space containing a countable
family of support sets such that every support set in the space is
contained in some member of this countable family.

Theorem 4.2. For any space X, the following are equivalent.
(a) Cs(X) is metrizable.

(b) Cs(X) is first countable.

(¢) X is a hemisupport space.

(

d) X is a compactly supported hemicompact space.

Proof. Since s(X) is an admissible compact family from X, the
equivalences of (a), (b) and (c¢) follow from Theorem 3.2 of [17] (or
can be shown in a functional analytic way by modifying the proof for
the corresponding result on Cy(X) stated on page 63 of [4]). Clearly (d)
implies (c). Finally, a metrizable locally convex space is bornological
and thus has its Mackey topology. Since Cs(X) < Ci(X), it follows
that Cs(X) = Ck(X). Then from Theorem 3.1 we have that (a) implies
(d). O

Corollary 4.3. For any space X, if Cs(X) is metrizable, then:
(a) Cs(X) = Cp(X);

(b) X is a countable union of support sets;
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(c) X is a o-compact space having ccc.

Example 4.4. The space N* is a compact space, so that Cy(N*)
is metrizable. But N* does not have ccc (see Theorem 3.22 in [26]),
so that Cs(IN*) is not metrizable, and therefore has topology strictly
coarser than that of Cj(N*).

5. Completeness and separability. A topological group FE is
complete provided that every Cauchy net in E converges to some
element in F, where a net (z,) in E is Cauchy if for every neighborhood
U of 0 in E there is an o such that o, — x4, € U for all a1, a2 > ag
(for E additive).

The topology on Cs(X) is generated by the uniformity of uniform
convergence on support sets. When this uniformity is complete, then
Cs(X) is said to be uniformly complete. One can check that Cs(X)
is uniformly complete if and only if it is complete as an additive
topological group. Also Cs(X) is completely metrizable if and only
if it is complete and metrizable (see [5, p. 34, 46]).

We begin by examining when C,,(X) is complete. The completeness
of C,,(X) is much like the completeness of Cp,(X). In particular, Cp(X)
is complete if and only if X is a discrete space, which is precisely when
Cp(X) = R¥. This is because Cj,(X) is a dense subspace of R¥, and a
complete subspace of a space is a closed subset. It follows that C,(X)
is completely metrizable if and only if X is a countable discrete space.

Theorem 5.1. For any space X, the following are equivalent.
(a) Cyw(X) is complete.
(b) Cw(X) = Cp(X) = RX.

(¢) X is a discrete space.

Proof. If C,(X) is complete, then C\,,(X) is a product of lines (see
[12, 20.9(2)]). Therefore, C\, (X) is barreled, and hence has its Mackey
topology. This means that Cy(X) = Cs(X) = Ci(X). Then by
Theorem 3.3, Cy, (X) = Cp(X).
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Corollary 5.2. For any space X, the following are equivalent.

) Cw(X) is completely metrizable.

b) Cu(X

(a

( ) is metrizable and Cp(X) is complete.
(c) Cw(X) is complete and Cp(X) is metrizable.
( ) =
(

) C
d) Cw(X)=Cp(X)=RX and X is countable.

e) X is a countable discrete space.

The completeness of Cs(X) is somewhat more interesting since it
resembles more the situation for Cr(X). In particular, Cy(X) is
complete if and only if X is a kg-space (i.e., whenever f is a real-
valued function on X such that f|4 is continuous for each compact
subset A of X, then f is continuous). We must now define the analogous
property to kr-space using support sets. We define X to be an sp-space
provided that whenever f is a real-valued function on X such that f|4
is continuous for each support set A in X, then f is continuous. Clearly,
every sg-space is a kr-space.

Every hemicompact kg-space is a k-space (i.e., whenever S is a subset
of X such that S N A is closed for every compact subset A in X, then
S is closed). We again have an analogous concept using support sets.
We define X to be an s-space provided that whenever S is a subset of
X such that SN A is closed for every support set A in X, then S is
closed. It is evident that every s-space is a k-space. As every k-space is
a kgr-space, so is every s-space an sg-space. Since a countable compact
space is a support space, it is easily shown that every first countable
space is an s-space.

Example 5.3. The space N* is a compact space (and hence a k-space
and a kg-space) that is not an sg-space (and hence not an s-space).
To show this, let p be any P-point in N* and define function f on N*
by f(z) =0if z # p and f(p) = 1. Now p is not an accumulation point
of any support set in N* (see Proposition 3 in [19]). This means that
f is continuous on each support set in N*. Since f is not continuous,
N* is not an sg-space.

The space in Example 5.3 is not compactly supported. However, if
a k-space is compactly supported, then it is easy to show that it must
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be an s-space. Now, using this fact, along with Theorem 4.2 and the
fact that a hemicompact kgr-space is a k-space, we obtain the following
lemma.

Lemma 5.4. Every hemisupport kg-space is an s-space.

The next theorem can be proved in a manner similar to Theorem
5.1.1 in [18].

Theorem 5.5. For any space X, Cs(X) is complete if and only if
X 1is an sgp-space.

Now Theorem 5.5, Theorem 4.2 and Lemma 5.4 together give char-
acterizations of Cs(X) being completely metrizable.

Corollary 5.6. For any space X, the following are equivalent.
(a) Cs(X) is completely metrizable.
(b) Cs(X) is metrizable and Cy(X) is complete.
(¢) Cs(X) = Cr(X) and is completely metrizable.
(d) X is a hemisupport sr-space (s-space).

Example 5.7. Let IZ be the space [0,1] x [0,1] with the order
topology from lexicographic ordering. Now I? is a compact Hausdorff
space that is first countable, and hence is an s-space. Since I,% does

not have ccc, it is not a support space and hence is not compactly
supported.

Example 5.7 shows that the completeness of Cs(X) does not in
general imply that Cs(X) = Cx(X). It also shows that if Cs(X) is
complete and C(X) is metrizable, Cs(X) is in general not metrizable.

We end this section by turning to the separability of C,,(X) and
Cs(X). This is easily characterized by using the characterizations of the
separability of C,(X) and Cy(X) (see Theorem 5 in [27] or Corollary
5.2.3 in [18]) and the fact that C,(X) < C,,(X) < Cs(X) < Cr(X).
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Theorem 5.8. For any space X, the following are equivalent.
(a) Cp(X) is separable.
(b) Cw(X) is separable.
(c) Cs(X) is separable.
(d) Ck(X) is separable.
(

e) X has a coarser separable metrizable topology.

6. Compact subsets and the k-extension. As we have seen in
the previous section, the properties of s-spaces are analogous to the
properties of k-spaces. Another example of this is that a space is an s-
space if and only if it is a quotient space of some locally support space,
where a locally support space is a space having a neighborhood base
consisting of support sets. We need this idea in the proof of Lemma
6.1.

We also note that the concept of a k-extension of a space has its
analog for s-spaces using support sets instead of compact sets; one
might call this the s-extension. All the properties of k-extensions carry
over to s-extensions. We point out some of these properties for k-
extensions. First, the k-extension of a space X is the space with the
same underlying set X and with the topology generated by the compact
sets; that is, the closed sets in the k-extension are precisely the subsets
of X whose intersection with each compact subset of X is closed in
X. Denote the k-extension of X by kX. Now kX is a k-space with
topology finer than or equal to the topology on X; these topologies
being equal if and only if X is itself a k-space. In any case, when
restricted to a compact subset of X, these topologies are always equal
on this subset. So kX has the same compact subsets as X.

Our main goal in this section is to establish an Ascoli theorem which
characterizes the compact subsets of Cs(X). The key to establishing
the necessity condition is the following lemma.

Lemma 6.1. If Z is locally compact and X is an s-space, then a
function f : Zx X —'Y is continuous if and only if f|zxa is continuous
for each support set A in X.
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Proof. Let X' be the disjoint topological sum of all the support sets
in X, and let ¢ : X’ — X be the natural map. Then ¢ is a quotient
map since X is an s-space. If i : Z — Z is the identity map, then
1 X ¢:7Zx X — Zx X is a quotient map since Z is locally compact
(see Theorem 2.5.10 in [18]). Therefore, to show that f is continuous, it
suffices to show that g = fo(i X ¢) is continuous. So let (z,z) € Zx X',
and let V be a neighborhood of g(z,z) in Y. Now z is in some summand
A of X', where ¢(A) is a support set in X. By hypothesis, there exist a
neighborhood W of z in Z and a neighborhood U of ¢(z) in X such that
FWx(UN¢(A))) CV. Let U = ¢~1(U)N A, which is a neighborhood
of z in X’. Then W x U’ is a neighborhood of (z,z) in Z x X' such
that g(W xU')C V. O

Theorem 6.2. If X is an s-space, then a subset of Cs(X) is compact
if and only if it is closed, pointwise bounded and equicontinuous.

Proof. If F is a closed subset of Cs(X) that is pointwise bounded
and equicontinuous, then F' is closed in C%(X) and hence compact
by the Ascoli theorem. Conversely, let F' be a compact subset of
Cs(X). Tt suffices to show that the topology on C,(X) is weakly
conjoining (see [18, Theorem 3.2.4 and Exercise 4]). That is, we need
to show that if Z is a compact space, then the exponential function
E : C(Z x X) = C(Z,04X)) is a surjection. To this end, let
g € C(Z,04(X)). By Lemma 6.1, to show that E~'(g) is continuous,
it suffices to show that E~!(g)|zxa is continuous for each support
set Ain X. Solet A € s(X), let i : A — A be the identity map,
and let j : A — X be the inclusion map. Now the induced function
J* 1 Cs(X) — Cs(A) is continuous. Also Cs(A) = Ci(A), so that
the evaluation map e : C5(A) x A — R is continuous. Therefore
E7Y(g)|zxa = eo (j* x i) o (g x i) is continuous. O

Corollary 6.3. if X is an s-space, Cs(X) < Cr(X) < kCs(X).

Corollary 6.4. If X is a hemicompact s-space, then Cy(X) is the
k-extension of Cs(X).

Now using Theorem 2.8, we obtain the following result.
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Corollary 6.5. Let X be a hemicompact s-space, and let o be an
admissible compact family from X. Then Co(X) = Cr(X) if and only
if Co(X) is a k-space and the dual of Co(X) is equal to the dual of
Cr(X).

Example 6.6. Let IZ be the space in Example 5.7. Then C,(I%) <
Ck(I2), and Ci(I2) is the k-extension of C5(I2). In particular, Cs(I%)
is not a k-space. In fact, since Ci(I%) is completely regular, Cs(I%)
is not a kgr-space. In this example, since I% is compact, the k-
extension of the support-open topology is in fact the topology of
uniform convergence.
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