ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 2, Spring 1995

WEAK COMPACTNESS IN
SPACES OF DIFFERENTIABLE MAPPINGS

MANUEL GONZALEZ AND JOAQUIN M. GUTIERREZ

ABSTRACT. We characterize the weakly compact subsets
(and thereby the weak convergence) in several spaces of k-
times continuously differentiable mappings between real Ba-
nach spaces. As an application, we give characterizations of
the Dunford-Pettis (DP) property of a Banach space F in
terms of the weak sequential continuity of the composition
map (f,g9) — go f, where f : E — F is a differentiable map-
ping and g : F — G is a linear operator. We also prove that
F has the DP property if and only if whenever (z,) C F is
weakly null and (P,) is a weakly null sequence of polynomi-
als from F' to another space G, then (Pp(zn)) converges to
0 in the weak topology of G. Finally, we derive a new proof
of the fact that any weakly compact homomorphism between
algebras of differentiable functions is induced by a constant

mapping.

1. Introduction. Kalton [11] characterized the weakly compact
subsets of the space K(E,F) of compact operators between Banach
spaces E and F. These results were extended in [4, 5] to the case of
compact operators between locally convex spaces.

In this paper we characterize the weakly compact subsets (and
thereby the weak convergence) in several spaces of k-times continuously
Fréchet differentiable mappings between real Banach spaces E and F*:
Ck (E,F) (definition below), C*(E, F) and C*(E, F) (definitions in
Section 5). As an application, we prove that F' has the Dunford-Pettis
property if and only if, for every pair of real Banach spaces FE, G and
integer k, the composition map:

T:Ck (E,F)x L(F,G) = C* (E,G)
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given by T'(f,g) = go f, where L(F, G) is the space of (linear bounded)
operators from F to (G, is weakly sequentially continuous, in the
sense that it takes weakly convergent sequences into weakly convergent
sequences. Let us note that taking F = {0} and G = R (the real field),
T becomes a map from F'x F* into R and we obtain the usual sequential
definition of the Dunford-Pettis property: if (z,,) C F, (¢,) C F* are
weakly null sequences, then ((z,, ¢,)) tends to zero. This result is also
valid if we replace Ck, by C* or C* and extends to the differentiable
case analogous characterizations obtained in [16, 17] for spaces of
compact operators and spaces of vector valued continuous functions.
Similar results are obtained for spaces of polynomials. Finally, we
derive a new proof of the fact (see [8]) that any weakly compact
homomorphism between algebras of differentiable functions is induced
by a constant mapping.

R will be the real field, N the natural numbers including 0, and
N* = NU {co}. E, F and G will denote real Banach spaces, Bg
the closed unit ball of E, and E* its topological dual. The weak-star
topology is denoted by w* and bw* is the finest topology on E* that
agrees with w* on bounded subsets; bw* is a locally convex topology [6,
II, Section 5, Lemma 2]. E}, . will denote the space E* endowed with
the bw* topology. For a Hausdorff topological space X, we denote by
C(X, F) the space of continuous mappings from X into F. Throughout,
when the range space is omitted, it is understood to be R; for example,
C(X) = C(X,R). Unless otherwise stated, C(X) is given the compact
open topology whose associated weak topology will be denoted by w.
The topology on C'(X) of pointwise convergence is referred to as 7.
We shall need the following result:

Theorem 1 [7, 4.3 Corollary 2]. Suppose A C C(X) is uniformly
bounded on all compact subsets of X. Then:

(a) A is (relatively) Tp-compact if and only if it is (relatively) w-
compact.

b) FEach sequence ( fn) C AisT —convergent if and onlyz it 18 weakly
P
convergent.

Cwu(E, F) stands for the space of all maps f : E — F which are
weakly uniformly continuous on all bounded subsets; in other words,
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for each bounded subset B C E and £ > 0 there are a finite set
{¢1,... ,¢0x} C E* and § > 0 such that, if z,y € B and |¢;(z —y)| < 4,
i=1,...,k, then ||f(z) — f(v)|| <e.

For n € N and Hausdorff locally convex spaces X,Y, we denote by
P ("X,Y) the space of all n-homogeneous continuous polynomials from
X to Y; i.e., all maps of the form P(z) = A(z, "), z) for any n-linear

continuous map A from X™ = X x @ X X into Y, endowed with

the topology of uniform convergence on bounded subsets. P (°X,Y)
may be identified with Y. P ("E, F) is a Banach space with the norm
[|IP|| = sup{||P(z)|| : ||z|| < 1}. Given P € P ("E,F), there is a
unique continuous symmetric n-linear mapping P : E"™ - F such
that P(xz,...,z) = P(z) for all z € E. We write P,,("E,F) =
P(™E,F)NCyu(E,F).

For k € N and X as above, C*(X, F) stands for the space of all
k-times continuously Fréchet differentiable mappings from X to F (see
[12]), endowed with the topology 7 of uniform convergence of the
mappings and their derivatives, up to the order k, on compact subsets.
We denote by Ck (E, F) the subspace of those f € C*(E, F) such that
for 0 < j <k, we have ' f € Cyu(E,P wu(*E, F)), where d’f is the
jth derivative map of f, and d°f = f. It will be endowed with the
topology Tf generated by the seminorms

pu(f) = sup{||d’ f(2)]] : [l]| < n, 0 < j <k}

The space (CE,(E, F), 1) is Fréchet [3, Proposition 3].

In Section 5 we introduce the spaces (C¥(E, F), k) and (C*(E, F), 7¥)
of differentiable mappings, for which our results are also valid, and we
outline the corresponding proofs. We have chosen to give the proofs
in detail for the case of C¥ (E,F) which is a bit more complicated.
All these spaces were introduced in infinite dimensional approxima-
tion theory. It is worth noting that, for dim (E) < oo, we have
Ck (E,F) = C*¥(E,F) for all F and that an operator from E to F
belongs to CX (E, F) if and only if it is compact [3, Proposition 2.5].

The space CF ,(E, F) was introduced in [3] and has been extensively
studied by several authors [1, 2, 8, 9, 10]. Another reason for our
interest in this space is that it has complex analogs of some relevance
to the Michael problem on automatic continuity of complex valued
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homomorphisms on a complex Fréchet algebra. Namely, let E be a
complex Banach space, F' = C the complex field, and & = oo, and call
the corresponding space Hy, (E). It is known [14, p. 244] that if every
scalar valued homomorphism on H,,, (F) is continuous then so is every
scalar valued homomorphism on any complex Fréchet algebra.

The following result will also be needed:

Theorem 2 [1, Theorem 2.4]. Every mapping f € CE (E,F) can
be extended in a unique way to a mapping f : E** — F, so that
fe C’k(Eg‘J)*,F). Moreover, f — f defines a linear isometry of Fréchet
spaces.

2. Weakly compact subsets of C* (E,F). In this section we
characterize the weakly compact subsets of C® (E, F), first for k = 0
and then for arbitrary k. Let U = E}. and V = (Bp+,w*). We define
the map X : Cyu(E,F) = C(U x V) taking f € Cyu(E, F) into the
function Xy given by

X (u,v) = (f(u),v), foreachuecU andveV,
where f is the extension of f to C(Ej:., F) (Theorem 2).

Proposition 3. The mapping X defines a linear isometry from the
Fréchet space Cyo(E, F) onto a closed linear subspace of C(U x V).

Proof. We first show that X is well defined. Indeed, given f €
Cuwu(E, F), let (uq,vs) C U X V be a net converging to (u,v). For
e > 0, there is an ag such that we have 1f(ua) — f(uw)]| < €/2 and
[{f(u),vq —v)| < &/2, whenever a > . Then:

X1 (U, va) = Xp (u,0)] = [(f(ua), va) = (f(u
< (f(ua), va) = (F(w),
+[(f(u),v > <f(U),v>\

so Xy € C(U x V). Easily, X is linear and injective. Moreover, denoting
by (g) the seminorms that generate the topology of C'(U x V'), we have
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for each f € Cyu(E, F):

gn(X5) = sup{|(f(u),v)| : u € nBg;v € Bp~}
sup{||f(u)]| : w € nBp--}
sup{||f(z)[| : € nBr}
=pa(f). O

We say that anet (fo) C Cuu(E, F') converges to f in the wg topology
if (fa(u),v) converges to (f(u),v) for all w € E** and v € F*.

Theorem 4. A family A C Cyyu(E, F) is weakly compact if and only
if it is uniformly bounded on all bounded subsets of E and wg-compact.

Proof. Suppose A C Cuu(E,F) is weakly compact; then A is
bounded, which means uniformly bounded on all bounded subsets of
E. Since wy is coarser than the weak topology of Cy.(E,F), A is
wop-compact.

Conversely, suppose A C Cyy(E, F) is uniformly bounded on all
bounded subsets of E and wg-compact. If (fo) C Cyo(E, F) is a wp-
null net, then (f,(u),v) = Xy, (u,v) tends to zero for each u € E**
and v € Bp-, so X is a continuous mapping from (Cy,(E, F), wp) into
(C(U x V), 7p), and X(A) is 7p,-compact. From Theorem 1, X(A) is
w-compact. Hence, by Proposition 3, A is weakly compact. u]

Corollary 5. A sequence (fn) C Cywu(FE, F) is weakly convergent to
[ € Cuu(E, F) if and only if it is uniformly bounded on all bounded

subsets of E and (f,(u),v) converges to (f(u),v) for each u € E** and
v € Bp«.

We shall now deal with the space Ck (E,F) for k € N*. The
following property will be used without explicit mention: given f €
Ck (E,F) with extension f € Ck(E;*.,F), whose derivatives are
#f € CoulB,Puwu(PE,F)) and d'f € C(Ef:.,P(Ef:., F)), 1 <
j < k, respectively, then d’f is the extension of d/ f to Epr. (see [1,
Theorem 2.4]).

We say that a net (f,) C CF (E,F) converges to f in the wy

topology whenever (d f, (u), ¢) converges to (d7 f(u), ) for all u € E**,
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0<j<k andy € P,,(IE,F)*. For k = co, we let j € N. Since
f > (d’ f(u),v) defines a linear continuous form on C¥  (E, F), the wy,
topology is coarser than the weak topology.

For each f € Cuy(E,Pwu(’E,F)) and u € E** we have flu) €
P wu((E, F) where f is the extension of f to E**; f(u) has a unique
extension to a polynomial f(u) € P(E;:.,F). We say that a net
(fa) C Cywu(E, P wu(PE, F)) converges to f in the w; topology when-
ever (fu(u)(h), v) converges to (f(u)(h),v) for each u € E**, h € Bpe~,
and v € Bp-.

Write W = (Bgs«,w*) and, for U and V as above, define the map
T :Cyuu(E,PuuE,F)) - C({Ux W x V)

taking f into a function T'f given by Tf(u,h,v) = (f(u)(h),v) for
ueU,heWandveV.

Lemma 6. (a) T defines a linear isometry of the Fréchet space
Cwu(E,P wu(E,F)) onto a closed linear subspace of C(U x W x V).

(b) T is also an isomorphism when these spaces are given the topolo-
gies W; and Ty, respectively.

Proof. (a) Let us see that T is well defined. If (uq, ha, Vo) C U X W x
V is a net converging to (u,h,v) and £ > 0, then there is an «qg such

that, for a > aq, [|f(ua) = f(W)I| < /3, [|f(u)(ha) = F(w)(R)]| < /3
and |(f(u)(h),ve — v)| < £/3. Hence,
[(F (ua) (ha), va) = (F(u) (), 0)] < [(F(ua(ha);va) = (F (1) (ha), va)]
+ (W) (ha), va) = (f()(h), va)]
+ (@) (h),va) — (f(w)(h), )|
< lvall - |1f (wa) = f(@)]] - ||Rall
+lvall - 11f (@) (ha) = F(w) ()]
+ (W) (h),va —v)|

< e.

It is easy to check that T is linear and injective. If (p,) and (g¢)
are the seminorms generating the topology of Cyy (E, P . (*E, F)) and
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C(UxWxV), respectively, then we have for each f € Cyo(E, P wu (' E, F)):

an(Tf) = sup{|(f(u)(R),v)| : u € nBge-; h € Bge=;v € Bp-}
= sup{||f(u)]| : w € nBp--}
= sup{|| f(u)[| : u € nBg--}
= pn(f)-

(b) is straightforward from the definition of w;. o

Given a family A C Ck (E, F), we denote

Aji={df: fe A} C Cupu(E,Pu(’E, F)), 0<j<k.

Lemma 7. Given k € N*\{0}, let A C CF,(E,F) be a bounded
family. Each Aj, 0 < j <k, is w;-compact in Cyu(E, P wu("E, F)) if
and only if it is wy-compact.

Proof. Since A is bounded, A; is uniformly bounded on all bounded
subsets of E. If A; is w;-compact then, by Lemma 6(b), T'(4;) is 7p-
compact. Now, from Theorem 1, T'(A;) is weakly compact. By Lemma
6(a), A; is weakly compact and, hence, wy-compact. Since wy is finer
than ;, the converse is obvious. ]

Theorem 8. For k € N and A C CF_ (E,F), the following
assertions are equivalent:

(a) A is weakly compact;

(b) A is wg-compact and A; is uniformly bounded on all bounded
subsets of E for each 0 < 7 < k;

(c) Aj ts uniformly bounded on all bounded subsets of E and wo-
compact in Cpy(E, P wu(VE, F)) for each 0 < j < k;

(d) Aj is uniformly bounded on all bounded subsets of E and w;-
compact in Copy(E, P wu(VE, F)) for each 0 < j < k.

Proof. (c) < (d) by the previous lemma.
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(a) = (b) is clear since wy, is coarser than the weak topology.

We shall prove the other parts by complete induction. For the C°-
maps, the result holds (Theorem 4). Suppose it holds for the CP-maps,
0 <p<r—1<k. Define the linear map:

T: Cu(B, F) = C(Bpye, P ("B, F)) x O (ELF)

taking f into T'f = (d" f, f).

T is an injective isomorphism. Indeed, a sequence (f,) C Cy,,(E, F)
is 7f-null if and only if (d"f,) is null in the compact open topology
and (f,) is null in (CI,,}(E, F),7,~"). T is also an isomorphism when
Cr.(E,F) is given the w, topology and the range space is endowed
with the product wg x w,_1. Indeed, let (fy) C CL ,(E,F) be a net;
then f, — 0 in w, if and only if dea — 0 in wo and f, — 0 in w,_1.

(b) = (c). If A is wy-compact, then T'(A) is wy X w,_j-compact and
its projections A, C C(E;*.,P("E;*.,F)) and A C CL Y (E,F) are
wp and w,_; compact, respectively. By the induction hypothesis, the
sets Ag,...,A,_1 are wg-compact.

(¢) = (a). If A, is uniformly bounded on all bounded subsets of E
and wy-compact, then it is weakly compact in C(Ejx., P ("E}:., F))
(Theorem 4). If the sets Ay,..., A, 1 are wy-compact and uniformly
bounded, then, by the induction hypothesis, A is weakly compact in
Cr-1(E,F). Therefore, T(A) C A, x A is relatively weakly compact
and so is A in C} ,(E,F). Now we need only show that A is weakly
closed, which is true since the inclusion map C7 (E, F) < CI 1(E, F)
is continuous. o

Theorem 9. For a family A C C2,(E, F), the following assertions
are equivalent:

(a) A is weakly compact;

(b) A is we-compact and A; is uniformly bounded on all bounded
subsets of E for each j € N;

(c) Aj is uniformly bounded on all bounded subsets of E and wy-
compact in Copy(E, P wu(VE, F)) for each j € N;

(d) Aj is uniformly bounded on all bounded subsets of E and ;-
compact in Cyy(E, P wu(?E, F)) for each j € N.
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Proof. (a) = (b) since we is coarser than the weak topology.

(b) = (c¢). Let j € N. By the continuity of the inclusion map
(CE(E,F),wse) = (C4,(E,F),w;), A is wj-compact in CJ,(E, F).
Applying part (b) = (c) of Theorem 8, we get the wy-compactness of
Ajin Cyuy(E,P wu('E, F)).

(¢) & (d) by Lemma 7.

(c) = (a). Consider the operator T': C3y, (E, F) — [[52, Ci (B, F)
given by Tf = (f,f,...). Clearly, T is an injective topological
isomorphism. By Theorem 8, A is weakly compact in C* (E, F) for
each k € N, so T(A) C A x A X ... is relatively weakly compact in
H;’io CJ ,(E,F)andsois Ain C%,(E, F). On the other hand, by the
continuity of the inclusion map C (E, F) < CF (E,F), A is weakly
closed in C$2,(E, F), and this finishes the proof. O

The arguments used above also prove the following:

Theorem 10. For k € N\{0}, and f,(f.) in Ck (E,F), the

following assertions are equivalent:
(a) (fn) is weakly convergent to f;

(b) for each 0 < j < k, (d’f,,) is uniformly bounded on all bounded
subsets of E and <d7fn(u),z/1> converges to (dﬂf(u),¢> for all u € E**
and Y € P owu(PE, F)*;

(c) for each 0 < j <k, (d'f,) is uniformly bounded on all bounded
subsets of E and (d’ f,(u)(h),v) converges to (d f(u)(h),v) for all
u € E**, h € Bg« and v € Bp~.

This theorem is likewise valid for k = oo, with obvious modifications.

3. Characterizations of the Dunford-Pettis property. In this
section we apply the preceding results to obtain characterizations of
the Dunford-Pettis property. We note that K(F,G) is a subspace of
Ck . (F,Q) for any k € N* [3, Proposition 2.5].

Theorem 11. The following assertions are equivalent:
(a) F has the Dunford-Pettis (DP) property;
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(b) for every E, G and k € N*, the map:
T:C¥,(E,F)xL(F,G) - CF (E,G)

given by T(f,g) = go f, is weakly sequentially continuous;
(c) the statement of (b) holds for some k € N*;

(d) for every E, G and k € N*, if one of the sequences (fn) C
Ck (E,F) and (9,) C L(F,G) is weak Cauchy and the other one is
weakly null, then (g, o fy,) is weakly null.

Proof. (c) = (a). Taking F = {0} and G = R, T becomes a map
F x F* — R given by T'(y, ¢) = (y,¢) for y € F and ¢ € F*, and we
obtain the definition of the DP property.

(a) = (b). Given k£ € N, it is enough to consider weakly null
sequences (f,) C Ck (E,F) and (g9,) C L(F,G). For 0 < j < k
and z € F, we have:

1d (g © £u) (@)]] = llgn © & fu(@)]| < [l gnll - [|& fu(2)]].

Hence {d?(g, o fn) : n € N} is uniformly bounded on all bounded
subsets of . Now, foreach 0 < j < k, u € E**, h € Bg++ and ¢ € F*,
we have (d7 f,,(u)(R),v) = 0, so the sequence (d’f,,(u)(h)), C F is
weakly null. On the other hand, the map L(F, G) — L(F**, G**) taking
A into its second adjoint A** is continuous, and so are the functionals
on L(F**,G**) given by S — (w, Sz), for each z € F** and w € G*.
Hence, (w o g**) is a weakly null sequence in F*. By the DP property
of F,

lim{gn o d fo () (h), w) = lan(d fo () (), w 0 g57) = 0;

and so, by Theorem 10, (g, o f,) is weakly null in C* (E,G). Slight
modifications are needed for k = oo.

(b) = (c) is obvious.

(a) & (d) follows easily from (a) < (b) and the remark that in a
linear topological space a sequence (z,,) is Cauchy if and only if for all
subsequences (my), (ng) C N, (zm, — @y, ) is null. u]

Theorem 12. The following assertions are equivalent:
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(a) F has the DP property;

(b) for every G and k € N, the map T : F x P (*F,G) — G given
by T(z, P) = P(x), is weakly sequentially continuous;

(c) the statement of (b) holds for some k € N and G = R.

Proof. (a) = (b). By induction on k. For k = 1, the result is
contained in Theorem 11. Suppose it holds for k£ — 1. Take weakly null
sequences (z,,) C F and (P,) C P (*F,G). The operator

P(*F,G) = P(*1F,L(F,QG))

taking P to P, given by P(z)(y) = ﬁ(y, Z,...,x), is an isomorphism.

,T
Hence, (P,) is weakly null in P (*"'F,L(F,G)). By the induction

hypothesis, (P, (z,)) is weakly null in L(F,G), and by Theorem 11,

(P (zy)) = (Pp(zy)(zy)) is weakly null in G.
(b) = (c) is obvious.

(¢) = (a). Suppose F does not have the DP property. Then we
can find weakly null sequences (z,) C F and (¢,) C F* such that
{2y, #n)| > 1 for all n € N. Define P,(z) := (x,¢,)*. Then (P,) is a
weakly null sequence in P ,,(*F) C P (*F). Moreover, |P,(z,)| > 1.
o

The following Corollary is now easy.

Corollary 13. The following assertions are equivalent:
(a) F has the DP property;

(b) for every G and k € N, if one of the sequences (z,) C F and
(P,) C P (*F,G) is weak Cauchy and the other one is weakly null, then
(Pn(zn)) is weakly null in G|

)

(c) the statement of (b) holds for some k € N and G = R.

Theorem 14. The following assertions are equivalent:
(a) F has the DP property;
(b) for every E, G and k € N, the map:

T:K(E,F)xP(*F,G) = Pw,.(*E,G),
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given by T(f, P) = P o f, is weakly sequentially continuous;
(c) the statement of (b) holds for some k € N;

(d) for every E, G and k € N, if one of the sequences (f,) C K(E, F)
and (P,) C P (*F,G) is weak Cauchy, and the other one is weakly null,
then (P, o f,) is weakly null.

Proof. (a) = (b). The map P (*F,G) — L(G*,P (*F)) taking P into
P*, where P*(¢)) = ¢ o P for all ¢ € G*, is a linear isometry. Given
weakly null sequences (f,,) C K(E,F) and (P,) C P (*F,G), we have
for w € E** and ¢ € G*,

(Poo f" (u), ) = (f3" (u), Py(4)) = 0,

by Theorem 12, since (P;(¢)) C P (*F) and (f;:*(u)) C F are weakly
null sequences. Hence, by Corollary 5, (P, o f,) C Pwu(*E,G) is
weakly null.

(b) = (c) is obvious.

(c) = (a). Suppose F' does not have the DP property. Choose weakly
null sequences (z,) C F and (¢,) C F* such that |(zn,¢n)| > 1.
Consider E = G = R. To get a contradiction, it is enough to define
fa(N) == Az, and P (y) = (y, ¢n)".

(a) & (d) is as in Theorem 11. O
The last three results are also valid for complex Banach spaces.

4. Weakly compact homomorphisms. We now apply the
characterizations obtained in Section 2 to give a proof of the fact that
any weakly compact homomorphism between algebras of differentiable
functions is induced by a constant mapping. This was first shown in
8]

Given k € N, when we say that an algebra homomorphism A :
Ck(E) — C*(F) is continuous, it is understood that both C*(FE)
and C*(F) are endowed with the topology 7¥. It is shown in [9] that
these homomorphisms are of the form Af := f o where p : F - E
satisfies ¢ o ¢ € CF(F) for each ¢ € E* (and so, if dim (E) < oo,
then ¢ € C¥(F,E)). For a wide class of Banach spaces E (including
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the separable spaces and their duals), all these homomorphisms are
automatically continuous [9]. A homomorphism is (weakly) compact if
it takes bounded subsets into relatively (weakly) compact subsets.

Theorem 15. For k € N, let A : C*(R) — CF(R) be a nonzero
algebra homomorphism, and let ¢ € C*(R) be its inducing function.
Then the following assertions are equivalent:

(a) ¢ is constant;

(b) A has one-dimensional rank;
(c) A is compact,

(d) A is weakly compact.

Proof. (a) = (b). If ¢(y) = zo for every y € R, then Af = f(zg) -1
for each f € C*(R), where 1 is the constant function with value 1.
(b) = (c¢) = (d) are obvious.

(d) = (a). Suppose ¢ is not constant. For k > 1, we may assume
there exist a < b such that ¢ is increasing on [a, b] and (by the inverse
function theorem), ¢! is of class C* in [p(a),p(b)]. To simplify
notation, let @ = —1, b = 2. Choose a strictly increasing function
X € C*°(R) such that

X(x) =z for z € [p(0), p(1)]
lim, s 400 X(z) = ¢(2)
limwafooX() ( 1)

Define ¢ := ¢~ 1 o x € C*(R) and

o (®) {fo f sin 2"ty dt; ...dt, fory >0

for y < 0.

Since the sequence (g,) C C*(R) is bounded, a standard application
of the chain rule yields that the sequence (f,) := (gn, o ¢) is bounded
too.

Letting h,, := fno¢ for n € N, the sequence (h,,) has no subsequence
weakly converging to some h € C*(R). Otherwise, we should have
d*hn(z) & d*h(z) for all z € [0,1] (Theorem 10). However, d*h,,(z) =
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sin2"mz for x € [0,1], and it is an elementary consequence of the
dominated convergence theorem that this sequence has no pointwise
convergent subsequence [18, 7.20].

For k = 0, we may assume that ¢(R) D [0,1]. Then it is enough to
define f,,(t) :=sin2"nt for t € R. O

Now it is not difficult to prove that Theorem 15 is also valid for
homomorphisms C* (E) — Ck (F) (see [8]).

5. Weakly compact subsets in other spaces of differentiable
mappings. The results given in the preceding sections are also valid
in other spaces of differentiable mappings treated in the literature.

Let C*(E, F) be the vector space, introduced in [3], of those f €
Ck(E, F) such that for each integer 1 < j < k and z € E we have
di f(z) € P wu(PE, F). It will be endowed with the topology 7.

We denote by 7% the compact-compact topology of order k on
C*(E, F), introduced by Llavona [13] and Prolla [15], generated by
the seminorms:

pr.o(f) = sup{|lf @)/, || f(2)(w)l| : 2 € K, y € L, 1 <j <k},

where K, L are compact subsets of F.

All the results of Section 2 are valid (with obvious modifications) if
we replace Ck (E,F) by (C*(E,F),r¥) or (C*(E,F),7F). Here we
only state the main changes in the definitions.

1. Case of (C*(E, F), k). The map X of Proposition 3 would now be
X:C(E,F)— C(ExV), taking f into X given by X¢(z,v) = (f(z),v)
forzre EandveV.

A net (f,) C C¥(E, F) converges to f in the wj, topology whenever
(d? fo(x),9) converges to (d/f(z),) for all x € E, 0 < j < k
and ¢ € (P(‘E,F),7.)*, where 7., denote the topology of uniform
convergence on compact subsets of E.

A net (fo) C C(E, (P (E, F), 7)) converges to fin the w; topology
if (fa(z)(h),v) converges to (f(x)(h),v) for all z,h € E and v € V.



DIFFERENTIABLE MAPPINGS 633

The map T of Lemma 6 is now T : C(E, (P (E, F),7.)) — C(E %
E x V) taking f into T'f given by T'f(z,h,v) = (f(z)(h),v)(z,h €
EveV).

In the statement of Theorem 8, we should say that A; is uniformly
bounded on all compact subsets of F, in the sense that for compact
subsets K, L C E, there exists A > 0 such that ||d’ f(z)(y)|| < X for all
xe K,ye Land f € A.

2. Case of (C*(E,F),7F). Everything is as in 1, with the exception
of the following two definitions:

A net (f,) C C(E,P wu(?E, F)) converges to f in the w; topology
whenever (f,(z)(h),v) converges to (f(z)(h),v) for all z € E, h € Bg--

~

and v € V, where f(z) is the extension of f(z) to E**.

The map 7 of Lemma 6 is now T : C(E, Py (E, F)) — C(E x W x
V) taking f into Tf given by Tf(z,h,v) = (f(z)(h),v) for all x € E,
heWandveV.

Theorem 11 is also valid if we replace CX by C* or C*. Similarly,
Theorem 15 is valid for continuous homomorphisms C*(E) — C¥(F)
and C*(E) — CF(F), where the algebras may be endowed with one of
the topologies 7% and 7.
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