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THE FLAT DIMENSION OF MIXED
ABELIAN GROUPS AS E-MODULES

ULRICH F. ALBRECHT, H. PAT GOETERS AND WILLIAM WICKLESS

1. Introduction. In 1989, Faticoni and Goeters [6] constructed a
large variety of torsion-free abelian groups of finite rank which were
flat as modules over their endomorphism rings, while Albrecht [2]
gave examples of infinite rank groups with the same property in 1990.
In his survey talk presented at the 1989 University of Connecticut
abelian groups conference, R.S. Pierce proposed the general problem
of E-flatness as a worthy study—particularly that of computing the
flat dimension (fdg(q)(G)) of an abelian group as a left module over
E = E(G). The only known major results along these lines were the
theorem of Richman and Walker [12] proving that every reduced torsion
group is E-flat and the theorem of Arnold [3] giving a criterion for a
completely decomposable group to be E-flat.

In 1991, Vinsonhaler and Wickless [15] constructed finite rank, com-
pletely decomposable groups {G,, | 0 < n < oo} with fdr(G,) = n.
Recently, Dugas and Faticoni [7] have announced a similar result em-
ploying a different method and constructing different kinds of torsion-
free examples.

In this paper, we primarily study a class G of mixed abelian groups.
The elements GG € G will be of finite torsion-free rank and embedded as
a pure subgroup into IIG,, where G, denotes the p-torsion subgroup
of G. Furthermore, each G € G will satisfy an additional requirement
connected with the self-small property which was introduced in [4] by
Arnold and Murley.

Our main result is that, for each 0 < n < oo, there exists G € G with
fdg(G) = n. In the course of proving this, we show that, if G € G has
torsion-free rank n, then fdg(G) = fda(M). Here M is the algebra of
n X n rational matrices and A C M is a rational subalgebra associated
with the group G. This latter result leads to a realization problem:
Which subalgebras A C M are associated with some G € G? We show
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that the class of realizable subalgebras is fairly large—in particular,
large enough to obtain all possible flat dimensions. We give an example
of a subalgebra of My(Q) which cannot be realized.

We conclude the paper with some miscellaneous results connected
with flatness of mixed groups.

2. Some classes of mixed groups. Throughout the paper G
will be a mixed abelian group and will usually be reduced and of
finite torsion-free rank. We let G, be the p-torsion subgroup of G
and T = T(G) = ®Gp. We always assume that G is an honest mixed
group, that is, 7" is a proper subgroup of G. If G has torsion-free rank
n, then a subset X = {x1,...,2,} C G of independent elements of
infinite order is called a maximal independent set. We first consider I',
the class of (reduced) groups G such that G can be embedded as a pure
subgroup of II1G,. We use the symbol < to denote a pure subgroup, so
if G € T’ we write @G, < G < IIG). The class I' has occurred in [9], in
the study of mixed groups with von Neumann regular endomorphism
rings and in [10] in the study of mixed groups with principal projective
endomorphism rings.

For each G € T, it is easy to check that G/T is divisible. Thus, for
G €T, since T = T(G) is reduced, the restriction map will be a (pure)
embedding of the ring £ = E(G) into the ring E(T") = I1E(G,). Hence
each A € E can be regarded as a sequence (),) where )\, € E(G,).
In this way we can regard @F, < E < IIE, with E, = E(G,). The
next proposition records some useful results from [10] concerning E
as a subring of the ring I1E,. We sketch the proofs for the reader’s
convenience.

Before stating the results we need some notation. Suppose G € T’
is of finite torsion-free rank. Fix a maximal independent set X =
{z1,...,xn} C G. Then X = {z; + T,...,z, + T} is a basis of
the rational vector space V = G/T. Each A € E induces a Q-linear
transformation A on V. Define a ring homomorphism ux : E — M,(Q)

by ux(A) = mat(\)x where mat (\)y denotes the matrix of the
induced map A with respect to the basis X. Denote the set of p-
components of the elements of X by {z1p,... ,Tnp}, and let X, be the

subgroup of G, generated by {z1p,... ,Znp}



MIXED ABELIAN GROUPS AS E-MODULES 571

Proposition 2.1. Let G € ' be of finite torsion-free rank.
a) A sequence A = ()\,) € IIE, is an endomorphism of G if and only
if \(X) C G for some (any) mazimal independent set X C G.

b) Let A = ()\,) € IIE,, and let X = {1,... ,2,} be a mazimal
independent subset of G. Then A € E if and only if it satisfies the
following condition:

*
( )There exists an n X n rational matriz « such that for almost all
p we have the equation )\p(z ciTip) = (T1py .- s Tnp)afer, ... cn)t
Here (c1,...,cn)" denotes an arbitrary column vector of integers
Cly -+ Cn. (The matriz a will be simply ux(\), the matriz of the
map induced by A on the rational vector space G/T).

c) i) kerpx = Hom (G,T) and
ii) kerpx = ®E, if and only if X, = G, for almost all primes p.

Proof. (a) This is an easy exercise using the facts that X is a maximal
independent torsion-free subset of G and that ®Gp < G < IIG),.

(b) Note that for A € E, since pux ()) is the matrix of X with respect
to X, we have the rational matrix equation:

A(Zc,-xi> = (&1, s Zn)pix (N (15 5 Cn)t

for any choice of integers ¢;. Here g = g + T. This equation, viewed
componentwise, gives the equation in (*) for p greater than or equal to
some suitably large k. In particular, k£ will be chosen large enough so
that none of the rational entries in the matrix px ()\) have denominators
divisible by p > k. Conversely, if A = (\,) € ILE(G,) satisfies (*), then
it easily follows that A\(X) C G. By part (a), we obtain A € E(G).
Note that the matrix « will be precisely px (A).

(c) By definition of px, we have ux()\) = 0 if and only if A\(X) = 0,
that is, A(X) C T. Since X is a Q-basis for G/T the latter condition
is equivalent to the requirement A(G) C T. This proves part (i).

To prove (ii), let A = (Ap) € ker px. Then, in view of condition (x),
for almost all p, the map A, induces the zero endomorphism on Xj,.
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Thus, if X;, = G, for almost all p, then A\, = 0 for almost all p, that is,
A € @E,. On the other hand, suppose I = {p : X, # G,} is infinite.
For p € I, define f, to be the projection of G, onto G, /X, followed by
a nonzero map from G,/X, into Gp,. Put f, = 0 for p ¢ I. Then the
map f = (fp) is an element of infinite order in ker s x. Hence, in this
case, ker px = Hom (G,T) D @ E(G,). O

The following theorem describes the groups in I':

Theorem 2.2. The following conditions are equivalent for an abelian
group G:

a) GeTl.
b) i) G, is a direct summand of G for all primes p.
i) G/T is divisible, but G is reduced.

Proof. The implication a) implies b) is clear. For the converse,
assume that b) holds, and let m, : G — G, be the projection map
onto the direct summand Gp,. Define a map § : G — 1lIG, by
d(z) = (mp(z))p for £ € G. Since ¢ is the identity on T, it induces

amap 6 : G/T — [IG,]/T. Since G/T is divisible, the image of § is
pure in [IIG,]/T. This implies that the image of § is pure in IIG,.

Note that ker d N T = 0, so kerJ is a torsion-free subgroup of G. Let
x € kerd, and write G = G, ® H. Denote the restriction of § to H
by e. The definition of § ensures x € H and ¢(x) = 0. Since H is
p-divisible, there is a y € H with x = py. Then, pe(y) = e(z) = 0
implies €(y) € G, N1I4,Gq since m,(y) = 0. This is only possible if
d(y) = 0, that is, y € kerd. Therefore, ker§ is a divisible torsion-free
subgroup of G. Since Q is not contained in G, we have keré = 0.

Of particular interest for the remainder of the paper is the subclass
of T' whose elements are the self-small mixed groups such that G/T is
divisible. Recall that an abelian group G is self-small if Hom (G, —)
preserves direct sums of copies of G. Self-small groups have been of con-
siderable importance in the torsion-free setting since their introduction
in [4]. The next result connects the class I' to the class of self-small
abelian groups.
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Theorem 2.3. The following conditions are equivalent for a mized
abelian group G whose torsion-free rank is finite:

a) G is self-small.

b) i) G, is finite for all primes p.
ii) Hom (G,T) = @,E,.

c) E(G) is countable.

Proof. a) = b). By [4, Proposition 3.6], G), has to be finite for
all primes p. Suppose that Hom (G, T) is not torsion, and denote the
canonical projection of 1" onto G, by mp. If ¢ : G — T is not torsion,
then 7,4 # 0 for infinitely many primes p. Let S be the set of these
primes, and define a map o : G — ®sG by a(g) = (7,¢(g9))pes. The
map « is well defined since ¢(g) € T. In view of the choice of ¢,
#(G) cannot be contained in @, G for some n < w. This results in a
contradiction to the fact that G is self-small.

b) = ¢). The exact sequence 0 - T — G — G/T — 0 induces a
ring-homomorphism ¢ : E — E(G/T) by [o(a)](9+ T) = a(g) + T for
all g € G and a € E. We note that kero = Hom (G, T). Since G, is
finite for all primes p and Hom (G, T') = @, E(G,), we obtain that ker ¢
is countable. But since G/T is torsion-free of finite rank, F(G/T) is
also countable. Therefore, E(G) is countable.

c) = a) is established as in [4]. O

Corollary 2.4. The following conditions are equivalent for a mized
abelian group G whose torsion free rank is finite:

a) G is reduced and self-small, and G/T is divisible.
b) i) GeT.
i) X, =G, for almost all primes p.

iii) G, is finite for all primes p.

The corollary follows directly from the results of Proposition 2.1 and
Theorems 2.2 and 2.3.

Throughout the remainder of the paper, we primarily consider the
subclass G of I whose elements are of finite torsion-free rank and satisfy
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the additional conditions ii) and iii) of the last corollary.

3. The flat dimension of groups in G. The goal of this section is
to study the flat and projective dimensions of groups in G as modules
over their endomorphism ring. Let G € G be of torsion-free rank n, and
let X C G be a maximal independent set. Let M denote the algebra of
n X n rational matrices, and let A = pux(G). Then A is a subalgebra
of M and, as noted in [10], is an invariant of G (independent up to
isomorphism of the choice of X). Regard the rational vector space
V = G/T as an A-module in the natural way. For any ring R and R
module K let fdgrK (pdrK) be the flat (projective) dimension of the
module rK.

Theorem 3.1. With notation as above,
a) fdgG = fdaV, and
b) fdaV <pdpG < fdaV + 1.

Proof. (a) Since G € G, each G, is finite. Thus, for each relevant
prime p, there is a direct sum decomposition G = G, ® HP. Further-
more, since H? < Il .,G,, pH? = HP. Thus, both G, and H? are
fully invariant summands of G. Since the finite group G, is flat as a
module over its own endomorphism ring [12], it follows that G, also
will be flat as an £ = E(G)-module [15]. Hence, T = &G, is a flat
E-submodule of G. The exact sequence 0 - T — G — V — 0 yields
the information fdrG < max{fdgT, fdgV} with the inequality be-
ing an equality except possibly in the case fdgV = fdgT + 1. Since
fdgT = 0 it follows that fdgG < fdgV with equality except possibly
in the case fdgG =0, fdgV = 1. To see that this case cannot occur,
suppose that fdgG = 0 and let K be a right F-module. Then the
sequence 0 = TorL(K,G) — TorL(K,V) — K ® T is exact. But,
since V is divisible and each G, is finite, Tor L, (K, V) is divisible and
K ®T is reduced. It follows that Tor L(K, V) = 0 for all K and, hence,
fdgV = 0. We have shown that fdgG = fdgV.

Finally, since A = E/tE, where tE denotes the torsion subgroup of
E, which is a two-sided ideal of E, and A is torsion-free divisible, it is
easy to check that any flat A-module remains so when regarded as an
FE-module. Hence, fdgV < fda4V. Conversely, any flat resolution of



MIXED ABELIAN GROUPS AS E-MODULES 575

V as an E-module can be tensored with Q to obtain a flat resolution
of V as an A-module. Thus, fdgV = fd4V and the proof of (a) is
complete.

(b) Plainly pdgG > fdrG = fdaV, the last equality by part (a).
Suppose fdaV = t. Choose a resolution 0 - Ky_y — Fy_—1 — --- —
Fy — V — 0 where the Fs are free A-modules and K;_; is a flat A-
module. The module F; ; = A% = [E/tE]® has projective dimension
one as an F-module. Since K; ; is a finitely generated flat module over
the Artinian algebra A, K; ; is a projective A-module. It follows that
the projective dimension of K;_; as an E-module is also one. Since
0 —> Ki{y - F;_1 - K;_5 — 0 is an exact sequence of E-modules,
(Ki o =ker F;_5 — F;_3) we have pdpK; o < 2. Working up through
the resolution of V', we see that pdgV < t+ 1. Finally note that, since
each G, is finite, T is a projective E-module [12]. The exact sequence
0—>T — G —V — 0 thus implies pdgG < pdgV. O

Corollary 3.2. Regard M = M,(Q) as a left module over its
subalgebra A. Then gG is flat if and only if A M is projective.

Proof. Since M = V™ as A-modules, the module 4 M is projective if
and only if the module 4V is projective. By the theorem, gG is flat if
and only if 4V is flat. As observed above, 4V is flat if and only if oV
is projective. ]

In addition, we obtain the following description when M is a projec-
tive left A-module.

Theorem 3.3. The following conditions are equivalent:
i) M is projective as a left A-module.
ii) Any left M-module is projective as a natural left A-module.

iii) Any right M-module is injective as a natural right A-module.
)

iv) M is an injective right A-module.

Proof. i) = ii). Since M is semi-simple Artinian, every left M-module
X is isomorphic to a direct summand of &; M for some index-set I. By
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i), X is projective.

ii) = iii). Let X be any right M-module, and consider the right
A-module .
X = HOHIM(AMM,XM).

We observe that X and X are naturally isomorphic as right A-modules.
An exact sequence 0 - U — L - W — 0 of right A-modules induces
the commutative diagram

0 — Homy (W, X) ———— Homy (L, X) ——%—— Hom4 (U, X)

0 —>HomM(W®A M,X) —>HomM(L ®a M,X) —>HomM(U®A M,X) —0

in which the vertical isomorphisms are given by the adjoint functor
theorem. The bottom row is exact since M is a flat left A-module and
X is an injective right M-module. The commutativity of the diagram
shows that o is onto. Therefore, X = X is an injective right A-module.

iii) = i). Let 0 - X 1, ¥ be an exact sequence of right A-modules.
We wish to show that the induced map f ® idjs is a monomorphism.
We do so by standard means observing that (—®4 M, Hom p (M, —))
is an adjoint pair of functors [8].

We have natural maps ¢ : X — Hom (M, X ®4 M) given by
[p(z)](m) = 2 ®@m and X : Hom p (M, X 4 M) @4 M — X @4 M
given by X(a®m) = a(m). A simple computation shows X(¢®idys) =
idxgar. Since Hom pr (M, X ® 4 M) is a right M-module, it is injective
as a right A-module. Noting that ¢ is a map of right A-modules, we
obtain a map g : ¥ — Hom (M, X ®4 M) with gf = ¢. This, in
turn, yields (¢ ® idp)(f @ idpy) = ¢ ® idps. If t € ker (f ® idps), then

0=X(9 ®idm)(f ®idum)(t) = X(¢ @ idn)(¢t) = ¢,
which shows that f ® idy; is a monomorphism, and M is flat as an
A-module.

Since A is Artinian, and M is a finitely generated A-module, M is
finitely related. But, finitely related flat modules are projective.

Since iii) obviously implies iv), it remains to show the converse. The
proof of iv) = iii) is a routine dualization of the proof of i) = ii). O
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The last result leads us naturally to the task of describing those A’s
for which M is a projective left A-module. This is a very delicate issue
as the next example shows.

Example 3.4. Suppose that A is a subalgebra of M = M,,(Q) such
that m = dim @A divides n. Then there is a subalgebra Ay of M with
Ay =2 A for which M is projective as an Ag-module.

Proof. Set R = AN M,(Z). The rank of R as an abelian group is
m. Since we may assume m > 1, Corollary 3.10 of [6] yields that there
is a torsion-free abelian group G of rank n with E(G) = R which is
flat as a left R-module. Then, QG is flat, hence, projective, over the
ring A = QR. Using arguments similar to the one used in the proof
of the previous theorem, the embedding of A into M which is induced
by the action of A on QG produces a subalgebra Ay over which M is
projective. ]

4. Realizing algebras. Let A be a subalgebra of M, the full n x n
rational matrix algebra. We call A realizable if there exists a G € G
and a maximal independent set X C G such that ux[E(G)] = A. Note
that, in our set-up, the torsion-free rank of G will be n. In this section
we investigate the class of realizable algebras and show that it is fairly
large. Our first theorem gives some closure properties for this class.

Theorem 4.1. a) If A C M,(Q) is realizable and B € M,(Q) is
invertible, then the algebra S~*AB C M is realizable.

b) If A C M is realizable and B is a direct summand of A, then
B C M is realizable.

c) If AC M,(Q) and A’ C M,/ (Q) are realizable, then A® A’ C
M, 11 (Q) is realizable.

d) If AC M,(Q) is realizable, then My(A) C M,(Q) is realizable.

Proof. (a) Without loss of generality we can assume that the matrix
B has integral coeflicients. Let G € G and X C G with px[E(G)] = A.

Write the elements of X as a row vector (z1,...,,) and define a row

vector (2}, ... ,z}) by the matrix equation (z},...,z!) = Xp.

»¥n rn
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Then X' = {zf,...,z),} is a maximal independent subset of G with
px:[E(G)] = B~ AB.

(b) As above, suppose pux[F(G)] = A. If B is a direct summand of
A, then B = €A where € is an idempotent in A. Say ux[a+tE] =¢€
where Tix is the induced isomorphism zx : E/tE = A. Recalling that
®F, < F < IIE, we can modify the coset representative a of a +tE to
obtain a new representative a + tE = e + tE with e = e. If H = eG
and Y =eX = {exy,...,ex,} it is not hard to check that H € G and
that uy [E(H)] =B C M.

(¢) Let G, G' € G with independent sets X, X’ be such that
px[E(G)] = A € M,(Q) and px/[E(G')] = A" C M,/(Q). Regard
Ap A" C M,(Q)® M, (Q) C Mpirn (Q), the last inclusion via

A o0
A A — [0 A’]

We will construct groups H, H' € G with independent sets Y, Y’ which
have the property that uyuy/[E(H®H')] = A® A C Mpn (Q). Here
Y UY' will be regarded as a maximal torsion-free independent subset
of H® H' in the natural way.

List the elements in M, (Q)\ A4, say M, (Q)\A ={B1,82,-.-,8i---}
For each 8; ¢ A, condition (x) of Proposition 2.1 must fail for the matrix
Bi. That is, there exists an infinite set of primes P; such that for p € P;
the equation Y ¢;zjp — (@1p,--. ,Znp)Bilct, .- ,cn)" does not define
a legitimate endomorphism of X, = G,. Take P to be an infinite set
of primes such that P\P; is infinite for each i. Let v : G — I,¢pG,
be the natural projection map, and let Hy = v(G), Yy = v(X). Then
Hy € G with maximal independent set Yj. Clearly the matrices in
the subalgebra A still satisfy condition (*) with respect to Hy and
Yy. Furthermore, since an infinite subset of each P; still remains in
{p : (Ho)p # 0}, no new matrices outside of A will be associated
with endomorphisms of Hy. Thus, uy,[E(Hp)] = A. Now redo the
construction, taking into account both M, (Q)\A and M, (Q)\4’, to
construct Hy,Yy and H|, Y] and an infinite set of primes P such that
Ly, [E(Ho)] = A, By [E(H{)] = A" with Hy, H|, having no p-torsion for
p € P. Divide the set P into two infinite disjoint subsets P; and Ps.
Modify the group Hy, first by adding ®,cp, V,, to the torsion subgroup
of Hy, where each V,, is an n-dimensional vector space over Z/pZ with
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basis {v1p,... ,Unp}. Then augment each of the independent torsion-
free elements in Yy = {y1,... ,yn} by setting y;, = v;p, for all p € P;.
Call the new group and independent set H and Y. Using the set of
primes P, do an analogous augmentation to Hj) and Y to obtain H' and
Y’. Since we have added independent components to the torsion-free
elements of Yy (respectively, Yy) we have not destroyed condition (x)
for any of the matrices in A (respectively, A’) on any of the new H,’s
(respectively (H')p’s). Thus, we still have py [E(H)] = A (respectively,
py [E(H')] = A’). Moreover, in view of condition (*) on the set P;UP2,
any map A from H to H' or from H' to H (viewed as an endomorphism
of H® H') must have pyyys(A) = 0. It follows that

pyoy [E(H ® H')| = [61 AO']

as desired.

(d) Regard M:(A) C M,+(Q) via the usual block representation.
Let G' be the direct sum of ¢ copies of G. If ux[E(G)] = A it
follows directly from the definitions that px:[E(G")] = M;(A). Here if
X = {z1,...,z,} then X! denotes the natural set of nt independent
elements in G* obtained from the elements of X. O

The next series of results provides us with examples of realizable
algebras.

Theorem 4.2. Let i = {1,2,...,n}, and let N be a subset of the
Cartesian product . X n. If the rational subspace of matrices

A={(aij | aij =0 fori,j € N, a;j is arbitrary otherwise}

is a subalgebra of M, (Q), then A is realizable.

Proof. Assume that the subspace A, as defined above, is a subalgebra
of M,(Q). For 1 <j<mn,let N;={i| (i,j) € N}. Note that N does
not contain any pair (j,j) since, by assumption, 1 € A. Therefore,
Jj & Nj.

Write the set II of all primes as a disjoint union of n countable infinite
subsets, say Il = U} _Il;. If p € Ilo, then let G}, be the free Z/pZ-
module with basis {v; ...vnp}. Now assume j > 0. For p € II;, let G,
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be the free Z/pZ-module on the symbols {v;, | i € N;}. If some N;
should be empty, then set G, = 0 for each p € II;. We construct G € G
as the pure subgroup of IIG, generated by ©G, and a torsion-free
independent set X = {zy,...,z,}. Fix ¢ with 1 < i < n. As before,
each z; = (x;p) € IIG, will be defined by specifying its p-components.
Let p be a prime in IT;. Define z;, = 0if i ¢ N; and z;, = v;, otherwise.

We claim that, for a group G constructed as above, ux (E(G)) = A.
First suppose a € px(F(G)) and (i,j) € N. Since i € N;, we have
Tip = v;p for all primes p € II;. But, since j ¢ N;, we have set zj, =0
for all p € II;. Thus, for all p € II;, the matrix o cannot induce an
endomorphism of G, sending z;, to z;,. Since ll; is an infinite set of
primes, condition () of Proposition 2.1 implies that o must have 0 in
its (7, j)-component. It follows that ux (E(G)) C A.

To see that A C pux(E(G)), suppose that (i,5) ¢ N. It will be enough
to show that the matrix (e;;) with 1 in the (4, j)-component and 0’s
elsewhere is in px (E(G)). Then the Q-algebra pux (E(G)) contains the
rational vector space spanned by {(e;;) | (i,j) ¢ N}. By definition,
this latter vector space is precisely A.

To show that (e;;) € px(E(G)), we verify that the assignment
Zjp — Tsp defines a legitimate endomorphism of G, for all p, and then
refer to condition (*). By our construction of Gy, the map x;, — zip
will be legitimate except in the case that z;, = 0 and z;, = v;,. We
claim that this case cannot occur.

By way of contradiction, suppose that z;, = 0 and z;, = v;;, for some
prime p € II;. Since zj, = 0, we have j ¢ N;. On the other hand,
Tip = v;p yields i € Ny. Thus, (j,t) ¢ N and (i,t) € N. Recall that
(¢,j) ¢ N by assumption. Hence, both matrices (e;;) and (e;;) are
elements of A, but the matrix (e;;) = (e;;)(ej¢) is not. The resulting
contradiction proves our claim and completes the proof of the theorem.
O

Theorem 4.3. Any algebraic number field is realizable.

Proof. Let K = Q(d) be an algebraic number field. Choose
an irreducible polynomial m(z) in Z[z] with m(d) = 0 whose co-
efficients are relatively prime. Then the set S = {primesp
m(z) has a root in Z/pZ} is infinite [5]. Let R be the pure subring
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(with unit) of II,csZ/pZ generated by T = ®pcsZ/pZ and c = (cp)
where ¢, € Z/pZ is aroot of m(z). It is not hard to see that ¢+1" is an
algebraic element in the rational algebra II,csZ/pZ/ ®pecs Z/pZ with
minimal polynomial m(z) over Q(1 4+ T). Thus, T = ®pesZ/pZ <
R < I,esZ/pZ with R/T = K. Since R is pure in the direct product,
prank R =1 for all p € S. It follows that R is an E-ring, that is,
R = E(R,+) via r — left multiplication by r (see [13] for details). If
X={1+T,c+T,?+T,...,c" '+ T} where degree m(z) = n, then
px(R) = K C M,(Q), the last containment via the regular represen-
tation of K with respect to its Q-basis X.

Example 4.4. The algebra of rational quaternions is realizable.

Proof. Let Hy be the algebra of rational quaternions. Regard
H, C M4(Q) via the usual left regular representation, specifically Hy
is the subalgebra of M4(Q) consisting of all matrices of the form

a -b -c -d
b a -d ¢
c d a -b
d -c b a

with a,b,c,d in Q. We show that H, is realizable. Let P be the set
of all primes of the form 4n + 1. For p € P choose ¢, € Z/pZ such
that ¢ = —1(p). Write P as the disjoint union of two infinite subsets
P = PyUP,. For each p € P, let G, be a two-dimensional Z/pZ vector
space with basis {z,,y,}, G, = Z/pZx, ® Z/pZy,. We construct G as
the pure subgroup of IIG, generated by ®,cpGp and X = {z,y, z, w}.
Here z = (), y = (yp), 2 = (2p), and w = (wp,) where, for p € P;, we
set 2, = cpxp and wy, = cpYp and, for p € Py we define 2z, = cpy, and
wp = —CpZp. Suppose A € E(G) with px(A) = o € My(Q). A short
computation, using Proposition 2.1(b) and the facts that, for p € Py,
we have A(zp) = cpA(zp) and A(wp) = cpA(yp), shows that the matrix
a must be of the form

a b -c -d

o b d -d ¢
“le d a -V
d ¢ b d
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Also, for p € P5, we have A(zp) = cpA(yp). Using this and looking at
the action of o on the collection of G;s for p € P, forces the relations
a=a,b=1"V,c=c and d = d'. This is precisely what we need to
conclude that pux[E(G)] = Hy. o

Example 4.5. There are groups G, H € G, which realize the
isomorphic subalgebras

a 0 0
A= b a 0]]a,bceQ
L O a_
and ~ _
a 0 0
B = 0 a 0f]|a,bceQ
[ c b a]

of M = Ms(Q) respectively such that G is a flat E(G)-module while
H has infinite flat dimension over E(H). This is due to the fact that
M is flat as a left A-module but has infinite projective dimension as a
left B-module.

Proof. Tt is easily checked that

o o R

0 0 0 0
a 0] — a 0
0 a b a

o O

defines an isomorphism between A and B. We construct G € G and a
maximal independent subset X of G with px(G) = A.

Partition the set of primes into two infinite sets II; and IT5. A slight
modification of the construction in Theorem 4.2 yields a group G1 € G
and an independent set X; = {z,y, z} in G; which realizes

ai 0 0
b a2 0 a17a27a37bvc€Q
0 as

using only the primes from II;. Thus (G1), = 0 for all p € II,. We
shall augment G; by adding direct summands G, to T for each p € I,
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to construct a group G € G which satisfies the additional requirement
that a; = a2 = as.

For p € I, we take G, = (Z/p*Z)z, and define y, = 2, = pr,. Let
G be the group obtained from G via this augmentation, and consider

al 0 0
b as 0 S MX(G)
0 as
Then, for almost all p € IIy, we have a(z,) = aizp + by, + czp,

a(yp) = agyp and a(z,) = aszz,. Multiplying the first equation by
p yields that a; is congruent as modulo p. A comparison of the last
two equations gives that as is congruent az modulo p. Since Il is
infinite, we must have a; = a2 = ags.

We observe that V = Q2 is isomorphic to

1 00
A0 0 O
0 0 O

as left A-modules. This implies that M is projective as an A-module.

We can construct a group H € G which realizes B in a similar manner.
To show that H has infinite flat dimension over its endomorphism ring,
we first observe that J = J(B) has infinite projective dimension as a
left B-module. To see this, we note that

0 0 0 0 00
J=B|0 0 0|®B|0 0 0
1 00 0 1 0

If we consider the epimorphism of B @ B onto J which is defined by

0 0 O 0 0 O
(,8) > a |0 O Of(®B|0 0 0],
1 0 0 01 0

then its kernel is J & J. Hence, J has infinite projective dimension.
Define a map from B @ B onto V by

1 0

(,8)=a|0|®B|1
0 0
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The kernel of this map is

Observe that K maps onto J by projection onto the first component.
Hence, the projective dimension of K, and therefore of V, is infinite.
Thus, pdg(M) = .

In connection with (or in contrast to) Example 4.5, we want to point
out the following situation: Suppose that A and B are subalgebras of a
full rational matrix algebra M that are isomorphic via conjugation by
an invertible element 3 of M. If A is realizable by G € G and a maximal
independent set X, then Theorem 3.1 shows that B is realizable by G
and X 8. Hence, fda(M) = fda(V) = fdp(G) = fdp(V) = fd5(M)
in this case.

We thank Professor C. Vinsonhaler for suggesting that we investigate
the following example as a good candidate for a nonrealizable algebra.

Example 4.6. The algebra

a 0 0 O
0 a 0O

A= c c a 0 a,b,c,d € Q;e=b—c+2d
d e 0 a

is not realizable.

Proof. Tt is easy to check that A is a subalgebra of M4(Q). Suppose
that A = ux(E(G)) with G € G and X = {z,y,2z,w} a maximal
independent torsion-free subset of G. Then, for almost all p, the maps
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associated with the matrices

0000 0000
oo o0 o0 oo o0 o0
“=1l1 00 0° *“"lo1o0 0]
0100 0-1 00
0000
|00 00
0000
120 0

via condition (*) of Proposition 2.1b will be legitimate endomorphisms
on Gp.

We claim that if o, ag and a3 induce legitimate endomorphisms on
G, then so does

Hence, a € pux(E(G)) by Proposition 2.1b. But o ¢ A results in a
contradiction.

To prove the claim, let H, = (zp,w,) C Gp. If order (z, — wp) >
order (wp), then w, — 2, is an element of maximal order in H,. Hence,
(wp — 2p) 1s a direct summand of H,; and there exists a map 8 : H, —
H, such that (2, — w,) = wp,. In this case @ = fas is a legitimate
endomorphism of G, where the bar denotes the map induced by a
matrix. If order (2, — wp) < order (wp), then z, and w, are both
elements of maximal order in H,. Arguing as above, there exists
v : H, — H, with v(2,) = w,. In this case @ = az — y(a; + az)
is also legitimate.

We conclude this section with a result that establishes the existence
of groups in G of arbitrary flat dimension.

Theorem 4.7. For every 0 < k < oo there exist G € G with
fdegG = k.

Proof. In view of Theorem 3.1, it suffices to produce, for each
0 <k < o0, agroup G € G with maximal independent set X such
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that ux[E(G)] = A where A C M is a subalgebra with fdaV = k.
Here V and M will be a rational vector space and a matrix algebra
of appropriate size; and A will act on V in the natural way. For
k = oo this has been done as part of Example 4.5. For finite k
we appeal to Theorem 5 of [15] which proves that for every finite
k there exists a finite rank completely decomposable group H with
fdqem)QH = k. Thus, A = QE(H), the quasi-endomorphism
algebra of H, is a subalgebra of M = M,.(Q), where r is the rank of H,
such that fd4V =k, where V = QH. To complete the proof, we note
that if H is finite rank completely decomposable then A = QE(H)
is a subalgebra of the type considered in Theorem 4.2. Hence, A is
realizable. o

5. Related topics. Closely related to the flatness of a module is
the question when it is faithful in the sense of [14]. Recall that a left
module M over a ring R is faithful if IM = M implies I = R for all
right ideals I of R. The module is faithfully flat if it is flat and faithful.

Theorem 5.1. The following conditions are equivalent for a mized
abelian group G:

a) G is faithful as a left E(G)-module.

b) i) G, is finite and homogeneous for all primes p.
i) G/G, is p-divisible for all primes p with G, # 0.
iii) G/T is a faithful E/tE-module.

Proof. a) = b). We first show that G, is reduced for all primes
p. If this is not the case, then let D be the largest divisible subgroup
of G,. Write G = D ® B for some subgroup B of G, and define a
map ¢ : G — G by ¢(x +b) = pr+bforal z € Dand b € B.
Since ¢ is onto, the right ideal I = ¢E(G) of E(G) satisfies IG = G.
There is an a € E(G) with ¢a = 1g. Since D is fully invariant in
G, we have (D) C D. If x € Dip], then z = ¢a(z) = pa(z) = 0.
The resulting contradiction shows that G, has to be reduced. If G, is
not homogeneous, then neither is its p-basic subgroup X,. Therefore,
G =U; ®U; &V where U; and U, are nonisomorphic cyclic p-groups.
Without loss of generality, we may assume that there is an epimorphism
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c:U; -5 Uy. Let H=U;®U; ®V and define 7 : H — G by
7(z,y,2) = o(z) +y+ v for all z,y € Uy and v € V. Since H is G-
projective in the sense of [1], the right ideal I = {ra | « € Hom (H, G)}
of E(G) satisfies IG = G. Hence, there is a map a : G — H with
Ta = lg. If x € Uy, then there are uj,us € Uy and v € V with
a(z) = uy +uz +v. Thus, x = Ta(z) = o(uy) + us + v. This
shows that us = v = 0 and « induces & : U; — U, with o = 14.
This is not possible however. This shows that G, is homogeneous.
Write G, = @;Z/p"Z for some index-set J and n < w, and consider
a decomposition G = G, @ W. Let 7; : G — Z/p"Z be the projection
on the ith coordinate and § : G — W any projection with kernel
Gp. We consider the right ideal I of E(G) which is generated by
0 and the 7’s. Since IG = G, we have I = E(G) and there are
i1,---,ip € I and 7g,...,r, € E(G) with 1g = drg + 37" | mi,7;.
This yields G C m;,(G) @ - -- @ m;,, (G) ® V which is not possible unless
J is finite.

To show ii), assume that p(G/G,) # G/G, for some prime p with
Gp # 0. Since G, is finite, there are n < w and an epimorphism
¢ : ®,(G/G,) — G,. Therefore, ¢ induces a map ¢ : ®p W — G
by (f;(x, y) = ¢(z) +y for all z € W™ and y € W. Since W is a direct
summand of G, we have that I = {¢a | @ € Hom (G, W"1)} is a
right ideal of E(G) with IG = G. Thus, I = E(G) and there exists
a: G — W™ with o = 1. The existence of such an a contradicts
that fact that Hom (G,, W) = 0.

Finally, let J be a right ideal of E/tE with J(G/T) = G/T. If I is
a right ideal of E(G) which contains ¢tE and satisfies I/tE = J, then
IG +T = @. Since each Gy, is a finite direct summand of G, it follows
that T = (tE)G. Hence, T C IG and IG = G. Then I = E(G), and
G/T is a faithful E/tE-module.

b) = a). Let I be a right ideal of E(G) with G = IG. Consider
a prime p with G, # 0. Since G, is finite, write G = G, @ W
for some subgroup W of G. Observe that condition ii) guarantees
that W is fully invariant in G. Therefore, E(G) = E, ® E(W) and
I = I, ® J for right ideals I, of E, and J of E(W), respectively. In
particular, we obtain G, = I,G,. Suppose that we have shown that
G, is faithful as an Ej,-module. Then I, = E, and t£ C I. We have
(I/tE)(G/T) = (IG+T)/T = G/T. Since G/T is a faithful E/¢tE-
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module, I/tE = E/tE and G is a faithful E(G)-module.

To complete the proof, observe that G, is a free Z/p™Z-module, and
an abelian group H satisfies Sg,(H) = H if and only if p"H = 0.
Thus, every exact sequence H — G, — 0 with Sg,(H) = H splits. By
[1], G, is a faithful E,-module. O

Corollary 5.2. Let G € G. Then G is faithfully flat as an E(G)-
module if and only if

i) G is homogeneous.
il) G/T is faithfully flat as an E/tE-module.

Proof. Observe that A 2 E/tE since G € G. By Theorem 3.1, G is
flat as an F(G)-module if and only if G/T is flat as an A-module. o

Finally, we obtain an extension of a theorem in [10].

Theorem 5.3. Let G be an abelian group such that G, is finite
elementary abelian for all primes p and such that ©G, < G < IIG,.
(No restriction is imposed on the torsion-free rank of G.)

a) J(E(G))=0.
b) If E(GQ) is left (semi-) hereditary, then E/tE is left (semi-)
hereditary.

c) If E/tE is von Neumann regular, then E(G) is right and left
semi-hereditary.

Proof. a) As in the discussion at the beginning of Section 2, we can
regard @E, < E < IIE,. Since each G), is a finite dimensional Z/pZ-
vector space, each E, = E(G,) is semisimple. Hence, E is semi-simple
as a subdirect product of semisimple rings.

b) Let I be a projective left ideal of E(G), and choose a dual basis
{(zj,¢;) | j € J} of I where z; € I and ¢; : I — E(G). We show that
K = (I+tE)/tE is a projective left ideal of E/tE. Once this has been
established, part b) of the theorem follows immediately. Define a map
Y K — E/tEby ¢j(z+t+tE) = ¢;j(z)+tE forallz € I and t € tE.
Suppose that xy +t; +tE = x5 +ta +tE. Then, x1 —xo € INtE. We
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observe that ¢;(z1 — z2) € tE. Thus, 1; is well-defined. Clearly, v, is
an E/tE-morphism, and ¢;(z; + tE) = 0 for almost all j. If z € K,
then there is a y € I with

T=y+tE= <Z¢j(y)xj> +tE
jeJ
= 9;(y +tE)(z; +tE).
jeJ
This shows that K has a dual basis, and is projective.

c) Let I be a finitely generated left ideal of E(G). Since E/tE
is von Neumann regular, there is ¢ € E(G) with (I + tE)/tE =
(E(G)a + tE)/tE. Suppose that I is generated by yi,...,y,. For
each i, there are r; € E(G) and 2; € tE with y; = ra + z;.
We can find primes pi,...,pm with z1,...,2,, € B, ®---® Ep .
Consequently, I + (E,, & --- ® E,,,) = E(G)a+ (E,, ®---® E,,).
Since G = Gp, @+ - Gp,, ® (GNILj>m Gy, ) is a decomposition of G into
fully invariant direct summands, we have E(G) = E,, ®---® E,, &S
with § = E(G NIljsm|; Gp;). We obtain I = (INS) @, (INE,y,)
and E(G)a = (E(G)N S) & &, (E(G)a N E,,). Since E,, is a
semi-simple Artinian ring each I N E,, is a projective E(G)-module.
Moreover, E(G)an S is cyclic as an E(G)-module. By [10, Theorem
3.8], E(G)an S is projective. Thus, (INS)® Ep, @ ---® E, =
(E(G)anS)® E,, &---® E,,, yields that I NS is a projective E(G)-
module. Therefore, I is projective.

The right case is discussed similarly. o
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