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EIGENVALUE ESTIMATES FOR DEGENERATE
PARTIAL DIFFERENTIAL OPERATORS

J. MICHAEL WILSON

1. Introduction. Consider the fourth-order operator L = A% — V/,
where A is the Laplacian on R? and V € L{ _(R?) is nonnegative.
(For reasons that will be evident, we will assume that d > 4.) An
integration by parts shows that L will be a nonnegative operator, i.e.,
have no negative spectrum, if

(1.1) /Rd|f\2Vdac§/Rd|Af|2dx

for all f € C3°(R?). The work of Fefferman, Phong and others [3, 2, 4]
shows that (1.1) is true if V’s averages over cubes @ C R? are suitably
small. Specifically, let p > 1. Then there is a v(p,d) > 0 such that if

K(Q)4<|22| / vpdac)l/pgv(p,d)

for all @ (4(Q) denotes @’s sidelength) then (1.1) holds. (The LP
norm can be replaced by an Orlicz norm of order L(log"t® L); see [7].)
Moreover, this condition is close to being necessary, since (1.1) implies
trivially that

4
suprcRd@/ Vdz <7 < oo;
QI Jo

all one need do is test (1.1) over translates and dilates of a fixed bump
function.

What about an operator that has lower-order cross terms? Let
R? = R% x R%, and suppose that L; = §(A2%) + A1 A, — V, where
§ > 0 and A; is the Laplacian on R%. If § > 1, then the A% term
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dominates, and Ls can be handled much like L. But if § — 0 this is
no longer true. Then the cross term A;As becomes important; the
Fefferman-Phong machinery does not even tell us whether Ls remains
positive for very small §’s.

In [8], we proved that Ls will stay positive, even if we set 6 equal to
zero, provided that V’s Orlicz averages over rectangles are controlled.
(A rectangle R is a Cartesian product Q; X Q2, where the Q; are cubes
in R%.) We proved

Theorem 1. Let € > 0. There is a y(g,dy,ds) > 0 such that if
0(Q1)%(Q2)?

SUPP RcR% xRd2 IR|

/ V(Il,I2)10g2+E <6+ M) dIl,dIZ S ’y(&,dl,dz)
R Vr

(Vr denotes V'’s average over R) then Ly > 0; i.e.,

/ |fI?V day day < / |V1 Vo f|? dzy day
R xR92 R41 x R42
for all f € C3°(R?).

The proof used certain “two-parameter” Littlewood-Paley inequali-
ties, which were themselves derived from one-parameter results con-
tained in [6] and [7].

The methods of Fefferman and Phong also provide fairly sharp esti-
mates for the bottom of L’s spectrum and the number of its negative
eigenvalues, in the case where L is not nonnegative. In [8] we used
Theorem 1 to obtain an analogous estimate for the bottom of Lg’s
spectrum, but we were unable to count eigenvalues at that time.

In the Fefferman-Phong theory, L’s negative eigenvalues correspond
(more or less) to disjoint cubes for which a) (£(Q)?*/|Q|) fQ Vdz or
b) LQ)*(1QI™" [, VP dx)'/P, p > 1, is “big enough.” Specifically, if
there are cubes Q1, ... ,Qn with disjoint doubles for which a) is bigger
than some +y(d), then L has at least N negative eigenvalues; and if L
has N negative eigenvalues, then there are ¢V disjoint cubes @, for
which b) is bigger than some positive v(p, d).
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Unfortunately, disjointness is not a useful property when one is
studying families of rectangles. Put another way, a family of rectangles
that is large enough to have interesting “two-parameter” properties is
likely to be very far from being pairwise disjoint. In order to do a
“Fefferman-Phong” analysis of operators like Lg, it has been necessary
to apply their original idea very literally, which was not to consider
disjoint cubes, but disjoint regions of phase space.

We shall try to make our meaning clear with two examples. We shall
work on R! first. Let ¢ € C5°(R) be real and even, have support
contained in {|z| < 1} and satisfy [¢ = 0. (Of course, we assume
that ¢ # 0!) The ¢’s Fourier transform, 1&, is approximately supported
in an “annulus,” which we will take to be {1/2 < |z| < 3/2}. For
every dyadic interval I C R (with center z; and length £(I), set
Yr(x) = [I|729(2(x — x7)/€(I)). Each ¢; has support contained in
I and has its Fourier transform approximately supported in {¢(I) ! <
|€] < 3-€(I)"1}; so its “phase space support” is (roughly) a rectangle
of dimensions ¢(I) x £(I)~*. According to the Fefferman-Phong theory,
the phase space rectangles on which £ — V < 0 (in some averaged
sense) correspond to negative eigenvalues of A2 —V, and the associated
Yr’s are the approximate eigenfunctions. (The hard work, which is
accomplished by means of Littlewood-Paley theory, comes in making
this heuristic remark precise and rigorous.)

Now let ¥; be as described in the preceding paragraph, and consider
the family of functions defined on R?, {¢;(x1) % (22)}1,scr. Each of
these functions has its support contained in a rectangle (not a phase
space rectangle!) measuring ¢(I) x £(J) and its Fourier transform is
approximately supported in a rectangle measuring £(I)~% x £(J)~ 1.
Nothing unusual so far. But now let us look at those functions
such that ¢(I)/¢(J) = 2!, where [ is fixed. These functions are
supported on double-dyadic rectangles of fixed eccentricity 2¢. All of
them have their Fourier transforms approximately supported in the set
{(€1,8&) : 2171 < |&,/€1| < 3. 271}, which is the union of four angular
sectors. Different eccentricities, different I’s, yield essentially disjoint
sectors.

The double-dyadic rectangles of fixed eccentricity 2! have the same
inclusion properties as the dyadic intervals: any two of them are either
disjoint, or else one is contained in the other. It turns out that the
analysis carried out in [3] can be applied to functions of the form
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fo = 2w egy=2 Arg - ¥1(@) - $s(y), so that negative eigenvalues
of Ly, when restricted to the functions f;, will correspond to disjoint
rectangles R on which [(1|R]) [, VP]'/? > ¢,I(I)~2I(J)~2. This can
be done for every [ € Z. If we can decompose a C§° f into a sum
> icz fi, and if we can show that the pieces corresponding to different
I’s act more or less independently of each other, then the Fefferman-
Phong machinery will yield, almost verbatim, the analogous estimates
for Ly. As always, the hard work will come in showing that this actually
happens.

As in [3], the “hard work” is accomplished via Littlewood-Paley
theory; in particular, weighted norm inequalities for (variants of) the
Lusin area function. The inequality used in [3] had the following general
form: Let € > 0. There is a C; such that for every nonnegative weight
V and every f =Y A; -y (finite sum),

2
/|f| Vdz < C. Z |AI z)log' e (e + V(z)/V7) de,

where V; denotes V’s average over I [8]. (Note: Fefferman used an
inequality that was weaker than this.)

In order to treat Ly, we need two kinds of inequalities. The first,
like the one just described, controls the size of f by the size of some
quadratic functional (the square function). The second sort that we
need controls the size of the square function by the size of f. We
need both kinds because we must control an f = ) f; as above by
(3>1£112)Y/2, in order to apply the methods of Fefferman-Phong, and
doing so requires two steps: first, bounding [ |f |’V dz by a square
function expression which turns out to be a sum of square functions of
the fi’s, and then controlling all of these by the f;’s. Hence the need
for two kinds of inequalities.

Fortunately, we have these ready to hand in [2] and [8], and therefore
we are able to give a fairly direct proof (modulo a few technicalities) of
the analogue of the hard part of Fefferman’s result on the Schrédinger
operator [3] for Lg. The difficult part for us is then to find a nearly-
equivalent condition on N rectangles R which will imply that L, has
N negative eigenvalues; recall that this is the easy half of Fefferman’s
theorem! It is here that our own result is less satisfactory. Our
condition does not imply the existence of N eigenvalues for Lg, but
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instead for the slightly more negative operator AjAy — MgV, where
Mg is the “strong” (two-parameter) maximal function.

In Section 2 we review the square function results from [6, 7, 8, 2]
that we need. In Section 3 we state and prove our theorems.

2. Square function results. We will work on R = R% x R,
where we assume that d; and ds are both bigger than 2. For i = 1, 2, let
¥; € C5°(R%) be nontrivial, real, radial, and have support contained
in {|Jz| < 1}. We furthermore assume that [ 9;(z)P(z)dz = 0 for all
polynomials of degree < 3 (which is easy to arrange) and that 1; is
normalized to satisfy:

) [ ienrg =1 a0

(here the hat denotes the Fourier transform in the &; variable only).
For y; > 0 we let (v:)y, (2:) = y; “4bi(xi/y) denote the usual L'-dilate
of ;. Corresponding to the ordered pairs t = (t1,%;) € R% x R% and
y = (y1,52) € RT x RY, we define Wy (t) = (1h1)y, (t1) - (¥2)y, (t2)-

Let f € C3°(RY). Because of our normalization (2.1) and Fourier
inversion,

dt dy
Y1Yy2 ’

f@) = [ 5, 0) ¥y =0

where the convergence is as nice as we please if f € C°(R¢), and the
integral converges in L?(R%), at least, if f € L% Let Q; be dyadic
cubes in R%, and let R = Q; x Q- be a rectangle. We let T'(R) denote
the top half of R’s “shadow” in R*! : T(R) = {(t1,t2,y1,92) : t; €
Qi,0(Q:)/2 < y; < £(Q;),7 = 1,2}, where £(Q;) is Q;’s sidelength.
Because of what we said about convergence,

dt dy
Y1y2

f=Z/T(R)(f*‘I’y(t))-‘I’y(w—t)

Clearly each bg is supported in R, the triple of R. In addition, the
function bg inherits the cancellation properties of the ;’s: for each
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fixed 2 € R,

/bR(tl,Ig) - P(tl) dtl =0

for all polynomials P of degree < 3; and the analogous relation holds
for each fixed z; € R%. It is easy to see that each bg is C*°, with
good bounds on the derivatives. We make this last statement precise
by writing bg(z) = Ag - ag(x), where Ag is a constant chosen to make
ap satisty:

(1) |IViar|loo < €(Qi) *|R|7Y/2 fori = 1,2, where V; is the gradient
in the x;-variables;
(it) [[V1Vaarleo < €(Q1)"(Q2) " |RI7Y2.

(Functions like the ags are sometimes called adapted functions or
elementary particles, see [1]. Each ag is “adapted” to the rectangle
R.) Conditions i) and ii) are consistent with having

1/2

22 el <c( [ rer,mpe)
T(R) Y1Yy2

where C is a constant that only depends on d; and ds. (It also depends

on the 1;s, but these depend on the dimensions.) Whenever we write

f =" rAr-ag as in the preceding paragraphs (f € C;°(R%)), we will

assume that (2.2) holds.

The main result of [8] is:

Theorem 2.1. Let f € L?>(R%), and write f =Y Ar-ar as above.
Let € > 0. There is a constant C, that depends only on ¢, di and da,
such that, for any nonnegative V€ L (R%),

loc

2 %
2 < |AR| / 24 (z)
/Rd|f\ [/dm_CER R R[/(ac)log e+ Ve dz.

Theorem 2.1 has an immediate consequence via the Plancherel theo-
rem [8].
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Corollary 2.2. Let € > 0. There is a y(g,d1,d2) > 0 such that if

0(Q1)%*4(Q2)?
SUPP RcR41 x Ré2 T
. / V(z)log**® <e + —V(‘”)> dx < (e, dy,dy),
R Vr

then Ly > 0, i.e.,
[ apvass [ VivasPas
R¢ R¢
for all f € C°(RY).

We will need one more result, whose proof is essentially contained in
[2]. Recall that the strong mazimal function Mg is defined by

1
MSV(Il’mQ) = SUPP (z;,22)ER=Q; XQZE/ ‘V| dz.
Q1xQ2CR1 xR R

Theorem 2.3. For f € L. _(R?), let A\g (and ar) be defined as
above. There is a constant C(dy,ds) such that for all such f and all
nonnegative V € Li . (R?),

(2.3) /m . <Z M)de < C(dl,dg)/ FI2MsV da.

zE€R |R‘ R41 xR42

Proof of Theorem 2.3. For every integer k, let Ey = {z € R xR% :
MsV >2F}, and let F, = {R C R xR% : RC Ex, R ¢ Eyy1}. It is
important to notice that each R belongs to one and only one Fj, and
that UREFkR C Eg.

Rewrite the lefthand side of (2.3) and get

2 k thdy
P A

k ReFy REFy
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Because of the support restriction on the s, (¢,y) € T(R) implies
F*0,(t) = (fXz) * Ty(t). Set Ef = U{R: R C Ey}. Clearly, there is
a fixed n such that E}; C Ey_, for all k. Therefore, we can replace X
with Xg,_, . Plancherel’s theorem then implies

dtd
> [ ) n@PtE<c [P
T(R) Y1Y2 Ep_n

ReFy,

Plugging this back into the big sum,

1
|/\R|2—/ Vdr < 02" 2’“/ |f|? dz
2.0 Pl [ 22,

k ReFy

< 02"/ |fI°MsVdz. O
R41 xR42

Before finishing this discussion, we note two easy corollaries of the
preceding argument that will be useful in the next section.

First, note that Theorem 2.3 remains true if we replace the compactly-
supported ;s by functions which are merely in the Schwartz class and
have integral 0. The reason for this is that if ¢ € S(R?) and [ ¢ =0,
then ¢ can be written ¢ = ZSO ckPr, where each ¢ is supported
in {|z| < 25}, has integral zero, and satisfies [ |dy(Et)[>dt/t = 1,
and the ¢, — 0 faster than any power of 27%. This is a well-
known construction, which can be found in [5]; we describe it in the
Appendix to this paper. If we replace the function ¥ by one of the form
pr,j = (61)k(x1)-(¢2);(x2) in the proof of Theorem 2.3, we get the same
result as before, but with a constant in front like C(dy,dp)2~41 742, If
W = ) -1)9, where the 1); are Schwartz and have integral 0, then we can
write U = 3705 cxc)pr,j, with the constants rapidly decreasing. Now
the Cauchy-Schwarz inequality yields Theorem 2.3 for these “general”
Us.

Second, notice that the “compact support trick” used in the proof of
the theorem can be used to prove it in a slightly different form: Let
{ar}r be an orthonormal family of functions, indexed over a collection
of double-dyadic rectangles {R}, and with suppar C R for each R.
Let f =Y Agr-agr be a finite linear sum from this family. Then, for
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any weight V,

)\ 2
/ <Zﬂ>wx§c |f*MsV da.
R4 xR%2 z€R |R| R4 xR%2

The (easy) proof is left to the interested reader.

3. Eigenvalue estimates. We need a definition: When we say
that Lo has N negative eigenvalues, we mean that there is a subspace
N C C5°(RY), of dimension N, such that (Lo, ¢) < 0 for all ¢ € X.
Whenever we write MFV, we mean the result of applying Mg (the
operator) k times to the function V. If w > 0 is a function, we use wg
to denote the average of w on the rectangle R.

In this section we prove

Theorem 3.1. There exist positive constants c3 = c3(dy,d2) and
cqg = cq(dy,da) such that the following holds. If there are c3N double-
dyadic rectangles {R;} such that K(QQ)QE(Q§)2(1/|Ri|)fRi Vdz > cq,
then A1As — MsV has N negative eigenvalues.

Theorem 3.2. There ezist positive constants ¢; = c1(dy,c2) and
co = co(dy,ds) such that the following holds. Let Ly = A1Ay —V
have N negative eigenvalues. There exists as family of ¢y N triples of
double-dyadic rectangles {R;} with the property that any two R;s with
equal eccentricities must be disjoint, and such that

, . 4
HQIPHQY T [ aviotog' (e G ) do > e

for each R; = Q% x Q5.

Proof of Theorem 3.1. Let the rectangles be R;,..., Ry, and de-
note the sidelengths of their component cubes by ¢;(R;) and #3(R;).
We can partition this collection into four families Fy, k = 1,...,4,
with the property that if R; and R; belong to the same Fj, then
log, (41(R;)/41(R;)) and log,(¢2(R;)/¢2(R;)) are both even. One of
these Fp must have cardinality > N/4. Renumber the rectangles in
this family as Ry,..., R, and throw out all the others.
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Let p be the following function, defined for = € [0,1] C R:

0 z=0,1,
)1 x=1/4,3/4,
pla) = -2 x=1/2

linear in between.

The function p is orthogonal (in the ordinary L? sense) to all functions
of the form ax + b. If I is any interval, let p; be its left endpoint, and
set p; = [I|7Y2p((x—pr)/|1|); this is just p “fitted” onto I in the usual
(L2-invariant) sense. We've built p so that p L py if I is any four-adic
subinterval of [0, 1].

IfQ = Iy x---xI, is a cube in R?, we set Py (z1,... ,xp) = [[] pi,(z
If R = Q1 x Q- is a rectangle in R% x R, we define Ilg(z1,z2)
Py, (z1) - Pg,(x2) (where, of course, the z; are now points in R%).

)

Because of how we defined p and chose our rectangles R;, the
functions {IIg,}* are pairwise orthogonal. They each have the same,
nonzero L? norm. Let us assume that we have normalized them to
have norm 1. The only thing that prevents them from being a basis
for our eigenspace is their lack of smoothness. They are Lip 1, but not
C*°. We make them C* by convolving them with a mollifier. This will
mess up their orthogonality, but only a little. The resulting family will
be a basis for our “eigenspace.”

Let n € C§°(—1,1) satisfy [n =1, and let H(z) = H(x1,...,zq4) =
H;j n(z;). For ¢ > 0, we let H.(z) be the usual L!-dilate of H (as a
function defined on R% = R% xR%). Define P; . (z) = H.*Ilg,(z). We
wish to show that, for e sufficiently small, the family {P; . }1" is “almost

orthonormal.” In particular, we claim the following: For all § > 0 there
is an € > 0 such that, for all 0 < & < g and all f =>"" AP,

N> < (P40 [l

k=1

Proof of claim. Fix i. For 0 < ¢ <1 and (Aq,...,Am) € C™ such
that 37" [Ax|? = 1, define

(P()\la v 7>\m55) = |)‘z|2 - |<faPi,e>|27
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where f = > A\xPre, and set ®(A1,... ,Am,0) = 0. Then @ is contin-
uous, hence uniformly continuous, on the compact set {(A1,...,\p) €
C™: Y 7" |A\k|> =1} x [0,1]. The claim follows immediately now from
compactness and homogeneity.

Now we prove the theorem. Let f = > A\;P; ., where ¢ > 0 will be
chosen momentarily. A virtual repetition of the preceding argument
shows that, for € small enough,

/|V1V2f\2d37 < CY NlPla(R) 2 a(Ri) 2,
1

for a constant C' that only depends on d; and d2. In particular, C
remains uniformly bounded as € — 0.

Using the claim, this last quantity is seen to be less than or equal to
a fixed constant times

m

> HE PPl (R) 2 (R +5ZZ\Ak|el )" ?ta(R:) 2,

1

where § can be made as small as we like. If we make ¢ small enough,
we can throw the last term over onto the lefthand side and conclude
that

/|v sz|2<CZ| £ P [P0 (R) 2 a(R) 2,

for 0 < € < gg, for all such f. Fix e = g9/2. Note that, for such
¢, the functions {P; .} are linearly independent (since f = 0 implies
each (f,P; ) = 0 implies > 7" |\;|*¢1(R;)"2¢2(R;)~2 = 0 implies each
Ai = 0), so the dimension of span {P; . }1* is > N/4.

> cli1(R;)%l3(R;)~2 for each i, the last quantity is

C & 1
S por [ vas
c;|< i 7] /.

but this, following precisely the argument of Theorem 2.3, is less than
or equal to

Because Vg,
dominated by

S [1pasv o < [ 15705V e
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if ¢ is big enough. Thus, for these f, ((A1Ay — MsV)f, f) <0, and
Theorem 3.1 is proved. u]

Proof of Theorem 3.2. For ¢ = 1,2, let n; and 1; be nontrivial
Schwartz functions which satisfy the following conditions:

a) each is real and radial;

b) %i(&) = 0, 7:(&) = 1 in {1/2 < [§] < 2} and #;(§) = 0 outside of
{1/4 < |&i| < 4}

¢) supp¥; C {|z] < 1};

d) [¢iP(z;)dz; = 0 for all polynomials of degree < 1.

e) Jo wi(t&) - mi(t€)dt/t =1 for all & # 0.

It is easy to construct such a pair. Begin with a 1; that satisfies a),
c¢) and d). Since ¢; has compact support, its Fourier transform cannot
vanish to infinite order at the origin. We may dilate v; (scrunch it up)
so that its support remains inside {|z| < 1} while its Fourier transform
spreads out. For some dilation, |¢;(£)| will be strictly positive on
{1/2 < |&] < 2}. Now let n; be taken to be any function satisfying a)
and b), such that the integral in e) is nonzero. Replace 1; by the dilate
and replace 7; with an appropriate scalar multiple of itself (to make e)
true).

Let W, (t) = (¢1)y, (t1) - (¥2)y, (t2) be as in the preceding sections and
define By (8) = () (t1) - (1) n(t2) simnilarly.

By the Fourier inversion theorem,
dt dy
viy2’

F= [ B

with the same caveats as before (or lack of same) on convergence. The
integral converges in L?, and that’s all we need.

With T'(R) defined as in Section 2, we can write:
f=)_br=) Arag,
R R

where
dt dy

Y1y2 ’

ba(x) = /T IRCERACRMER
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and the Ar and ag are defined analogously, so that each ag is adapted
to R.

For k € Z, let F, = {R = Q1 x Q2 : £(Q1)/¢(Q2) = 2¥}. By the
results from Section 2,

Ar|? 1%
2Vdr < C |L/V:c102-5<e+—>dgc
Jirvas <o S RaL [ vines (e+

R
|>\R|2/ 2.5 |4
3.1 =C —=— [ V(z)log™ (e+ — | dz
(3.1) 22 a A
Ar|® 3
<Cy Y = | MEVda,
k REFy R J&

where 12
dtd

we=( [ 1remmptt)
T(R) Y1y2

It is important to notice that, if (¢,y) € T(R) and R € Fy, then
27k < 4y /y, < 27%+1 and so the Fourier transform of f * E,, for
such y, is supported in the sector S, = {(£1,&) : 2873 < |&1]/|&] <
2¥+31 Let f; denote the inverse Fourier transform of f - Xg,. Then
[ x Ey(t) = fr * Ey(t) when (t,y) € T(R) and R € Fj. If we plug into
(3.1) above, we get

[isva ey (/T(R)f*Ey(wPM)

% REFx Yi1y2

1
-E/RMngx

—eY 3 ([, 1B

k REFy Y12

1
-E/RMngx

<cy [Inpaivas,
k

where the last line follows from (the noncompactly supported version
of) Theorem 2.3.
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Notice that the double-dyadic rectangles, the basis of all our con-
structions, have disappeared. They are about to reappear. For each
k € Z, write

(3.2) fe(z) = /Rdl . (fx * By ()T, (x —t) dtdy

Y1Y2

The important thing to remember here is that, since fk is supported in
Sk, and E, is supported in {(&1,&2) : 27*ya/y1 < [&1]/[€2] < 2%y2/u1},
fx * Ey = 0 unless 27 4yy /y; < 243 or 24y, /y; > 2873 which means
that the convolution will be 0 unless 27%-7 < y1/y2 < Q—k+T7, Hence,
if we decompose the integral in (3.2) (as we have done before) in order
to represent fi as a sum of Agag’s, then all of the rectangles R that

occur in the sum will have eccentricities bounded between 25110 and
219710‘

Let us momentarily fix k = k¢ and write

ko+10 ko+10
(3-3) fro = E E ARAR = E 95>
j=ko—10 REF; Jj=ko—10

where the Arapgs are those that occur in the decomposition of fi, above.
(The reader may have noted that fj, will in general not be a Schwartz
function; hence, the sum in (3.3) need not converge pointwise. However,
it does converge in L%, and by the arguments in [8], this suffices to let
us control | fi,|? by the |Ag|%s, which is what we need.)

Now fix j and look at g; as above. The rectangles R € F; have
the same inclusion and disjointness properties as the dyadic cubes
in R% x R%. Following the procedure in [7, Lemma 2.1], this
family can be divided into 3%:t92 families G; such that the triples
Reg c F; have these same properties. Set g;; = Zﬁteglcﬂ- ARAR.
For fixed ko, fi, = Z;?S,;;Ew > 1941, and for general k we may write
Je = Z?iliglo 2 gj(',kl)-

We are almost at the point where we may finish the proof with the
observation that “we’ve already solved that problem.” For each k, 7,
k—10 < j < k+10,1, 1 <1< 3h%% let Ry,...,Ry,,, be the
minimal rectangles R € G; such that

(3.4) ;2 / MAV (z)log'® (e + ?1{44‘/()9 dz > c,



EIGENVALUE ESTIMATES 1185

where the constant ¢ will, as usual, be chosen later, and will be seen
to depend on d; and ds, but not on anything else. These rectangles
are pairwise disjoint. Now follow the procedure described in [3] and [7]
to find cVy ;,; additional “special” rectangles R € G, that also satisfy
(3.4). Call the resulting family (original plus additional rectangles)
Tk j1- We define a subspace U as follows

u=N{rece®y: [ o) pe)ae—o

kgl

forall R € Tk,;, and all polynomials P of degree < 1}.

The codimension of ¢ is < ¢, i Nkji. The arguments in [3, 7, 8]
now apply verbatim (it is here that we apply the proof of Corollary
2.2) to show that, for each k,

/|g(k)| MAVdz < ¢ Y NPl (R)26(R) 2

Reg,

whenever f € U. Hence, if f €U,

[1nPMivae<e 3N paPar)tam

k—10<j<k-+10 REF;

<c [laPlellif? de
for each k. Summing on k, and recalling the definition of fi, we get
/|f\2Vda:§CZ/|fk|2M§de
k

<ceY [laPleP Il de
<l / &2/]&a[21 2 de
§/|v1v2f|2d:c;
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for ¢ small enough (depending on d; and ds), i.e., (Lof, f) > 0 for
f € U, which implies that Ly has < CZk,j,l Ny, ;1 negative eigenvalues.
Theorem 3.2 is proved. o

APPENDIX

We show how a Schwartz function ¢ that satisfies [¢ = 0 can be
decomposed into pieces ¢ = Y cx¢r, where the ¢y are approximately
supported in dyadic annuli, have good bounds on their derivatives, and
the constants ¢, — 0 very rapidly.

Let 1 be any nonnegative function in C§°(R?) that is identically equal
to 1 in {1/2 < |z| < 2} and vanishes outside {1/4 < |z| < 4}. Let

= Y™ _¢(27%z). Setting vx(z) = ¥ (27%2)/¥(z), we note that
Yr(x) = ¥o(27%z). Thus, the properties of ¢ can be read off from

those of vy. Clearly, >, & (z) =1 for 2 #0, and >, ¥r(z) = 1 for
|| > 20. Set mp = ¢ for k> 0and no =1 -, m- The n satisfy

Zo =1

Now,
$= ¢ M=) pr
0 0

The functions pg have the support and smoothness conditions we’re
looking for, but they will usually not have integral zero. We fix this
with the help of a telescoping series. For each k£ > 0, set

i (2) = i (z) - %
Then write

Zpk— po—To) + > (pr + 1 — M),
k>0

Clearly, [(po —IIo) = [(n0®) — [(no¢) = 0. For the rest,

foret o (£ 0)e ] (50)
Z/nk¢—/nk¢
=0
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To see that the Ilys, along with their derivatives, decrease in size rapidly
enough (which is all that we have to worry about), we note, first, that
e > c2*d_ for some ¢ > 0, and second that

(A1) /(;knj>¢dm=—/(j§nj>¢dm,

because Y np =1 and [ ¢ = 0. Since ¢ is Schwartz, the righthand side
of (A.1) goes to 0 very rapidly.
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