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NON SELF-ADJOINT QUASI-DIFFERENTIAL
OPERATORS WITH DISCRETE SPECTRA

SOBHY E. IBRAHIM

1. Introduction. The minimal operators T and T(;" generated
by a general ordinary quasi-differential expressions M and its formal
adjoint M ™, respectively, form an adjoint pair of closed, densely-
defined operators in the underlying L2 -space, that is, 7, C (T0+ )*.
The operators which fulfill the role that the self-adjoint and maximal
symmetric operators play in the case of a formally symmetric expression
M are those which are regularly solvable with respect to Ty and T0+ .
Such an operator S satisfies Ty C S C (7,7)* and for some A € C,
(S — AI) is a Fredholm operator of zero index; this means that S has
the desirable Fredholm property that the equation (S —AI)u = f has a
solution if and only if f is orthogonal to the solutions of (S*—AI)v = 0,
and, furthermore, the solution spaces of (S—AI)u = 0 and (S*—\I)v =
0 have the same finite dimension. This notion was originally due
to Visik, the abstract theory concerning regularly solvable extensions
of Tp, which replaces the Stone-von Neumann theory of symmetric
extensions of a symmetric operator, was worked out by W.D. Evans
in [4]; see also [3, Chapter 3].

The principal object of this paper is to investigate the spectral
properties of those operators which are regularly solvable with respect
to the minimal operators Tp and T, generated by a general ordinary
quasi-differential expression M and its formal adjoint M T in L2 (a,b).
Of special interest is the subclass of operators which are well-posed
with respect to Ty and TOJr : see Definition 2.1 below. We are mainly
concerned with the case where all solutions are in L2 (a, b).

In the case where all the solutions of the equations (M — Aw)u = 0,
(Mt — Mw)v = 0 are in L2 (a,b) for some (and hence all A € C) it is
shown that the well-posed operators have resolvents which are Hilbert
Schmidt integral operators and consequently have a wholly discrete
spectrum. This implies that all the regularly solvable operators have

Received by the editors on April 26, 1993, and in revised form on February 7,
1994.

Copyright ©1995 Rocky Mountain Mathematics Consortium

1053



1054 S.E. IBRAHIM

all of the standard essential spectra to be empty. These results extend
those for formally symmetric expressions M studied by Akhiezer and
Glazman in [1] and Naimark in [9].

We deal throughout with a quasi-differential expression M of arbi-
trary order n defined by a general Shin-Zettl matrix, and the minimal
operator Ty is generated by (1/w)M][-] in L% (I), where w is a positive
weight function on the underlying interval I. The lefthand endpoint of
I is assumed to be regular, but the righthand endpoint may be either
regular or singular.

2. Preliminaries. We begin with a brief survey of definitions of
adjoint pairs of operators and their associated regularly solvable and
well-posed operators which are stated in [3, Chapter 3] and [4].

The domain and range of a linear operator T acting in a Hilbert
space H will be denoted by D(T) and R(T'), respectively, and N(T')
will denote its null space. The nullity of T, written nul (T'), is the
dimension of N(T') and the deficiency of T, def (T'), is the codimension
of R(T) in H; thus, if T is densely defined and R(T) is closed, then
def (T') = nul (T™). The Fredholm domain of T is (in the notation of
[3]) the open subset A3(T') of C counsisting of those values A € C which
are such that (T" — AI) is a Fredholm operator, where I is the identity
operator on H. Thus, A € A3(T) if and only if (7" — AI) has closed
range and finite nullity and deficiency. The indez of (T — AI) is the
number

ind (T — AI) = nul (T — AI) — def (T — A\I),

this being defined for A € Az(T)).

Two closely densely defined operators A and B acting in H are said to
form an adjoint pair if A C B* and, consequently, B C A*; equivalently,

(Az,y) = (z,By), forall z € D(A) and y € D(B),

where (+,-) denotes the inner product on H.

The field of regularity II(A) of A is the set of A € C, for which there
exists a positive constant K (\) such that

[[(A=ADz|| > K(A)||z| for all z € D(A),
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or, equivalently, on using the closed-graph theorem,

nul(A—XI)=0 and R(A— M) is closed.

The joint field of regularity II(A, B) of A and B is the set of A € C
which are such that A € TI(A), A € TI(B) and both def (A — \I) and
def (B —\I) are finite. An adjoint pair A and B is said to be compatible
if II(A, B) # 2.

Definition 2.1. A closed operator S in H is said to be regularly
solvable with respect to the compatible adjoint pair A and B if A C
S C B* and II(A, B) N A4(S) # @, where

Ag(S) ={N: A€ Az(5),ind (S — A\I) = 0}.

If AC S C B* and the resolvent set p(S) (see [3, 4] of S is nonempty,
S is said to be well-posed with respect to A and B. Note that if
A C S C B*and A € p(S), then A € TI(A) and X € p(S*) C II(B)
so that if def (A — A\I) and def (B — \I) are finite, then A and B are
compatible; thus in this case S is regularly solvable with respect to
A and B. The terminology, “regularly solvable” comes from Vishik’s
paper [10], while the notion of “well-posed,” was introduced by Zhikhar
in his work on J-self-adjoint operators in [17].

An important subset of the spectrum of a closed densely defined
operator 7" in H is the so-called essential spectrum. The various
essential spectra of T" are defined as follows: First, let

@, (T)={A€ C:R(T — M) closed and nul (T' — A\I) < oo},
® (T)={\€ C:R(T - X\) closed and def (T — \I) < oo},
A1) =2(T)UR(T),  Ds(T) = 24(T),

A3(T) and A4(T) have been defined earlier, and A5(T) is the union of

all the components of A;(T’) which intersect p(T'). Then the essential
spectra of T are the sets

(2.1) oen(T) = C\AL(T),  k=1,2,3,4,5.
The sets ocr(T') are closed and o (1) C oe;(T) if k& < j. The

inclusion is strict, in general. We refer the reader to [3, Chapter 9] for
further information about the sets oer(T').
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We now turn to the quasi-differential expressions defined in terms of
a Shin-Zettl matrix A on an open interval I, where I denotes an open
interval with left endpoint a and right endpoint b, (—oo < a < b < o).
The set Z,(I) of Shin-Zettl matrices on I consists of n x n-matrices
A = {a,s} whose entries are complex-valued functions on I which
satisfy the following conditions:

ars € Li. (1) 1<r,s<mn, n>2
(2.2) arr+17#0 ae onl 1<r<n-1,
ars =0 a.e onl 2<r+1<s<n.

For A € Z,(I) the quasi-derivatives associated with A are defined by

y{T] = a;i—i—l{(yhl])l - Zarsy{su}a 1 S r S n— ]-7

g o= ) 3 gy,

s=1
where the prime denotes differentiation.

The quasi-differential expression M associated with A is given by
(2.4) My ="y, n>2
this being defined on the set
(2.5) V(M) :={y:y" e dCo. ), r=1,2,...,n},

where AC),c (I) denotes the set of functions which are absolutely
continuous on every compact subinterval of 1.

The formal adjoint M™* of M is defined by the matrix AT € Z,(I)
given by

(2.6) At = -L7'AYL,

where A* is the conjugate transpose of A and L is the nonsingular n xn
matrix

(2-7) L= {(*I)T‘sr,n-«—l—s}lﬁrﬁn, 1<s<n;
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d being the Kronecker delta. If AT = {a;,}, then it follows that
(2.8) at, = (-1)""*"a, i1 n_ri1, for each r and s.
The quasi-derivatives associated with AT are, therefore,

£
e

I
<

’

— r—1
nir,n7r+1 (yLr ])l
rT+s+1~ s—1
(2.9) RD DG VAR PRSPy &
: s=1
1<r<n—-1,

yE:l] = (y[ffl])/ _ Z(_l)n-&-s-i-laniyrl’lygffl],
s=1

Il
ISl

and

(2.10) Mty =y, n>2

for all y in

(2.11) V(M) = {y: 9y € ACLe (1), 7 =1,2,... ,n}.

Note that (AT)" = Aand so (M )" = M. We refer to [6, 7 and 16] for
a full account of the above and subsequent results on quasi-differential
expressions.

For u e V(M),v € V(M™") and [a, 8] C I, we have Green’s formula
B
(2.12) / {oM[u] — uM*[o]} dz = [u, v](B) — [u, v](),
where

wole) = { Y-l V)|

(2.13) ()
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see [16, Corollary 1].

Let the interval I have endpoints a,b, —o0 < a < b < 00, and let w
be a function which satisfies

(2.14) w>0 ae onl, weLi.(I).

The equation

(2.15) Mu] = A, recC

on [ is said to be regular at the left endpoint a € R if for all X € (a,b),
(2.16) a€R; w,a,s € L'a, X], r=12,...,n.

Otherwise (2.15) is said to be singular at a. Similarly, we define the
terms regular and singular at b. If (2.15) is regular at both endpoints,
then it is said to be regular; in this case we have

(2.17) a,beR, w,a. € L'(a,b), rs=12,...,n.

We shall be concerned with the case where a is a regular endpoint of
(2.15), the endpoint b being allows to be either regular or singular.
Note that, in view of (2.8), an endpoint of I is regular for (2.15) if and
only if it is regular for the equation

(2.18) M*[v] = Awv, AeC.

Let L2 (a,b) denote the usual weighted L2-space with inner-product,

b
(2.19) (f.9) = / f(@)(@)w() de,

and norm ||f|| := (f,f)/?; this is a Hilbert space on identifying
functions which differ only on null sets. Set
D :={u;u € V(M),u and (1/w)Mu] € L2 (a,b)},

(2200, {v:veV(M*'),vand (1/w)MT[v] € L% (a,b)}.

The subspaces D and Dt of L?(a,b) are domains of the so-called
mazximal operators T and TT, respectively, defined by

Tu:= (1/w)M[u], weD and T'v:=(1/w)M*[v], ve D',
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For the regular problem the minimal operators T, and TS’ are the
restrictions of (1/w)M|[-] and (1/w)M ™[] to the subspaces
(2.21)

Dy :={u:ue D,u"Na)=ul0p) =0, r=1,2,... ,n},

Df ={v:ve D+,vz71](a) = vz711(b) =0, r=1,2,...,n},

respectively. The subspaces Dy and Dy are dense in L? (a,b) and Tj
and T, are closed operators (see [16, Section 3]). In the singular
problem we first introduce operators 7} and (7j")', Tj being the
restriction of (1/w)M[] to

Dg:={u:u € D,suppu C (a,b)},

and with (7,)" defined similarly. These operators are densely-defined
and closable in L2 (a,b), and we define the minimal operators T and
T;" to be their respective closures (see [16, Section 5]). We denote the
domains of Ty and TO+ by Dy and DaL , respectively. It can be shown
that

u e Dy = ul""Y(a) = 0, r=1,2,...,n,
(2.22) .
ve Dt =] “(a) =0, r=12,...,n,

because we are assuming that a is a regular endpoint.

Moreover, in both the regular and singular problems, we have
(2.23) Ty =T%, TS =1%

see [16, Section 5| in the case where M = M, and compare with the
treatment in [3, Section 3], [8 and 12] in the general case.

3. The regularity solvable operators. We see from (2.23) that
Ty C T = (T,5)*, and hence, T; and T;," form an adjoint pair of
closed, densely-defined operators in L2 (a,b). By [3, Corollary 3.3.2],
def (Tp — M) + def (T," — AI) is constant on the joint field of regularity
I(Ty, T,"), and we have shown in [5] that

n < def (To — A\I) + def (T;" — M) < 2n for all A € II(Ty, T,).

For II(Ty,T;") # @, the operators which are regularly solvable with
respect to T and TO+ are characterized by the following theorem which
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is proved for the general case in [5]; see also Theorem 10.5 of [3]. We
shall use the notation

[u, v](b) = liril [u, v](x), u€Dandve DT,
z—b-

if b is a singular endpoint of I, and similarly for [u, v](a) if a is singular.
Note that it follows from (2.12) that these limits exist for v € D and

v € DT since then 9M[u] and uM*[v] are both integrable by the
Cauchy-Schwartz inequality.

Theorem 3.1. Let Ty and TJ be compatible, and suppose that
def (To — M) = def (T,F —AX) =n  for all X € II(Ty, Ty ).

Then every closed operator S which is reqularly solvable with respect to
Ty and Ty is the restriction of T' to the set of functions u € D which
satisfy linearly independent boundary conditions

(31) [uaqﬁj](b) - [u’ ([5]](@) = 0) ] = ]-72a e, N

The set {¢1, b2, - .- ,¢n} is a basis for {D(S*)/D§ } where dim {D(S*)/
Di} = def(Ty" — M), and S* is the restriction of TT to the set
of functions v € DT which satisfy linearly independent boundary
conditions

(3.2) [¥;,v](b) — [¢;,v](a) =0, i=12,...,n.

The set {1, vY2,... %, } is a basis for {D(S)/Do} where dim {D(S)/
Dy} = def (To — AI) and

(3'3) Wja%](b) - [%ﬁ%](a) =0, Jk=1,2,...,n.

Conversely, for arbitrary functions {¢1,P2,...,0n} (respectively
{Y1,%2, ... ,¥n}) in DT (D) which are linearly independent satisfy (3.1)
(respectively (3.2)), and (3.3) is satisfied, then S = T|D; is regularly
solvable with respect to Ty and T0+, and S* = T*|D,.

S is self-adjoint (respectively J-self-adjoint) if, and only if, M = M +

(respectively M = M) and ¢; = ¢;, ¢; = ¢;, for j = 1,2,... ,n.
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We refer to [12] for further information on boundary conditions for
nonselfadjoint problems.

4. Properties of quasi-differential equations. Given a function
g, by a solution of

(4.1) Mly] = wg, on [a,b),

we mean a function y from [a, b) to the complex numbers C such that
ylI"l € ACoc [a,b) for 7 = 0,1,...,n —1 (i.e.,, y € V(M)) and (4.1) is
satisfied almost everywhere on [a, b).

Similarly, given a vector (matrix)-valued function G, we define a
solution of

(4.2) Y'(t) = A()Y (¢) + (1/i)w(t)G(t) on [a,b),

to be a vector (matrix)-valued function ¥ € AC.[a,b). It follows
from the definition of M[.] in terms of a Shin-Zettl matrix A that
(4.1) is equivalent to (4.2) (see [2, Chapter 3] and [16]) where ¥ =
(y,y™M, ..., y» T (T indicates a transposed matrix) and G is the
column vector (0,...,0,9), g € LL [a,b).

The evolution operator (or fundamental matrix) M (¢, t) is the unique
matrix-valued solution of

(4.3) Y'(t) = AQY (), Y(to)=1, to€ la,b).

Note that, if y is a vector-valued solution of (4.3) which satisfies
y(to) = &, then

(44) M(t, t0)£ = y(t), t,to € [a, b)
It also follows that
M (t,to) M (to,s) = M(t,s)

and, in particular,
M(ta tO)_l = M(t07 t)

(45) M(t7 tO) = Q(t) = (Mkj(tat())) for t,to € [CL, b)a
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k,j = 1,2,...,n. Denote by N(t,ty) the unique (matrix-valued)
solution of

X'(t) = AT ()X (1),
X(to) :I, ty € [a,b),

(4.6)
where AT is defined by (2.6). Let

(4.7) N(t,tg) = ¥(t) = (Ni;(t, to)) for t,tg € [a,b),
k,j=1,2,... ,n. From [14] and [16] we have that, for any ¢,y € [a,b),
(4.8) M(t,ty) = L *N*(to,t)L,

and

Mkj (t, to) = (_l)k+jwn+1—j,n+1—k;(f0vt)7

4.9
(4.9) k,j=1,2,...,n.

Theorem 4.1. Suppose that G is a locally integrable vector-valued
function and ty € [a,b). IfY is a vector-valued solution of (4.2), then

(4.10) Y(t):M(t,to)Y(to)—i—%{ M(t,s)w(s)G(s)ds}.

7 to

Proof. The proof follows by a direct computation (see [2, Chapter
3]). Formula (4.10) is known as the variation of parameters formula.
O

From [11, 15] and [16], we have the following immediate consequence
of formula (4.10):

Corollary 4.2. For g locally integrable, the solution ¢ of the quasi-
differential equation

(4.11) M[p] — Mwd =wg  on [a,b),
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satisfying
¢[T](t0)zcr+1 fOT"I":O,].,... 7n717t06 [a’b)a

s given by

(412 60 =S wtnlt) + 5 { S on0) [ FGutslals)ds},
k=1 k=1 to

where ¢i(t), k = 1,2,...,n, are the solutions of the homogeneous
equation
(4.13) M[p] — Awdp =0 on [a,b)

determined by

[T](to) = Ok, r+1

(4.14)

k=1,2,...,n; r=0,1,... ,n—1
and ¢ (s), k =1,2,... ,n, are the solutions of the adjoint equation
(4.15) M*[] — dwyp =0 on [a,b)

determined by

[r] "
@16 6 () = (1
k=1,2,...,n; r=0,1,... ,n— 1.

Proof. From the variation of parameters formula (4.10) with G =
(0,...,0,9)7, it follows that

(4.17) ZMlk (t,to)ck + — {/ My, (t, s) )g(s)ds},

k=1

where M (t,t9), K = 1,2,...,n are bases for the solution space of
(4.13) and M, (¢, s) is the element in the first row and nth column of
the matrix M (¢, s).
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As a consequence of (4.17) and the definitions of M(.,.), N(.,.), ®r(.)
and ¢} (.), we can obtain that

NE

Min(t,s) = Mk (t,t0) Min(to, s)

>~
Il
—

I
NE

b (t)(_l)kJran,erfk(syto) )

x~
Il
—

by (4.5) and (4.9),

D o) g
k=1

=" ¢ ()8] (5);
k=1

where
oi(s) = (=1 "1 e,  k=1,2,...,n
Hence (4.12) follows. O

Also, by [9] and [16], the solution ¢ of (4.11) is given by

418) o)=Y a0+ 5 { X ou) [ Vilouola(s)as.
k=1 k=1 to

for some constants cy, ¢, ... ,c, € C and ¢y € [a,b), where

(4.19) Vi(s) = Wi(1,- -+, 00)(8)/W (01, -+, b0)(5),

kE=1,2,...,n; Wg(d1,--.,0,)(s) is the determinant obtained from
the Wronskian, W(¢1,...,¢,)(s) by replacing the kth column by
0,...,0,1).

By comparing between the two formulas (4.12) and (4.18) we have
that

(4.20) Vk(s):gb;(s , k=1,2,...,n forall s€[a,b).

~—
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This result can also be proved directly (see [2, problem 19, p. 101]).

The following result was obtained by Zettl in [15, Section 3], see also
[12]; for the case of a formally self-adjoint expression M[-] see Walker’s
paper [11, Section 3].

Proposition 4.3. Suppose that, for some A\g € C and c € [a,b), all
solutions of B
M[¢] = Xow¢ and M*[p] = Aowyp

are in L2 (a,b). Then all solutions of
M¢] = Awe  and M7T[¢p] = dwp
are in L2 (a,b) for all X € C.

Proof. Let {¢1(.,X0); -+ 6 (-, X0)} and {7 (s Ao), .-+, ¢ (-, Ao)} be
two sets of linearly independent solutions of

M[¢] = Mwe and MT[] = Nowyp

which are in L2 (a,b) and satisfying (4.14) and (4.16), respectively.
Let ¢(t,\) be any solution of M[¢p] = Aw¢ which may be written as
follows M[¢] = Aowd + (A — Xo)we. Let ¢ be in [a,b). The variation of
parameters formula (4.12) yields

(4.21)

¢(tv )‘) = Z cj¢j (tv )‘0)
j=1

v 2o g byt 00) [ BT Aol s s

for some constants ci,co,...,c, € C. Let ky and k; be the smallest
numbers such that,

15 (+» Ao)llL2w(e,p) < Ko

and
H(ﬁj('v)\O)HL%U(c,b) < k17 ] = 17" LT
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Using the Cauchy-Schwartz inequality yields, for a < ¢ <t <z < b,

Bt M) < lesl 165t M)

j=1

+A—Ao|znjl|¢j<t,xo>{{ / tmzw@)ds}m

[ |¢<s,A>|2w<s>ds}1/2}

<Y lesl o (t o)

=1
’ n 2 1/2
hd ol Y st ] [ lote P s
j=1 ¢
and, for z € [c, b),
z 1/2 n 2
{/ |¢>(.,)\)|2w} §k02|cj|+nk1ko)\)\0{/ |¢>(.,)\)|2w}
c j=1 c

We now choose ¢ to be sufficiently close to b in order that

1/2

kokl‘)\ - )\0| S 1/(2n)

It follows that
(422) [ iotnpo < ag S le}
c j=1

Since the righthand side of (4.22) is independent of z, then we have
that ¢(-, \) € L2 (a,b). Similarly, we also have that ¢ (-, \) € L? (a,b).
Hence the proposition. ]

2

5. The main results. We shall now begin the investigation of
resolvents of well-posed extensions of the operator Tj; we shall see that
in the maximal case, i.e., when

def (Ty — M) = def (T;F — M) =n  for all X € II(Tp, Ty),
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these resolvents are integral operators. In fact, they are Hilbert-
Schmidt integral operators. We refer to Walker’s paper [12] for more
details.

We denote by H' the set of all functions f which are quadratically
integrable over a given fixed interval A = [a, 8] C (a,b) and which
vanish outside A (the interval can be different for different functions
f). The space Ha of all functions which are quadratically integrable
over a given fixed interval A can be regarded as a part of H', Hx C H'
on setting f = 0 outside A.

A special case of the following theorem was proved in Naimark [9,
Volume 2] and in Akhiezer and Glazman [1, Volume 2], namely, the
case of self-adjoint extensions of the minimal operator.

Theorem 5.1. Let \ € II(Ty, T(;") and suppose that
def (Ty — M) = def (Ty;" — XI) = n.
Let S be an arbitrary closed operator which is well-posed with respect

to Ty and T;” and X\ € p(S). Then the resolvents of S and S* are
Hilbert-Schmidt integral operators, i.e., for A € p(S),

(5.1) (S = A~ f(z) = / K(a,t, Nw(t)f(2) dt,

(5.2) (S* = XI)~lg(t) = / K*(t, 2, Nw(z)g(z) de,

z,t € [a,b) almost everywhere, where the kernels K(z,t,\) and
K™ (t,xz,\) are continuous functions on [a,b) X [a,b) and satisfy

K+(t,z,\) = K(z,t,)\) for all z,t € [a,b),

(5.3) //|K(ac,t,)\)\2w(x)w(t)dxdt<oo.

Remark. An example of a closed operator which is well posed with
respect to a compatible adjoint pair is given by the Visik extension (see
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[3, Theorem 3] and [10, Theorem 1]). Note that if S is well posed, then
Ty and TD+ are compatible and S is regularly solvable with respect to
Ty and T

The proof follows closely that of Theorem 1 in Section 19.2 in Naimark
[9], but, for completeness, we go through the main points to bring in
the changes necessary for our problems.

Proof. Let Ry = (S — AI)~! be the resolvent of any well-posed
extension S of the minimal operator Tp. Let A = [a, 3] be a fixed,
finite interval in (a,b). For f € Ha = L2 (c, 8) with f = 0 outside A,
we put ¢ = Ryf. Then

(5.4) Mg — Awéd = wf.

Consequently, by the method of variation of constants formula (4.12),
¢ has the form

1
in

55 o) =3 eonle) + S on@) [ GFOw ) dt
> (Lo [ }

for some constants cy, ca, ... , ¢, € C, where o (t), k=1,2,...,n are
the solutions of the equation M*[¢] — Awy = 0, satisfying (4.16). Let

def (Ty — M) = def (Ty" — M) =n  for all A € I(Ty, Ty ).

We choose a fundamental system of solutions ¢1,¢s,..., ¢, of the
equation
(5.6) M[¢] = Awe = 0,

satisfying (4.14), so that the functions ¢q, ¢2,... , ¢, belong to H =
L2 (a,b). O

For z > 3 the integrals on the righthand side of (5.5) will be constant
and equal to

B
/ T Ww(t) /(1) dt;
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hence, for = > (3,

5D )= (ck+ + / SLO001()dt | ) oo

Next we determine the constants cy, ca, ... ,cn. If {7, 95, ... ¥t} is
a basis for {D(S*)/D{ }, then because ¢ € D(S) and A € p(S) C Ay(S)
we have from Theorem 3.1 that

(5.8)
j=12,...,n ona,b).

We want to write these conditions out in detail. From (5.7), for z > 3,

e Zcm“ s S o).
k=1 a

Hence
n 1 b
60l = 3 (ot o [ GE0u@i©a} )or e
k=1 a
Also .
[¢7’¢J;_]a: Ck[¢k7¢;_]a7 .7:1727 2

k=1

since the integral on the righthand side of (5.5) vanishes in a neighbor-
hood of a. By substituting these expressions into the conditions (5.8),
we get

n

(ck+ H / ST (010 dt ) ) 6,71 = 3 exlons o

k=1

7 =1,2,... ,n. This implies that

> ekloe, ¥ To — Y crldnr, ¥l
k=1 k=1

= ;l{ ¢k, /Gﬁk f(t)d }
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Hence we obtain the system of equations

n

DI ;{Zm,w [ G ouws al,

j =1,...,n, in the variables ci,ca,...,c,. The determinant of this
system does not vanish, for otherwise the homogeneous system

> oallon v =0,  i=12,...,n,

k=1

would have a nontrivial solution ¢y, co,... ,c,, and the function

$=> cuor(w)
k=1

would satisfy the conditions

hence ¢ would belong to D(S) and (S —\I)¢ = 0. But this is impossible
for ¢ # 0 since it was assumed that A € p(S5).

If we solve the system (5.9), we obtain

ck:;{/abhk() ()f(t)dt}, k=12 . .n

where hy(t) is a solution of the system

(5.10) zn:hk(t )([Pr, 15 Zn: TIoo1 (2).

k=1

Since, as was proved above, the determinant of this last system does
not vanish, and the functions ¢ (¢) are continuous in the interval [a, b),
the functions hg(t) are also continuous in this interval. By substituting
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in formula (5.5) the expressions for ¢x, k = 1,2,... ,n, we get

Ryf(z) = (8 = M)~ f(=)
= ()

1 (< z
= Lot [ s
n b
3 bela) / () (t) £(£) dt
k=1 z

(5.11) - o
+Y 0o [ ofOu)s)

- %{ > oula) [ BED + hellwf 0t
L k=1 @

n b
+ > op(z) [ he(t)w(t)f(t)dtp.
> }

Now we put

%{Zzzl br () hi(t) }, for x < t,
LISr_ | de(@)[hi(t) + ¢ ()]} for x> .

Formula (5.11) then takes the form

(5.12)  K(z,t,)\) = {

b
(5.13) R (@) = [ Kot )u(0)f0) di,

i.e., R, is an integral operator with the kernel K (z,t, \) operating on
the functions f € H’. Similarly, by the method of variation of constants
formula, the solution ¢*(t) of

M+[1/)] - 5\“”/1 = wyg,

has the form

n 1 n t
() =) endy () + - ¢ (1) | dr(z)w(z)g(z)de ¢,

k=1
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for some constants cj, ¢, ... ,c, € C. The argument as before leads to

R3g(t) = (S* — AI)"'g(t)

— 6t (1)
(5.14) {Zas ) [ @@+ b @) do
+ 3 (]5 ' (2)w(x)g(z)dz ¢,
>0 [ )

where h;’ is a solution of the system

Zh w]’¢k Zd’]:(bk b¢k 7=12,... ,n,
k=1

k=1
and {¢1,v¥2,... ,%¥,} is a basis of {D(S)/Dg}.
Now we put
{2k O (R (2)} for t < z,
{3 r 1 ok (t)[R) (2) + ¢i(a)]} for t > m.

Formula (5.14) then takes the form

(5.15) KT (t,z,\) = {

(5.16) Ryg(t) / Kt (t,z, \w(z)g(z) dz

t € [a,b) almost everywhere, i.e., R} is an integral operator with kernel
K*(t,z,\) operating on the functions g € Hx C H'.

Let us find the relation between the kernels K (z,t,\) and KT (t,z, )

of (S — AI)~! and (S* — M)~!, respectively. Put
(S—A)"'f=¢ and (S* - X)) lg=¢" .

Then -
f=(S—AD)¢p, g=(S"—A)¢",

and the equation

(6, (S* = AD)¢") = ((S = AD)¢, ¢7),
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can be written in the form,

((S = AD™f,9) = (f,(8* — AI)"'g),

b b
/ / Kz, t, Nw(@)w(t) f(£)g(@) d dt

- / / KT (6,2 Nw(@)wt)f()g(@) de dt,

for any continuous functions f,g € Ha, and by construction (see
(5.12) and (5.15)) K(x,t,\) and K*(t,z,\) are continuous functions
on [a,b) X [a,b). This gives us

K(z,t,\) = K+(t,z,)\) forall z,t € A,
and hence, since A is arbitrary,
(5.17) K(x,t,\) = K+(t,z,)\) for all z,t € [a,b).
Also, ¢i(z), 01 (t) € L%(a,b) for k = 1,2,...,n and for fixed t,
K(z,t,)) is a linear combination of ¢1(z), ¢2(x),... ,d,(z), while, for

fixed z, K*(t,z,)) is a linear combination of ¢] (t), 7 (t),..., ¢} (t).
Hence,

b
/ |K (z,t, \)|?w(z) de < oo, a<t<b,
: i
/ K (8,2, VPw(t) dt < 00,  a <z <b,
and (5.17) implies that
b b B
/ K (z,t,\)[Pw(t) dt = / Kt (t,z,\)|*w(t) dt < oo,

b B b
/ \K+(t,m,)\)|2w(x)dw:/ K (x,t,\)|*w(z) dz < co.

Now, we can construct Ry and R} on H = L2 (a,b) as follows: R,
is a bounded operator, hence is continuous on H. Let f € H. Then,
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if X[q,5) is the characteristic function of [a, ], fz = X[a,5/f € H' and
fs — f pointwise and in L% (a,b) as 3 — b, hence

Raf(@) = lim Rafalo)
B
= lim{ i K(z,t, \)w(t) fz(t) dt},

in the sense of L2 (a,b), i.e.,
|IBxf — Rafpll =0 as 8 —b.

But, for any x € [a,b), K(z,.,A) w(.)f(.) € L(a,b), and by the

“dominated convergence theorem,”

B

i [ K (et Nu0)fp(8)

_/bK(a:,t,)\)w(t)f(t)dt, ac. @ € [a,b).

Hence, for any f € L2 (a,b), we can write

b
Ry f(z) = / K (a2, t, \w(t) £ (t) dt

for z € [a,b) almost everywhere. Similarly,

Rig(t) = / K*(t, 2, Nw()g(z) de

for ¢ € [a, ) almost everywhere. We have thus proved that Ry and R}
are integral operators for any well-posed extension S.

Now, it is clear from (5.10) for all A € II(Ty, T;") with
def (Tp — M) = def (T — M) = n,

that the functions hy(t), k = 1,2,...,n, belong to L2 (a, b) since hy(t)
is a linear combination of the functions @7 (t), 5 (t),... ,#; (t) which
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lie in L2 (a,b). Similarly, ht(z), k = 1,2,...,n, belong to L2 (a,b).
By the upper half of the formula (5.12), we have

b b
/ w(x) dm/ 1K (2, t, V) Pw(t) dt < +oo.
For the inner integral exists and is a linear combination of products
¢>k,(x)¢;'(t), j,k = 1,2,...,n, and these products are in L. (a,b)
because each of the factors belongs to L2 (a,b). Also by (5.17) and
by the upper half of (5.15),

/abw(a:) dz /az K (z, ¢, \)[2w(t) dt
- /abw(x) dx /az KCH (2, %) Pw(t) dt < +oo.

Hence, we also have

b pb
//|K(x,t,)\)\2w(x)w(t)dxdt<+oo,

and the theorem is completely proved for any well-posed extension.
mi

Remark 5.2. It follows immediately from Theorem 5.1 that, if
def (Ty — M) = def (Ty" — M) =n  for all A € I(Ty, Ty ),

and S is well posed with respect to Ty and T,” with A € p(S), then
Ry = (S — AMI)7! is a Hilbert-Schmidt integral operator. Thus, it is
a completely continuous operator, and consequently its spectrum is
discrete and consists of isolated eigenvalues having finite algebraic (so
geometric) multiplicity with zero as the only point of accumulation.
Thus the spectra of all well-posed operators S are discrete, i.e.,

(5.18) oer(S) =@ for k=1,2,3,4,5.

We refer to [3, Theorem 9.3.1] for more details.
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Corollary 5.3. Let \ € II(Ty, T, ) with
def (To — A1) = def (T,F — XI) = n.
Then
(5.19) oex(S) =9, fork=1,2,3,

for all operators S which are regularly solvable with respect to the
compatible adjoint pair Ty and Td".

Proof. Since
def (Ty — M) = def (T;" — M) =n, for all A € II(Ty, Ty ),
then we have from [3, Theorem 3.3.5] that

dim {D(S)/Dy} = def (Tp — A\I) = n,
dim{D(S*)/D(}L} = def (TgL — M) =n.

Thus, S is an n-dimensional extension of T and so, by [3, Corollary
9.4.2] that

(5.20) oek(S) = oer(Tp), for k=1,2,3.

In particular, if S is well posed (say the Visik extension) we get from
(5.18) and (5.20) that e, (1p) = @ for k = 1,2,3. On applying (5.20)
again to any of the regularly solvable operators S under consideration,

we have that
oek(S)=9 fork=1,2,3. O

Remark 5.4. From (2.1) and by (5.19), we conclude that Az(S) = C.
Hence (S — AI) is a Fredholm operator for all A € C. Therefore A
belongs to the spectrum of S if and only if range R(S — AI) is closed,
and the following conditions are satisfied:

(a) nul (S — AI) =nul (S* — \I) # 0,
(b) nul(S — AI) # 0, nul (S* — X\I) =0,
(c) nul (S — AI) =0, nul (S* — \I) # 0,
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it is of interest to emphasize that if S is well-posed only (b) is true and
nul (S — AI) = nul (S* — AI).

Remark 5.5. If def (Ty — M) = def (T — M) = n for some (and hence
all) \ € II(Ty, T;"), then II(Tp, T;") = C.

Since Ty and Tj," has no eigenvalues, then (T, — A\I)~! and (T —
A)~! exist and their domains R(Tp — AI) and R(T;” — AI) are closed
subspaces of L2 (a,b). Hence, since Ty and T, are closed operators,
then (Tp — AI)™! and (T;” — AI)~! are also closed and so it follows
from the closed graph theorem that (Tp — AI)~! and (T, — X\I)~! are
bounded, and hence I1(Ty, T,") = II(Tp) = I(T,") = C.

Remark 5.6. If in Proposition 4.3 it is given that Ao € II(Tp, T,"),
then the proposition is a consequence of Remark 5.5.
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