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BOURGAIN ALGEBRAS ON THE
MAXIMAL IDEAL SPACE OF H*

PAMELA GORKIN AND KEIJI IZUCHI

ABSTRACT. Let B be a Douglas algebra. For another
Douglas algebra D, by considering the integral representation,
there exists the corresponding closed subspace D of C(M(B))
the space of continuous functions on maximal ideal space of

B. Let [D]p(B) be the closed subalgebra of C'(M(B)) gen-
erated by D. In this paper we describe the algebra [D]M(B)

and determine the Bourgain algebra of [D]M(B) relative to
C(M(B)).

1. Introduction. The concept of Bourgain algebras was introduced
by Cima and Timoney (see [2] and [6]). Let A be a Banach algebra with
identity, and let B be a closed subalgebra of A. The Bourgain algebra
By, relative to A is the space of f in A such that ||f f,+B|| = 0 (n = o0)
for every sequence {f,}, in B converging weakly to zero. Cima and
Timoney proved that By is a closed subalgebra of A containing 5. We
shall write By, for (Bp)p. For other recent papers on Bourgain algebras,
the reader is referred to [4, 5, 9, 10, 13, 17, 20, 22, 23].

Let H*> be the space of boundary functions of bounded analytic
functions on the open unit disk A. With the essential supremum norm,
H® is a subalgebra of L* on the unit circle T. A closed subalgebra
B of L*° containing H* is called a Douglas algebra. Let C' denote the
space of continuous functions on 7. As Sarason showed, the algebra
H*® + C is a Douglas algebra (see [21] for a discussion of this algebra).
In [4], Cima, Janson and Yale proved that (H*®), = (H*® )y, = H*+C
relative to L. In [10], the authors and Mortini studied Bourgain
algebras of Douglas algebras B and showed that B, = By, relative to
L°°. In [17] the second author determined the Bourgain algebra of the
disk algebra A and proved that A, = Ay, relative to L>°. These are all
studies of Bourgain algebras relative to L> on T'.

In what follows we denote the set of nonzero multiplicative linear
functionals of a Douglas algebra B by M (B). With the weak*-topology,
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M(B) is a compact Hausdorff space, and we think of M(L*) as a
subset of M(B) (and we may think of M (B) as a subset of M(H)).
Furthermore, it can be shown that M(H>+C) = M (H*)\A. Writing
X for M(L*), we know that X is the Shilov boundary for every
Douglas algebra. Using the Gelfand transform, we may think of H*>
as a subset of the space of continuous functions on M (H>), denoted
C(M(H®)), and we identify L with the space of continuous functions
on X, denoted C(X). For a point = in M(H®), there is a representing
measure [, on X such that [, fdu, = f(x) for every f € H*®. For
an L* function g, we let

g(z) = / gdu, for every x € M(H™).
X

Then § is a continuous function of M(H®) [16, p. 93], and for g € B
we see that § coincides with the Gelfand transform of g on M(B),
and (gh)" = gh on M(B) for h € B. In [9], Ghatage, Sun and
Zheng studied Bourgain algebras on M (H>). Letting C(A) denote the
algebra of continuous functions on the closed unit disk, their result may

be stated as (H™), = (H*®)p = H*® + C(A) relative to C(M(H*>)).

Cima, Janson and Yale’s theorem, (H*), = H> + C relative to
L*, had two different generalizations. One is the study of Bourgain
algebras relative to L>* = C(M (L)), and the other is the study of
Bourgain algebras relative to C (M (H®)). The purpose of this paper
is to unify these studies. For a Douglas algebra D, let D= { f ;f € D}.
Then D is a closed subspace of C'(M(H>)), but D is not necessarily
an algebra. In this paper we study Bourgain algebras of one Douglas
algebra relative to another. To do this, we look at the closed subalgebra
of C(M(B)) generated by D, denoted here by [D]ys(p). This allows us

to study the Bourgain algebra ([D]y;(p))s relative to C(M(B)). The
Bourgain algebra of D relative to L™ is denoted by D,. When B = L,
our study is the same as [10]. When B = H*, our study is on the
same situation as [9]. Hence, our investigation of Bourgain algebras on
M (B) includes both of these cases.

Although the notation is rather cumbersome, we obtain results about
familiar algebras. In Section 2 we refine a theorem of P. Jones [18] to
show that the interpolating Blaschke products which are invertible in
D separate the points of M(H*)\M (D). As an application we can
describe the algebra [D] Mm(B)- In Section 3, we give some basic results
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on Bourgain algebras which can be applied in a variety of situations.
Using these results, in Section 4 we determine ([D]as(p)), and we show

that in this case, as in many other cases, ([ﬁ]M( )b = ([D]M(B))
If we consider the special case in which B = D = H®, we obtain
Ghatage, Sun and Zheng’s theorem. In Section 5 we study the disk
algebra A and show that (A\M(B Yo = (A|M ))bb-

2. A separation theorem. First we give some notation and
definitions. For a compact Hausdorff space, Y, we denote by C(Y)
the space of continuous functions on Y. For a subset F of Y and a
function f in C(Y'), we put

Flle = sup{|f(z)[; = € E}.

Let A be a closed subalgebra of C(Y). For a sequence {f,}, in A,
fn — 0 weakly in A if and only if {f,}, is sup-norm bounded and
frn — 0 pointwise on Y. When this condition is satisfied, we say that
fn — 0 weakly on Y. If we denote by 9 the Shilov boundary for A,
then for a sequence {f,}, in A we have that f, — 0 weakly on Y if
and only if f,, — 0 weakly on 0. A closed subset E of Y is called an
antisymmetric set for A if the restriction f|g, f € A, is a real function
then f|g is constant [7, p. 60].

Let {2z}, be a sequence in A with (1 — |z,|) < oo. The function

H T 27 n , z€A
it nZ
is called a Blaschke product. Moreover, if

1nf H

n:n#k

>0,
1 — Zn 2k

then 9 is said to be interpolating. A function ¢ in H*° is called inner if
|gl =1 on X = M(L®). Blaschke products are typical inner functions.
The Chang-Marshall theorem [3, 19] says that every Douglas algebra
B is generated in L* by H* and complex conjugates of interpolating
Blaschke products ¢ with ¥ € B. We also have

M(B) = {x € M(H®); |¢(z)| = 1 for interpolating Blaschke
products 1 with ¢ € B}
= {z € M(H*);|d| =1 for inner functions ¢ with g € B}.
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Hence, if B; and By are Douglas algebras with By C Bs, then
M(B2) C M(B;). We use this theorem several times. Since X
is the Shilov boundary for every Douglas algebra B, if f € B we
have |\f||M(B) = ||f|lx- Hence, for a closed subset E such that
X c¢ E ¢ M(B), B|g is a closed subalgebra of C'(E). [8] is a nice

reference for this material.

For points z and y in M (H), we put

plz,y) = sw{|f(v)|; f € H®, || fllx = 1, f(z) = O}

The set P(z) = {¢ € M(H*);p(z,¢) < 1} is called a Gleason part.
The open disk A = P(0) is a typical Gleason part. Of course, by
the Corona Theorem, A is dense in M(H*). When P(z) # {z},
we call z a nontrivial point. By Hoffman’s theorem [16] there is a
continuous one to one map L, from A onto P(z) such that L,(0) =z
and foL, € H* for every f € H*°. The map L, is called the Hoffman
map. For f € H*, we denote by

Z(f) ={x € M(H™); f(x) = 0}.
For each point z in Z(f), we may consider the order of the zero of
f at . If z is a trivial point, we say that the order of the zero of
f at x is infinite. If x is a nontrivial point, we can define the order
of the zero at = by considering the function f o L, at 0 in the usual
way. When f has a zero of infinite order at z, for each integer n we
can write f as the product of n functions in H* vanishing at = [8,
p- 379, Lemma 3.3]. For a subset E of M(H®), we denote by clE
the weak*-closure of E in M(H®). If ¢ is an interpolating Blaschke
product with zeros {z, }, then Z(¢)) = cl{z,}n [15, p. 205, and every
point in Z (1[1) is nontrivial. Conversely, for every nontrivial point z

there is an interpolating Blaschke product ¢ such that ﬁ(m) =0.
In [18], P. Jones proved that interpolating Blaschke products separate

the points in M(H>). The following is a similar type of separation
theorem for Douglas algebras.

Theorem 2.1. The interpolating Blaschke products which are in-
vertible in a Douglas algebra B separate the points of M(H>)\M (B).
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Proof. Let = and y be two different points in M (H*)\M(B). Since
H*° separates the points in M (H®), there is a function f in H> with

(1) fz)=0,  fy) #0 and [|f][x <1

Since ¢ M(B), by the Chang-Marshall theorem there exists an inner
function w invertible in B with |d(x)| < 1. Let a = 4(x), and let

(2) v=(u—a)/(l-au) onT.

Since |4| = 1 on M(B), we see that v is invertible in B. Furthermore,
v is also inner and ¥(z) = 0. We now construct an inner function w
invertible in B such that

(3) w(z) =0 and w(y) # 0.
We will then use w to obtain an interpolating Blaschke product b

invertible in B with b(z) # b(y).

Case 1. If 4(x) # 4(y), let w = v. In this case it is clear that w is an
inner function invertible in B satisfying (3).

Case 2. If 4(x) = 4(y), consider the function f + v. In this case, by
(2), 9(y) = 0. By (1), for ¢ € X, we have

[F(O) + (O] = [o(O] = [£(O] > 0.

So f+ v is invertible in L*°. By the strong logmodularity of H*> [8, p.
201], there is an invertible function g in H* such that |g| = |(f +v)}|
on X. Let w = g(f + v). Then w is an inner function. Since v is
invertible in B, |9| = 1 on M(B). Hence, for ¢ in M(B),

(€)(F() +0(6))]
[(]o
|

g
> 196118~ 1£(©)N)
> g (5) (T —1fllx)
>0 by (1).
Thus, w is invertible in B. Since f(z) = #(z) = 0, w(x) = 0. Since

g(y) # 0, f(y) # 0 and 6(y) = 0, we have w(y) # 0. Therefore w
satisfies (3).
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Now either w has a zero of finite order at x or else it does not. If
the order of the zero at x is finite, then x lies in the closure of an
interpolating subsequence of the zero sequence of w [16, Theorem 5.3].
In this case w = bc, where b is an interpolating Blaschke product which
vanishes at z, but (since W(y) # 0) not at y. Since w is invertible in B,
b cannot vanish on M(B), and hence is also invertible in B. Thus, b
separates the points z and y and is the desired interpolating Blaschke
product.

Next we assume that w has a zero of infinite order at . This means
that for any n we can write w as the product of n inner functions,
invertible in B, all vanishing at . At least one of these factors must
have the property that the absolute modulus of the value at y is
larger than |@(y)|'/™. Thus, replacing w by one of these factors for
an appropriate n, we may assume that for any ¢ > 0 there exists w,
inner and invertible in B, vanishing at « and |@.(y)| > 1 —e. By the
argument on page 429 of Garnett [8], we see that for every ¢ > 0 there
exists an interpolating Blaschke product B, with

|Be(2)| < 1/4 if |we(2)| <1/4, z€A
and there is an n(e) — 0 (¢ — 0) such that
Bue)| > 1-n(e) i Jw(e)|21-c, z€A.

Here we choose € so small that 1 — n(e) > 1/2 and use the Corona
Theorem. Since w.(z) =0 and |w.(y)| > 1 — ¢, then

B.(@)| <1/4 while |B.(y)] >1/2.

Now w, is inner and invertible in B, so |we] = 1 on M(B). Thus,
|Be] > 1/2. So B, is an interpolating Blaschke product in B which
separates the points z and y, and is invertible in B. ]

For a subset F' of L°, we write [F] for the smallest Douglas algebra
containing F. The following is a consequence of the Chang-Marshall
theorem.

Lemma 2.1. Let B and D be Douglas algebras. Then M ([BUD]) =
M(B)NM(D).
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Proof. By the Chang-Marshall theorem, there are sets of inner
functions {¢a}aer and {¥p}gen such that B = [H>, ¢,; € '] and
D = [H® 48 € A]. Then [BUD] = [H*®,¢a,¥s;0 € T, 3 € Al.
Hence,

M([BUD]) ={x € M(H™); |¢a(z)|=1, |g(z)|=1 for a € T, € A}

={z € M(H*®);|da(z)| =1 for « €T}
N{z € M(H™);|¢yg(z)| =1 for § € A}
= M(B)N M(D). O

As an application of Theorem 2.1, we have the following theorem.

Theorem 2.2. Let B and D be Douglas algebras. Then

[Dla(s) = {f € C(M(B)); flm(suny € Dlmsupy}
= [H*®,¢;¢ € D,
W is an interpolating Blaschke product] () -

To prove this, we give two elementary lemmas which will be used
several times in this paper.

Lemma 2.2. Let Y be a compact Hausdorff space, and let E be a
closed subset of Y. Let A be a subset of C(Y). If Alg is a closed
subalgebra of C(E), then

() {feC¥)flecAgt=A+{fecCY);f=00nE}isa
closed subalgebra of C(Y).

(ii) Forge C(Y), |lg+{f € C(Y);fle € Ale}ly = llg + Allz-

Proof. (i) is trivial. For (ii), we have
lg +{f € C(Y); fle € Als}lly <llg+{f € C(Y); fle € Ale}|e
= llg + Alle-

The dual space of the quotient space C(Y)/{f € C(Y); flg € Alg}
coincides with the set of bounded Borel measures p on Y such that
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[y fdu =0 for every f € C(Y) with f|g € Alg. By (i), f = h+c,
where h € A and ¢ € C(Y) with ¢ = 0 on E. Hence the closed
support set of p is contained in E. Therefore, the dual spaces of
CY)/{f e C(Y);flg € Alg} and C(F)/A|g coincide. By this fact,
we have (ii). O

The lemma below follows from the fact that X is the Shilov boundary
for every Douglas algebra.

Lemma 2.3. Let D be a Douglas algebra, and let E' be a closed subset
with X C E C M (D). Then D|g is a closed subalgebra of C(E).

Proof. This fact follows from ||f||x = ||f||z and (fg)" = f§j on E
for f,g € D. O

Proof of Theorem 2.2. Let

A=[H™, 12; ¢ € D, is an interpolating Blaschke product]as(s);
B ={f € C(M(B)); flm(supy € Dlasupy}-

Then trivially we have A C [f)]M(B). By Lemmas 2.1 and 2.3,
ﬁ|M([BuD]) is a closed subalgebra of C(M[B U D]). Hence, by Lemma
2.2, B is a closed subalgebra of C(M(B)). Since 15|M(B) C B, we get
[D]m(s) C B.

It remains to show that B C A. To prove this, we use Bishop’s
theorem [7, p. 60]. Let S C M (B) be an antisymmetric set for .A. By
the Chang-Marshall theorem M (D) = {z € M(H®>); |1/A)(a:)| =1 for
interpolating Blaschke products ¢ with 1) € D}. Hence, if SN M (D) #
&, then for any interpolating Blaschke product ¢ with ¢ € D, the
facts that 9,1 = 1& € A and S is antisymmetric imply 1& is a constant
on S and that constant must be of modulus one. Since this is true
for any interpolating Blaschke product ¢ with ¢ € D, we see that
SNM (D) # @ implies S C M (D). Hence, we have either SNM (D) = &
or S C M(D).

If SN M(D) = @, we claim S is actually a one-point set. If not,
we may choose two distinct points  and y in S. By Theorem 2.1,
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there is an interpolating Blaschke product ¢ with 1/16 D such that
¥(z) # ¥(y). Thus, either Ret(z) # Red(y) or Im¢(z) # Im¢(y).
Since Retp = (P + ¢)/2 € A and Ime) = (P — ¢)/2i € A, the
antisymmetry of S implies this is impossible. Thus, .S must be a single
point. In this case, of course, we have for any f € B that f|s € Als.
If S c M(D) and f € B, then by Lemma 2.2 f = iL|M(B) + ¢, where
h € D and ¢ € C(M(B)) satisfies ¢ = 0 on M(B) N M (D). Since
S C M(B) N M(D), clearly c|s € Al|g. Since h € D, the Chang-
Marshall theorem and the fact that S ¢ M(D) imply h|s € Als. Thus,
fls € Als and Bishop’s theorem yields the result. o

3. Bourgain algebras. In this section we present some results
which are used in the following sections. Throughout this section let
A be a closed subalgebra of L™, let B = [H> U .A] denote the Douglas
algebra generated by A, and let E be a closed subset of M(B) with
X C E C M(B). Then A|g is a closed subalgebra of C(E) (see Lemma
2.3). We discuss the Bourgain algebra (A|g)y relative to C(E). We
denote by A, the Bourgain algebra of A relative to L>°. For weakly
convergent sequences, we have the following.

Lemma 3.1. Let {f,}. be a sequence in L™ and let E be a closed
subset with X C E C M(H™). Then ||f.|| = ||fullg, and f, — 0
weakly on X if and only if f,, — 0 weakly on E.

Proof. Suppose that f,, — 0 weakly on X. Then {f,}, is sup-norm
bounded and f, — 0 pointwise on X. Since f,(z) = Jx fndpg, z € E,
by the Lebesgue dominated convergence theorem it is clear that fn —0
weakly on E. The other statements above are easily proved. O

Here we consider a particular open subset U of E satisfying the
following condition:

(x) for every sequence {f,}, in A with f, — 0 weakly, f, — 0
uniformly on each compact subset of U.

We denote by Ejy the union set of all open subsets U of E which
satisfy condition (*). We note that Fy might be empty.
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Lemma 3.2. Ej satisfies (x); that is, Ey is the largest open subset
of E which satisfies condition (x).

Proof. Let {fn}n C A with f,, — 0 weakly, and let K be a compact
subset of Ey. Then there exist open subsets Uy, ... , Uy satisfying (x)
with K C {U;;1 < j < k}. Then one can find open subsets Vj,
1 < j <k, such that

V;CcUj, cV;CcU; and K CU{Vj;;1<j<k}

By condition (%), f,, — 0 uniformly on V; for each j, hence on K. O

In the rest of this paper, Ey plays an important role. We note that
Ey depends on A.

Proposition 3.1. Let A be a closed subalgebra of L™, B = [H>®UA],
and X C E C M(B). Then (Alg)y D {f € C(E); f =0 on E\Ey}.

Proof. Let f € C(E) with f = 0 on E\Ey and let {f,}, C A with
fn — 0 weakly. We may assume that ||f,||g = 1 for every n. Given
€ > 0, there exists a compact subset F' of Ey such that |f| < e on E\F.
Then we have

By Lemma 3.2, ||ffullz — 0. Since ||ffn + Allg < [|ffallg, we get
f € (Alg)s.

Proposition 3.2. Let A be a closed subalgebra of L>, B = [H>®UA]
and X C E C M(B). Let ¢ be an inner function with ¢ € Ay,. If

|| = 1 on E\Ey, then b e (Alg)o-

Proof. Let {f,}n be a sequence in A with f,, — 0 weakly on X. Then
by Lemma 3.1, there exists K > 0 such that
(4) Ifulle < K for every n.

Since 1 € Ay, there exists g,, in A such that || f, —gn||x — 0. Hence,

(5) an_gnz/]HX:H'J}fn_gn”X_)O-
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Since f,, gn and ¢ are all contained in B and E C M(B), we use Lemma
3.1 to see that ||fr, — gn¥l|lE = ||fn — 9n¥||x. Hence,

(6) 1 fn = Gnl|& — 0.

For 0 < r < 1, let

(7) F={Ce B[Ol <r}.

By our assumption on 1, F is a compact subset of Fy. By (5) and the
fact that f, — 0 weakly on X, g,, = 0 weakly on X. Now Lemma 3.1

implies that g, — 0 weakly on E. Since Ej satisfies (%) by Lemma 3.2,
both f, and g, converge to 0 uniformly on F. Hence,

8) 0 Fn — dnllF — 0.

Now by (4) and (7), we have

[ fn + Allg < 19 fn = fulle
- 1 i fn_gnw
S ’(/z’ ].—A— fn+ =
‘( |¢2> (0 B\F
1 An*AnA oA N
<K T—21>+—|f gr¢||E\F+|\ fn = gnllp.

1imsup||1z wt+ Al < K(1/r?-1)

for every 0 < r < 1. Therefore, ||1,an + Allg — 0 and QZ e (Alp)s.
o

Proposition 3.3. Let A be a closed subalgebra of L=, B = [H*UA],
and X C E C M(B). Suppose that both f and g belong to (A|g)p- If
f=g on X, then f =g on E\Ej.
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Proof. To prove our assertion, suppose not. Then there is a point x
in E\Ey such that |f(z) — g(z)| > § > 0. Take an open subset V of £
such that x € V and

[f(z) —g(z)| >& onV.

By Lemma 3.2, Eq UV does not satisfy (x). Hence, there is a sequence
{fn}n in A with f, — 0 weakly, and there is a compact subset K of
Ey UV such that ||f,||x does not converge to 0. Since Ej satisfies (*),
we may assume that K C V. Since f,g € (A|g)s, there is a sequence
{gn}n in A such that

~

I1(f = 9)fn — Gulle — 0.

Since f —g =0 on X, ||gu||z = ||gn/|x — 0. Now we have

||(f_g)fn _gnHE > ||(f_g)fn _gnHK
> |I(f = 9) fallx = 1gnllx
> 0|l fnllx = l1gnll5-

Hence, ||(f—g) fn—§n||E does not converge to 0. This is a contradiction.
O

Lemma 3.3. Let A be a closed subalgebra of L™, B = [H*>® U A,
and X C EC M(B). If f € (A|g)», then there exists g € Ay such that
f=gonX.

Proof. Let {fn}n C A with f, — 0 weakly on X. By Lemma 3.1,
fn — 0 weakly on E. Since f € (A|g)py and X C E, we have

1/ fn = Allx < |Iffo = Allz = 0.

Hence there exists g in A, such that f = g on X. u]
We use Proposition 3.3 in the following way.

Corollary 3.1. Let A be a closed subalgebra of L=, B = [H> U A,
and X C E C M(B). Suppose that (Ap)"|g C (Alg)s- If f € (AlE)s,
then there exists g in Ap such that f = § on E\Ey.
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Proof. By Lemma 3.3, for f € (Alg)y there exists g € Ajp such
that f = g on X. By our assumption, we have §|g € (A|g)s. Then
Proposition 3.3 implies f = § on E\Ej.

Proposition 3.4. Let A be a closed subalgebra of L, B = [H*UA]
and X C E C M(B). Let Ey be a closed subset with E C E; C
M(H®). Then

({f € C(Bv); fle € Alp})s = {f € C(Er); flE € (Alp)s}.

Proof. Let g € C(E,) where glg € (Alg)s, and {fu}n C {f €
C(EL); fle € A|E} with f,, — 0 weakly on F;. By Lemma 2.2 we can
write f, = hy + ¢, where h, € A and ¢, € C(E;) with ¢, =0 on E.
Since X C F, h, — 0 weakly on X. Hence, by Lemma 3.1, h, — 0
weakly in A. Then, by Lemma 2.2,

lgfa +{f € C(EL); fli € Alp}|e = llgfa + Alls
= |lghn + Al|5-

Since g|g € (zfi|E)b, we have ||gh, + Allg — 0. Hence g € ({f €
C(E1); fle € Alg)p- The converse inclusion also follows from the above
equations by considering the case f, = h,. ]

4. Bourgain algebras and Douglas algebras. As stated in
the introduction, Ghatage, Sun and Zheng proved that (H*), =
(H>)p, = H® + C(A) relative to C(M (H®)). In this section we give
a generalization of their theorem to Douglas algebras. For Douglas
algebras B and D with D C B, we have M(B) C M (D). By Lemma

2.3, IA?|M(B) is a closed subalgebra of C(M(B)). First we determine
the Bourgain algebra (D|M(B))b relative to C(M(B)). Recall that D,

denotes the Bourgain algebra of D relative to L.

Theorem 4.1. Let B and D be Douglas algebras with D C B. Then

(D\M(B))b ={f € C(M(B)); flms,) € (Do) ()}
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To prove our theorem, we need some lemmas. The following is the
main result in [10].

Lemma 4.1. Let D be a Douglas algebra.
(i) If ¢ is an interpolating Blaschke product, then 1) € Dy if and

only if Z(p) N M (D) is a finite set.
(ii) Dy = Dy

(iii) If B is a Douglas algebra with D C B, then Dy, C By.

If the Hoffman map L, for € M(H®) is a homeomorphism, the
part P(z) is called a homeomorphic part.

Lemma 4.2. Let D be a Douglas algebra, and let 1 be an interpo-

lating Blaschke product. If Z(y) N M (D) is a one-point set {x}, then
(i) P(z) is a homeomorphic part

(ii) |[¢| =1 on M(D)\P(z).

Proof. (i) is proved in [11, Theorem 1.4].

(ii) Let y € M(D) with [¢(y)| < 1. To show y € P(x), we compute
the pseudohyperbolic distance from z to y. Let f € H* with ||f||x =1
and f(z) = 0. By [1, 14], there is a function h in D such that
f = 9h. Since [|h]lx =1, [f(y)] = [¥(»)|[A(y)] < |$(y)]- Thus,
p(z,y) < [P(y)| <L, soy € P(z). O

Lemma 4.3. Let D be a Douglas algebra such that M (D) # M (Dy).
Then there exists a set of homeomorphic parts {P(za)}a such that
P(z,) is an open subset of M(D) and M (D)\M (D) = UoP(z4).

Proof. Let x € M(D)\M (D). The Chang-Marshall theorem implies
that there is an interpolating Blaschke product 1 with ¥ € Dy such
that |¢)(z)| < 1. Since ¢ € Dy, Lemma 4.1 implies that Z(¢)) N M (D)
is a finite set. By factoring, we get ¢ = 41 - 1,, where each ¢, is
a subfactor and Z(1;) N M(D) is a one-point set, say {z;}. Since
[4b(x)| < 1, there exists j such that [;(z)| < 1. Then Lemma 4.2 says
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that P(z) = P(z;), P(z) is a homeomorphic part and is an open subset
of M (D). Since |¢;| < 1 on P(z), P(z) C M(D)\M(Dy). Since this is
true for any z in M (D)\M(Dy), we get our assertion. o

The following lemma shows that M (D)\M (D) is an open subset of
M (D) which satisfies condition (x) for A = D in Section 3.

Lemma 4.4. Let D be a Douglas algebra, and let K be a compact
subset of M(D)\M (Dy). If {fu}n is a sequence in D with f, — 0
weakly on M(D), then f, — 0 uniformly on K.

Proof. By our assumption, { fn}n is sup-norm bounded on M (D).
Since K is compact, by Lemma 4.3 there exist disjoint homeomorphic
parts P(z1),...,P(xg) in M(D) such that

k
K c | P(z)).
j=1
Since P(z;) is open, K N P(z;) is a compact subset of P(z;). Now
frn oLy ; € H*. Since {fn 0 Ly, }» is sup-norm bounded and converges
to 0 p01ntW1se on A, fn oL;; = 0, n — oo, uniformly on each compact
subset of A. Since L, is a homeomorphism, fn — 0 on each compact
subset of P(z;), so fn — 0 uniformly on K N P(z;) for j =1,... k.
Hence, fn — 0 uniformly on K. u]

One can show using P. Beurling functions (in exactly the same way
as in the proof of [10, Theorem 2]) that the following is true.

Lemma 4.5. Let iy be a noncontinuous interpolating Blaschke
product, and let {z,}n be a sequence in Z(1)) N M(H> + C) such that,
for every n, z, ¢ cl{xzy;k # n}. Then there is a sequence {f,}n in
H> such that f,(z,) =1 and f,, — 0 weakly in H™.

Now we prove our theorem.

Proof of Theorem 4.1. To use the results in Section 3, we consider the
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case where A= B = D and E = M(B). Since D C B, M(B) C M(D).
First, we show that the largest open subset of M (B) which satisfies
(¥x) with A = D is M(B)\M(B,) (in the notation of Lemma 3.2,
Ey = M(B)\M(By)). By Lemma 4.4, M (B)\M (By) satisfies condition
(%) for A= B. Since D C B, the open subset M (B)\M(By) of M(B)
satisfies condition (x) for D. To see that M (B)\M(By) is the largest
such subset, let V' be a nonvoid open subset of M (B) such that V'
is not contained in M(B)\M(By). Since M(By) NV # @, by [12,
Corollary 3.2] there is a nontrivial point z in M(By) N V. By [16]
there exists an interpolating Blaschke product ¢ such that 1&(3@) = 0.
If 2 were isolated in Z (1)) N M(By), we could factor ¢ = 1115 so that
Z(1h1) N M(By) = {z}. By Lemma 4.1, we have ¢, € By, = By.
But z € Z(¢1) N M(B) implies that t; is not invertible in Bj, a
contradiction. Thus, z is not isolated and we may choose a sequence
of distinct points {a,,}, in Z(¢)) N M(By) NV such that cl{z,}, C V
and z,, ¢ cl{x; k # n} for every n. By Lemma 4.5, there is a sequence
{hn}n in H® such that h, — 0 weakly in H>® and h,(z,) = 1 for
every n. Then ||hn|[a {zn}n = 1, so that V' does not satisfy condition
(¥). Thus M(B)\M(B,) is the largest open subset of M (B) which
satisfies (x) for D.

Now we can use the results in Section 3. By Proposition 3.1,
(9) {f € C(M(B)); f = 0 on M(By)} C (D|p())e-
By Theorem 2.2,

(Do) m(sy = [H™, 12; Y € Dy, is an interpolating Blaschke

product] (g
By Lemma 4.1, Dy C By, so € D, implies that [¢)| = 1 on M(B).
Then, by Proposition 3.2, ¢ € (b|M(B))b. Hence,
(10) (Dy)" [ aBy € (Do) |ae(m) € (Dlars))s-
Combining (9), (10) and Lemma 2.2,

{f € C(M(B)); flm(sy) € (Do) | m(my}
= (Dv)" () +{f € C(M(B)); f =0 on M(By)}
(

C|M)
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Next we show that

(11) (b\M(B))b C{feC(M(B)); flms, € (Db)A|M(Bb)}'
By (10), assumptions of Corollary 3.1 are satisfied (note that E\Ey =

M (By)). Hence (11) follows directly from Corollary 3.1. This completes
the proof. i

Using Theorem 4.1, we can prove a more general theorem.

Theorem 4.2. Let B and D be Douglas algebras. Then

N

([D]ars))s = ([Dar(s))oo
={f € C(M(B)); flmsup),) € (Ds)"|m(1BUDI,) }-

Proof. By Theorem 2.2,
[Dlmsy = {f € C(M(B)); flasupy € Dlaqsup)}-
By Proposition 3.4,
(12)  ([Dlu(s)e = {f € C(M(B)); flarqpupy € (Dlusuny)e}-
By Theorem 4.1,

(Dlmpupy)s = {f € C(M([BU D)));

(13)
flmBupy,) € (Db)"

M([BUD],) }-

Combining (12) and (13), we have

(14) ([Dlausy)s = {f € C(M(B)); fla(supyy) € (D) a(suni) }-

Here we note that (Dy)"|a((Bup),) is a closed algebra, for Dy, C [BUD],
by Lemma 4.1. We again apply Proposition 3.4 to obtain
(15)

([Dm(sy)os = {f € C(M(B)); flmsunyy) € (De) | am(Bun]y))b}-
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By Theorem 4.1 and Lemma 4.1,

(Do) am(Buply) o = {f € C(M([BU Dly));
FlaaBuble) € (Dos)" [ M(BUD])
={f e C(M([BUDIp)); flm(sup))

€ (Do)" [m(BUD)Y) }-
Hence, by (14) and (15), we get
(Dlar(s))oe = {f € CM(B)); flasunyy) € (Do) m(sup)y)
= ([D]M(B))b-
This completes the proof. ]

Corollary 4.1 [9]. (H®), = (H®)w = H® + C(A) relative to
C(M(H®)).

Proof. Using Theorem 4.2 with B =D = H* and Lemma 2.2(i), we
have

(H)p = (H)w
={f € C(M(H>)); flau=+0) € (H® + O)mm=+c)}
= H> +C(4),

because (H*), = H* + C. o

Corollary 4.2. Let B and D be Douglas algebras with B C D. Then
([Dla))e = (Do) () -

Proof. Since B C D, [BU D], = Dy. By Theorems 2.2 and 4.2,

([D]M(B))b ={f € C(M(B)); flmqsuny,) € (Db)"|m(BUD)}
={f € C(M(B)); flmpy) € (Db) a4 };
[(Ds) m) = {f € C(M(B)); flmsuny)) € (Do) m(Bubs) }-

Since B C Dy, we have D, = [BUDy], hence ([b]M(B))b = (D) m(B)-
O



BOURGAIN ALGEBRAS 1043

Remark 4.1. The conclusion of Corollary 4.2 is not true for an
arbitrary pair of Douglas algebras B and D. We give an example
of a pair of B and D. Let P(z) be a homeomorphic part such that
P(z) # A. Let

B ={f € L flsuppu. € H|suppp.} and D = H* + C,

where supp p, is the closed support set of . Then both B and D are
Douglas algebras and D C B. It can be shown that P(z) C M(B) and
M(By) = M(B)\P(z). Since D, = H*® 4+ C and [BU D], = By, by
Theorems 2.2 and 4.2,

(Dlaresy)s = {f € C(M(B)); flarsy) € (H™ +C)Marsy) b
(Do) m(sy = {f € C(M(B)); flus) € (H® +C)" | mp)}-

Hence {f € C(M(B));f = 0 on M(Bp)} is contained in ([ﬁ]M(B))b
but is not contained in [(Dy)"|as(s5)-

Remark 4.2. 'We do not know whether [B U D], = [By U Dy] for
Douglas algebras B and D.

Remark 4.3. We can prove that M(B)\M([B U DJ,) is the largest
open subset of M (B) which satisfies condition () for [D]as(p).

5. Bourgain algebras of the disk algebra. The space of functions
continuous on A and analytic in A is called the disk algebra and is
denoted by A. Let A be a closed subalgebra of H* containing A.
Recent results [17] imply that A, C H*> + C, relative to L*™. Since
ApNC is a closed algebra between A and C, A,NC = A or A,NC = C,
see [15, p. 93]. For f € A, define f* by f*(z) = (f(z) — f(0))/z. If
f € A implies f* € A, then A is said to be stable. If A is stable, then
fn — 0 weakly in A implies

|2fn + Allx < 12fn = fallx = [£2(0)] = 0.

Thus, z € A, and A, N C = C. We do not know whether or not
Ay, N C = C for every closed subalgebra A of H* containing A.
Let Co(A) = {f € C(A);f = 0 on T}. Then Co(A) = {f €



1044 P. GORKIN AND K. IZUCHI

C(M(H>));f = 0 on M(H>™ + C)}. We first study the Bourgain
algebra (\A), relative to C(M(H®)).

Theorem 5.1. Let A be a closed subalgebm such that AC A C H®
and A, N C = C. Then (A), = (4)" + C(A).

We will need to prove the lemma below first.

Lemma 5.1. Let {z,}, be a sequence in A with |z,| — 1. Then
there exists a subsequence {zn;}; of {zn}n and a sequence {h;}; in A
such that hj — 0 weakly and |h;(zn,;)| > 1.

Proof. By considering a subsequence of {z,},, we may assume that
zn — 1. Let f(2) = (2+1)/2. Then f € A, f(1)=1and |f| <1on
T\{1}. Let {s;}, be a sequence of positive integers such that s; — oo.
Since f*i (1) = 1, we can choose z,,; € {2, }n such that |f%i (z,,)| > 1/2.
Furthermore, the fact that |f(z,,)| < 1 implies that we may choose a
positive integer t; such that

l\DI»—A

|59 (2, ) (L = £ (2n))| 2

Put hj —2f% (1 — f!). Then h; € 4,

h;j(1) = 0 and ||hj||r < 4. Since
sj — 00, hj — 0 weakly and |hj(znj)| Z L.

O
We now return to the proof of Theorem 5.1.

Proof of Theorem 5.1. To use the results in Section 3, we take
E = M(H®). We show that A is the largest open subset of M (H*)
which satisfies () for A, that is, Fy = A. Since A C H*, A satisfies
(x). Let V be a nonvoid open subset of M (H*) which is not contained
in A. Since A is dense in M (H®) there is a sequence {z,}, in ANV
such that |z,| = 1 and cl{z,}, C V. Lemma 5.1 implies that V does
not satisfy condition (x). Hence Ey = A.

First we show that (Ap)"+C(A) C (.A) Since z € Ap and |£] = 1 on
M(H>)\A, Proposition 3.2 implies that Z € (A),. Since 2 € A C (A)s,
we have C(A) C (A),. Now by [17], A, € H> +C, and by assumption
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AyNC = C. Thus, if f € Ay, then f =h+c with h € H* and c € C.
Since C C A, h € Ay,NH™ and f € (A4,NH*>)+C. Now ¢ € C(A) so

(Ap)" +C(A) C (AN H®)" +C + C(A)
= (A, N H®) + C(A).

Now let g € Ay, N H*® and {f,}, in A with f,, — 0 weakly. Then
Hgfn +AHM(H°°) = Hgfn +A||X — 0.

Hence, by Lemma 3.1, j € (A);, and hence

(Ap)" 4+ C(A) C (A N H®)" + C(A) C (A)y.

To prove the converse inclusion, let h € (Ab). By Corollary 3.1,
hlp(aee+cy € (Av) M mm=+c), for M(H*> +C) = M(H*)\A. Hence,

h € (Ap)" + Co(A) C (Ap)" + C(A). This completes the proof. O

Hereafter we study Bourgain algebras of the disk algebra A. Let
B be a Douglas algebra with H* + C C B. For A € T, let
My(B) = {&# € M(B);2(z) = A}. For a function f in C'(M(B)),
let

wp(f,A) = sup{|f(z) = f(y);z,y € Mx(B)}.

Let

Vi ={f € C(M(B));{\ € T;wi(f,A) > 6}
is a finite set for every § > 0}.

We note that Vp is a closed subalgebra of C'(M(B)). There are several
ways to prove this fact. One way is as follows: Put C = (f|M(B). Then
C is a C*-subalgebra of C'(M(B)). By [17, Proposition 1], C;, = Vg,
hence Vg is a closed subalgebra of C'(M(B)). Since f € Vp implies
f € Vi, Vi is a C*-subalgebra of C(M(B)).

In [17, Theorems 5 and 6], the Bourgain algebra of the disk algebra
relative to L = C(X) was shown to have the form

(a) Ab:(HooﬂVLeo)-i-CCHOO"FC
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and Ay, = Ap. Hence both /1|M(B) and (Ap)"|ar(p) are closed subalge-
bras of C(M(B)). We study the Bourgain algebra of A\M(B) relative to
C(M(B)). It is easy to see that (Vz~)"|a(s) C Vp. Hence, by (a), we
have (Ay)"|a(B) C Vb. Since (4p)"|x = Ap|x is a closed subalgebra of
C(X), Lemma 2.2 (consider A = (A3)"|m(B), Y = M(B) and E = X)
implies that (4p)"|ar(5)y +{f € VB; f =0 on X} is a closed subalgebra
of C(M(B)), and it coincides with {f € Vg; f|x € Ap}. Now we have
the following theorem.

Theorem 5.2. Let B be a Douglas algebra with H> +C C B. Then
(Alpr(s))o = (Ap) () +{f € VB f =0 on X}.

Proof. First we prove that
(Ap) () + {f € Ve f=0o0n X} C (Alu(s))s-

Let g € (Ap)"|mp)- Let f € Ay so that g = f on M(B). Let
{fn}n C A such that f, — 0 weakly. Since f € A, C H>* + C C B,
we have ||f fn + Al|psy = ||f fn + Al|x — 0. Therefore, g = f|y(B) €
(Alm(B))b-

Next let f € Vg with f = 0 on X. Since {\ € T;wp(f,\) # 0} is a
countable set, we denote it by {A;};. Of course, wg(f, A;) — 0, j — oo.
Take ¢ > 0 arbitrary. Then there exists jo such that wg(f,\;) < € for
j > jo. Since f =0 on X, by the definition of wp we have that |f| < &
on M)(B) for every A ¢ {\q,...,\j,}. Since f, is continuous on T,
fn is constant on My (B) and fn\MA(B) — 0, n — oo, for each A € T.
Hence, .

| f frllas)y =0, n — 0.

Thus, we get f € (A|M(B))b.

To prove the converse inclusion, let g € (A|M(B))b. Then, by Lemma
3.3, there exists h in A such that h = g on X. It is sufficient
to prove g — h € Vg. Assume to the contrary that g — h ¢ Vp.
Then there is a distinct sequence {(,}, in T and § > 0 such that
wp(g — h,Cn) > 0 for every n. We may assume that ¢, — (o for
some (o € T. Put h,(z) = ((z + ¢,)/2)%». Then h, € A and
|hn(Cn)] = 1. If we take k, — oo sufficiently fast, it is not difficult
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to see that h, — 0 weakly in A. By our work in the first paragraph,
we know (Ay)" v By C (Alm(s))e and hence h|r(p) € (Ala(p))s and
g—he (A|M(B))b Thus,

This contradiction shows that g — h e Vp. This completes the proof.
O

Remark 5.1. We can prove that the largest open subset of M(B)
which satisfies condition () for A|y;(p) is the union set of {z €
M(B); |f(z)| > 0} for f € Vg with f =0 on X.

Corollary 5.1. (AA.)b‘M(Hoo_A'_C) 75 (A‘M(HOO_A'_C))[).

Proof. By Theorem 5.1, we have

(Alarr=+cy = (A) aa=tcy € (H® + C)a(a—rc)-

Let ¢ be an infinite Blaschke product, continuous everywhere except
A= 1. Then ¢ € Vig=4c). Thus, 1 — || € Vigeoic) and 1 — || =0
on X. By Theorem 5.2, 1 — |¢| € (A\M(Hoo+c))b. Since || ¢
(H* + C)", we see that 1 — [¢)| ¢ (H> + C)YMm(mee+c)- Hence,
1— Y] ¢ (A)s|mp=+c)- O

Here we have the following problem.

Problem. Let B be a Douglas algebra with B # L*. Is it true that
(Alars))o # (Ap) | (3)?

As the last theorem of this paper, we prove the following.

Theorem 5.3. For every Douglas algebra B, (A|M(B))bb = (Alnm(B))s-
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To prove this, we need some lemmas. In [17, Theorem 6], the second
author proved that Ay, = A, relative to L°°. In proving this, the
following fact was used (see the proof of [17, Theorem 7]).

Lemma 5.2. Let ¢ be a moncontinuous interpolating Blaschke

~

product with ¥ € Viw. Then there is a sequence {(n}tn in Z(3p) N
M(H> 4 C) and a sequence {h,} in H® N Vo such that hy, — 0
weakly in H® N Vi and h,(¢,) =1 for every n.

In [17, Theorem 1], to prove (H*® N Vie)s C Vi we used the
following fact.

Lemma 5.3. Let {\;}; be a distinct sequence in T with \; — Ag.
Then there ezists a sequence {hy}n in H*® N Vi such that h, — 0
weakly, h, is continuous on T\{\o}, and |h,(An;)| > 1 for some
subsequence {\n;}i of {\;};.

Proof of Theorem 5.3. It is sufficient to prove (A|M(B))bb C

(A\M(B))b. We need to divide the proof into two cases, when B = H*>
and BD> H* +C.

Case 1. B = H*. By Theorem 5.1 and Lemma 2.2, we have

(A)y = (4)" + C(Q)
={f € C(M(H*)); flmes+c) € (A) | m(a=t0)}-

To use the result in Section 3, we set E = M(H*> + C) and A = A,.
Since A, C H* + C, by Proposition 3.4 we have

(16)

17)  (A)ep = {f € C(M(H™)); flamrc=+c) € (Ap) | mr(a=sc))b}-

We show that there are no nonvoid open subsets U of M(H* + C)
which satisfy (x) for A;. Let U be an open subset of M (H> 4 (') with
U # @. By the corona theorem and well-known results on interpolating
sequences, there is an interpolating sequence {z,}, in A such that
c{zn}n\{zn}n C U and z, converges to some point A in 7. Let ¢ be
the interpolating Blaschke product with zeros {z,},. Then ¢ € Vi

and Z(¢) N M(H* + C) C U. Hence, Lemma 5.2 implies that U does
not satisfy () for Ap.
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Now we prove that

(18) (A) M a=+c))b = (Ap) M= +0)-

Let g € ((As)"|m(m=+c))p- Then by Lemma 3.3, there exists h in

App = Ap such that g = h on X. Since both g and IAE are contained in
((Ap)* M (m>+C))b, Proposition 3.3 implies that g = h on M(H* +C).

Hence we get (18). By (16), (17) and (18), we have (A)y = (A)s.

Case 2. We prove the theorem assuming that B O H* + C. Let
f € (Alm(s))ew, and let {fn}, C A with f, — 0 weakly. Then f,, — 0

weakly in (A|M(B))b- By Theorem 5.2,

(19) (A|M(B))b = (Ap)" M)y +{f € Va; f =0 on X},

so that (A‘M(B))bb( = Ab- ThU.S,

1f fr + Allx < |IF Fn + (Alaeesy)sllasy = 0.

Hence, there is a g in Ay, = Ap such that ¢ = f on X. By Theorem
5.2, to prove f € (A|M(B))b, it is sufficient to prove § — f € V. By
(a), since g € Ay = (H® N Vo) + C, we have § € V. Therefore we
need to prove f € Vp. Here we use the same idea as the proof of [17,
Theorem 1]. To prove the above fact, suppose not. Then there is a
distinct sequence {\;}; in T" and ¢ > 0 such that

(20) wr(f,Aj) >0 for every j.

Here we may assume that {\;},; is a convergent sequence in 7. By
Lemma 5.3, there is a sequence {hy}, in H>® N Vi~ such that

(21) hn, — 0 weakly on X;
(22) hy, is continuous at each point Aj;, i=1,2,...;
(23)

for each n, |hn(An;)|>1 for some subsequence {\, ;}i of {A;};.
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By (), H™ N Vi~ C Ay so that, by (19) and (21) h, — 0 weakly in
(Alm(B))e- By (o) again, (A)" C VB, so that by (19) (A|am(s))s C Va.
Since f € (A|n(B))sy, We have

| Fh + Vellm) < | Fhn + (A|M(B))b||M(B) — 0, n — oo.

Take g, in Vg such that

(24) b + gnllaa() — 0.
Since g, € VB, wB(gn, An,i) = 0, i = oo, for each n. Then we have

§ = liminf § — wg(gn, An,i)

11— 00

< liminf |y (Ani)|ws (f, Ansi)
71— 00
- wB(gna)\n,i) by (20) and (23)
<liminfwp(fhn + gns Ani) by (22)
71— 00

< liminf 2||fhn + gal a1y, (5)

< 2(|fhy + gnllm(s)
-0, n— o by (24).

This is the desired contradiction. Hence, f € Vp. Consequently, we
have f € (Aln(m))s and (Alas))ow C (Alam(p))s- This completes the
proof. i
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