ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 3, Summer 1995

GROUPS OF PIECEWISE-LINEAR
HOMEOMORPHISMS WITH IRRATIONAL SLOPES

SEAN CLEARY

ABSTRACT. Let F' be the group of piecewise-linear home-
omorphisms of the unit interval. F has many interesting
countable discrete subgroups, some of which have cohomolog-
ical finiteness properties. Many subgroups of piecewise-linear
homeomorphisms with irrational slopes and irrational singu-
larities are finitely generated, finitely presented and are of type
F Ps. This is shown by constructing contractible posets upon
which the various subgroups act and then by understanding
the complexity of the classifying space of the poset, which is
an Eilenberg-Maclane space for the subgroup.

1. Introduction. Groups of piecewise-linear homeomorphisms
have proven to be interesting examples of countable groups. The
first such group was used in the construction of an early example of
a finitely-presented infinite simple group by Thompson [6]. Brown
and Geoghegan [3] showed later that it has a subgroup which is a
finitely-presented, infinite-dimensional, torsion-free group. They also
showed that subgroup to be of type FP,, by building a K(G,1)
complex for the group which had only finitely many cells (in fact, two)
in each dimension. The group that Brown and Geoghegan studied
can be described as the subgroup of the group of all piecewise-linear
homeomorphisms of the interval [0, 1] where every element of the group
has only finitely many singularities, each singularity lies in the dyadic
numbers, Z[1/2], and the slope of the homeomorphisms away from the
singularities lie in {2%,7 € Z}. Brown [2] later studied generalizations of
this group where the singularity set and slope set are respectively Z[1/p]
and {p',i € Z}. He showed that all these groups are also of type F P..
Stein [5] studied such groups for singularity set Z[1/p1,1/p2,... ,1/ps]
with slope group {pfllp;2 ---pi¥,i; € Z} and showed that all these
groups are of type F' Py.

I study another class of groups of piecewise-linear homeomorphisms
where the singularities can be at irrational points, for instance in Z[v/2).
Many of these groups are also of type F Py.
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In order to conveniently name these groups, we use the following
notation. If P is a multiplicative subgroup of R*, and A is a ZP
submodule of R such that P- A = A, then for [ € A, we let F(l, A, P)
be the group of piecewise-linear homeomorphisms of [0, [] satisfying the
following:

i) Each homeomorphism has only finitely many singularities.

ii) Each singularity lies in A.

iii) Away from the singularities, the slopes lie in P.

Of the subgroups with irrational breakpoint sets, perhaps the easiest
to understand is the group F(1,Z[v2],{(v2 + 1)*}). T will first
construct a poset upon which this group acts and then use a notion
of subdivision to understand the poset further. Then I will show

the finiteness properties of the group by studying the structure of the
classifying space of the poset.

2. Construction of the poset. For convenience, we denote v/2+ 1
by w. The poset upon which the group F(1,Z[v2], {w'}) acts will be
the set of all piecewise-linear homeomorphisms from intervals which
have lengths a + bw for some positive integers a and b to the unit
interval satisfying;:

a) There are only finitely many singularities.

b) Each singularity lies in Z[v/2].

c) Away from the singularities, the slopes are elements of w®.

The partial order on this set comes from the relationship of expansion.

If f:[0,a;1 + biw] — [0,1], we obtain simple expansions of f by
precomposing f with a piecewise-linear map s of one of the following

types:
1 on [0,i + jw]

s1 has slope ¢ w™  on [i + jw,i+ (j + 1)w]
1 on [i+ (j + 1w, a + bw]

or
1 on [0,i+ jw]

s2 has slope ¢ w™ on [i +jw,i+1+ (j + 2)w]
1 on[i+14 (j+2)w,a+ bw)
for some integers 0 < i <a, 0<j<b.
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Maps of the form of s; expand an interval of length one in the domain
of f to an interval of length w in the domain of g. Maps of the form of
s expand an interval of length w in the domain of f to an interval of
length 2w + 1 in the domain of g. (Note that w? = 2w + 1.) If we have
f:[0,a1 + biw] — [0,1] and s : [0, az + baw] — [0,a;1 + byw]|, then we
call fos = g a simple expansion of f. Note that either ao = a; —1 and
by =b;+1oraz =a;+1 and by = b; + 1 depending upon whether the
expansion is of the type of s; or so. We extend the relation of simple
expansion to say f is an ezpansion of g if g can be obtained from f by
a finite sequence of simple expansions. This gives us a partial order on
the poset X by having f < g if g is an expansion of f.

3. Subdivision with {w'}. One useful way to understand elements
of the poset X is by understanding them as linear interpolations of
subdivisions. In particular, we would like to understand a particularly
nice class of subdivisions.

Definition 3.1. An w-regular subdivision of level 0 of an interval
[0, A + Buw] is a sequence (0 = ¢1,¢2,...,¢, = A+ Bw) such that for
eachl<i<n,¢i=ci1+lorc=c_-1+w.

Given an w-regular subdivision (0 = ¢y, ... ,¢, = A+ Bw) of level k,
we construct one of level k + 1 as follows:

For some 0 < i < n, we replace the pair ... ,¢;, ¢;41,... with one of
the following sets of four points:

L ...,cici+w A e+ (w2 +w HA e,

2. ...,cci+w A e+ (W +wTH)A iy, - -

3. ooy Fw A e+ 2wT)A i, - -

where A =¢;jy1 — ¢

We say a sequence (0 = ci,...,¢, = A+ Bw) is an w-regular
subdivision of [0, A+ Bw] if it is an w-regular subdivision of [0, A + Bw]
of level n for some n.

The various possibilities for subdividing listed above in the definition
of w-regular subdivisions correspond to various ways of dividing an
interval of length w® into pieces of lengths w®~! and w’~2. The three
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ways of dividing the interval of length A above all come from the fact
that w2 4+ 2w™! = 1. The interval of length A becomes subdivided
into three intervals. There are two “long” ones of length w™'A and
one “short” one of length w™2A. The first way of subdividing arranges
the new intervals in the order “short, long, long”; the second arranges
them in the order, “long, short, long” and the last in the other order,
“long, long, short.”

We will also be interested mostly in subdivisions which are not only
w-regular, but furthermore have only two interval lengths occurring in
the subdivision such that the two interval lengths are adjacent powers of
w. Given any w-regular subdivision S, we can subdivide to get another
w-regular subdivision S’ with intervals only of two lengths which are
adjacent powers in the following way. We find the interval of shortest
length in S, say of length w=™". Then we subdivide all of the longer
intervals which are longer than w~"*1! repeatedly into pieces using any
of the subdivision arrangements above. Eventually, we will have S’
with intervals only of lengths w=™*! and w=".

We also have a standard way of subdividing w-regular subdivisions
of this type into finer ones also of this type. If the lengths of intervals
occurring in a subdivision S are w™" and w~N*!, then we call the
intervals of length w=?V “short” intervals and the ones of length w1
“long” ones. We can subdivide all the long intervals in S into intervals
of length w™" and w™™~! to get a new subdivision $’. In S', we
now have the long intervals of length w™" and the short intervals
of length w=~1. So, from now on, we will be dealing principally
with w-regular subdivisions with intervals of only two lengths which
are adjacent powers of w. For such subdivisions, we can talk about a
long-short pair which is a pair of integers (a,b) such that there is an
initial segment of some subdivision which contains a long segments and
b short segments.

Thus, we have the following notation:

~ ¢ =~

is used to mean that a long interval in S was subdivided into two long
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intervals in S’ followed by a short one. Similarly, we have

l l s
i, 4 and |
sl sl l

for the other possible ways of subdividing a long or short interval in
S to a set of intervals in S’.

The connection between w-regular subdivisions of the unit interval
and elements of F(1,Z[v/2],{w'}) comes from the following theorem.
This will let us understand elements of the subgroups as interpolations
of w-regular subdivisions.

Theorem 3.1. If S and S’ are w-regular subdivisions of the unit
interval with the same number of points, then the affine interpola-
tion of S and S' belongs to F(1,Z[v2],{w'}). Conversely, if f €
F(1,Z[V?2],{w}), then f is the affine interpolation of two w-reqular
subdivisions of [0, 1].

Proof. =. Each interval [ in an w-regular subdivision has length w?
for some i and has endpoints in Z[\/i] Thus, the singularity set will
lie in Z[v/2]. Since the slopes of the interpolation are ratios of lengths
of intervals, and both the domain and range intervals have lengths, say,
w™™ and w™™, their ratios w~™i1t™ are powers of w.

<. So, given f € F(1,Z[v2],{w'}), we first want to construct an
w-regular subdivision of [0, 1] containing all the singularities of f. This
is accomplished with the following series of lemmas.

Lemma 1 (Main Lemma). For any finite set F' in Z[v/2]N[0, A+ Bw],
there exists an w-regular subdivision of [0, A + Bw]| containing F'.

It will be enough to show that we can find an w-regular subdivision
of the interval containing an arbitrary point of Z[v/2] since we can
subdivide successively to get all the points in the finite set.

We postpone the proof of this lemma until we understand some facts
about subdivisions through the following series of lemmas.
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Lemma 2. For any positive interval length [ in Z[\/2], there exists
N € Z such that | = "% + —g4t for some m,n € Z7.

Proof. Since | € Z[v/2], | = mg(w') + ng(w®) where mgy and ng are
not necessarily positive integers. If we have mg and ny both positive,
then we are done. Otherwise, we begin an iterative process.

At each stage, we subdivide the longer m; intervals of length w? into
2m; intervals of length w1 and m; intervals of length w®™ 2 using
any of the “long, short, long” type subdivisions as above. Thus, we
have

m; n; Qmi m; n;
l=—5+ Fzs Wy vor i v S A
w w w w w
_ 2m;+ny m; Myl | Myl

WwN+L wN+2 — o N+1 T N2

Thus, m;+1 = 2m; +n; and n;+1 = m;. We iterate this process until
both m; and n; are positive.

Claim. This happens in a finite number of steps. We have a Markov
chain with the following transition matrix:

() (o) =)

The eigenvalues for this matrix are w and —w™!.

eigenvectors are

The corresponding

<°f> for the +w eigenvalue

and

—w_l —1 .
1 for the —w™ " eigenvalue.

The flow on the plane is illustrated in Figure 1. The attracting
eigendirections are labeled ‘A’ and the repelling eigendirections are
labeled ‘R.’

So the attracting direction lies in the first quadrant for initial pairs
(m, n) which correspond to positive lengths. That is, anything to above
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FIGURE 1.
or to the right of the line y = —w 'z will eventually have images in
the first quadrant, so thus we have the claim and Lemma 2. u]

Now unfortunately it is not so simple, because even now that we know
that every length I € Z[v/2] can be written as | = m/w’v + n/w¥+!
for some m,n, N € Z*, we do not have an explicit subdivision which
realizes the combination of m intervals of length w™" and n intervals of
length w~N~1. In fact, it may not be possible to subdivide for instance
[0, 1] in such a way. For example, say [ = 1/w!'?+50/w!3. Then there is
no possible way to subdivide [0, 1] to obtain one “long” piece of length
w'? and 50 “short” pieces of length w!3. In particular, there is no way
to get three “short” pieces in a row. However, we can subdivide further
to reach an expression for [ which can actually be obtained from [0, 1]
as the initial segment of some w-regular subdivision. This I will show
by showing that long-short pairs are obtainable if they are sufficiently
close to the positive eigendirection. So we define what it means for a
long-short pair to be obtainable and then through a series of lemmas,
we show that we can always find an obtainable subdivision containing
an arbitrary point of Z[v/2].
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Definition 3.2. An expression for a length I € Z[v/2] of the form
I =m/wY +n/wN+L for some m,n, N € Z is called obtainable at level
N if there is an w-regular subdivision S of [0, A + Bw] such that there
is an initial segment in the subdivision S which has exactly m intervals
of length w™" and exactly n intervals of length w~™~! and no other
intervals.

A length [ is called obtainable if there is some expression of the form
above for which [ is obtainable at level V.

Similarly, we say a long-short pair (a,b) is obtainable at level N if
there is an w-regular subdivision of [0, A + Bw] with an initial segment
containing a long intervals (of length w %) and b short ones.

Furthermore, we say that a long-short pair (a, b) is wholly obtainable
at level N if it is obtainable at level IV and if the preimage of the initial
segment for the long-short pair in the previous stage of the subdivision
contains an integral number of long and short intervals.

For example, for the w-regular subdivisions of the interval [0, 1] the
long-short pairs which are obtainable at level 1 are (0, 0), (1,0), (1,1),(2,0)
and (2,1). Of these, only the long-short pairs (2,1) and (0,0) are wholly
obtainable at level 1.

Lemma 3. If a long-short pair (a,b) is obtainable at level n, for some
n > 2 with at least 4 intervals of either size following the initial segment,
then there is a series (ag,b), ..., (ag+5,b) of at least 5 obtainable long-
short pairs with the same number of short intervals as (a,b).

Proof. We know that (a,b) is obtainable so we look at an w-regular
subdivision with a longs and b shorts in some initial segment. By
hypothesis, there are at least four intervals following the (a,b) pair so
we look at the last part of the initial segment containing a longs and b
shorts.

Case 1. The last piece in the initial segment came from a subdivision
of the form
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the previous stage.

Consider the possible neighbors to the short interval in the previous
stage. We know that there is at least one interval following the short
interval in the previous stage since there are four intervals following it
in the last stage.

Subcase A. There were three shorts in a row. This never happens
after the second iteration since the only way a short can arise is from a
subdivision coming from a long. Each of these results is at least either
a long interval to the right or left of the short. Thus, there is always
at least one neighbor of a short which is a long and it is impossible to
have three short intervals in a row.

Subcase B. The short in the previous stage was preceded by a short
and followed by a long. In this case the subdivision from the previous
stage to the current stage could be rearranged to look like:

1 S S I e
......... by +
N——r l 1 Il s «vovevenn

(a—2 longs, b shorts)

The only possible required adjustment would be to make sure that
the subdivision of the long following the short from the previous stage
is subdivided by the

o~ =~

as shown above.

Now it is clear that all the long-short pairs from (a —2,b) to (a+2,b)
are obtainable so we have a sequence of five obtainable subdivisions
containing (a, b).

Subcase C. The short in the previous stage was preceded by a long
and followed by a short. In that case, the subdivision from the previous
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stage to the present one can be arranged to be of the form:

J/ l SS ---------
......... oo '
N——— sll | | --vveinn

(a—3 longs, b—1 shorts)

Thus we have a sequence of long-short pairs from (a—3,b) to (a+1,b)
which are all obtainable.

Subcase D. The short in the previous stage was both preceded and
followed by a long. Then we can arrange the subdivision to be of the
form:

\L l S /O
......... oL 1
— sl [ Il s -ceeeeen.

(a—3 longs, b—1 shorts)
Then we have the sequence from (a — 3,b) to (a + 2, b) all obtainable.

Case 2. The last piece in the initial segment for the long-short pair
(a,b) came from a long.

Subcase A. Case where the entire image of the long from the previous
stage is the tail end of the initial segment for (a,b). In other words,
(a,b) is wholly obtainable at level N.

We can arrange the subdivision to look like:

. l T Y e
......... ool +
——— sll o y’ .........

(a—2 longs, b—1 shorts)
with z and y either short or long intervals, and z’ and y’ are their
corresponding subdivisions, each either of the form [ or [ [ s.

Immediately, we get that (a — 2,b) through (a,b) are obtainable and
so we consider the possibilities for z and y.
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If z and y are both short intervals, then we have (a+1,b) and (a+2, b)
as obtainable since ' and 3’ would both be long intervals.

If x is short and y is long, then we can choose to have y’ be of the
form ! I s and we have (a + 1,b) through (a + 3,b) obtainable.

If = is a long interval, then we can choose to subdivide it so that its
subdivision ' is of the form [ [ s and we have again that (a + 1,b) and
(a +2,b) are obtainable.

Subcase B. Case where the entire image of the long from the previous
stage extends beyond the tail end of the initial segment for (a,b).

There are a number of subcases here which reduce to the previous
case. Those are of the form where the part of the subdivision which is
in the initial segment contains no longs. These are

) l l

\ \ 1
Ils Isl 1lls
where the underlined portion corresponds to those intervals which are
part of the initial segment for (a,b). For long-short pairs which end
in these kinds of subdivisions, we can consider the wholly obtainable
long-short pair which corresponds to leaving off the long intervals from
the tail part of the initial segment. Then we can look at the subcase A
above for either (a — 1,b) or (a — 2,b) depending upon whether there
are one or two longs in the last part of the initial segment. By the
argument above, we will get a string of five obtainable long-short pairs
including (a, b).

That leaves the possibilities for the tail part of the initial segment
where there is a short piece included in the initial segment.

When the tail part of the initial segment looks like
l
d

sl

we have that (a,b), (a+1,b) and (a+2, b) are all immediately obtainable.
We look at the next interval after the s [ [ in the initial segment.
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If it is a short interval, then it came from a long interval in the
previous stage via a subdivision of the form

l

1
sl

In that case we can replace that subdivision with one of the form

o~ ~

lls

and we have that (a + 3,b) and (a + 4,b) are also obtainable.

If the interval following the s [ [ is a long interval, then we immediately
have that (a+ 3, b) is obtainable. If the interval following that is also a
long interval, then we have (a+4,b) and thus a string of five; otherwise,
we have a short interval coming from a subdivision of the form [ s [.
In that case we replace the

l l
| witha |
l

lsl lls

and we have that (a + 4,b) is obtainable and thus, again, we have a
string of five consecutive obtainable long-short pairs containing (a, b).

When the tail part of the initial segment looks like

l

o <— =~

l
we have that (a—1,b), (a,b) and (a+1, b) are all immediately obtainable.
We look at the next interval after the [ s [ in the initial segment.

If it is a short interval, then it came from a long interval in the
previous stage via a subdivision of the form
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In that case, we can replace that subdivision with one of the form

o~ ~

lls

and we have that (a + 2,b) and (a + 3,b) are also obtainable.

If the interval following the [ s [ is a long interval, then we immediately
have that (a+ 2, b) is obtainable. If the interval following that is also a
long interval, then we have (a + 3,b) and thus a string of 5; otherwise,
we have a short interval coming from a subdivision of the form [ s I.
In that case we replace the

l l
I witha |
Isl 11

S

and we have that (a+3, b) is obtainable and thus again we have a string
of 5 consecutive obtainable long-short pairs containing (a, b).

The only remaining possibility arises from when the last part of the
initial segment is of the form

!
I
1

L

This is exactly analogous to the above case by replacing the

l l
J  witha +
sl lsl

and noticing that we again get a string of 5 obtainable subdivisions
containing (a, b).

Thus we have Lemma 3. O

Lemma 4. If (a,b) is a long-short pair which is obtainable at
level N and b > 0, then there is a range ag,...,a0 + 4 such that
(ap,b—1),...,(ag +4,b—1) are all obtainable at level N.
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Proof. Look at the last occurrence of a short in the initial segment
of subdivision which shows that (a,b) is obtainable. If we delete that
short, we have some number of longs obtainable with b—1 shorts. Thus,
by the previous lemma, we have a range of 5 obtainable long-short pairs
with b — 1 shorts. o

Lemma 5. If a long-short pair (a,b) is obtainable at level N, then
there is another long-short pair (a;,b) which is wholly obtainable at level
N with |a; — a| < 2.

Proof. Look at the tail of the initial segment for the long-short
pair (a,b). This came from an interval in the previous stage. If that
interval’s image is contained in the initial segment, then (a,b) itself
is wholly obtainable and we are done. Otherwise, we have one of the
following possibilities for the preimage of the tail.

lls Then (a—2,b) is wholly obtainable.
tls Then (a —1,b) is wholly obtainable.
Il sl Then (a+ 1,b) is wholly obtainable.

( )
( )

Then (a — 1, b) is wholly obtainable.
( )

le~ |

sl
sll Then (a+1,b) is wholly obtainable.
sl Then (a+ 2,b) is wholly obtainable.

In every case we have some pair (a;,b) which is wholly obtainable with
a; close enough to a. Thus, we have the lemma. u]

So we know that since there are 5 contiguous obtainable long-short
pairs there is thus at least one wholly obtainable long-short pair. We
would like to use these to conclude that long-short pairs which are near
the eigendirection are actually obtainable. For that, we consider the
distances from the line L : y = w ™'z to obtainable long-short pairs.
Let d((a,b), L) be the Euclidean distance from the point (a,b) to the
line L.

Lemma 6. There is a real number M such that the following holds:
If there is a long-short pair (a,b) which is obtainable at level N and
has d((a,b),L) > M, then there is a long-short pair (a',b’) which is
obtainable at level N — 1 and also has distance d((a’,b"),L) > M.
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Proof. Say we have such an obtainable long-short pair, (a,b), with
Euclidean distance to the line L greater than M. Then the horizontal
distance (in the z direction) from the pair to the line is greater than
M~+/2w + 2. We know by the previous lemma that there is a wholly
obtainable pair within horizontal distance 2 of (a, b), so there is a wholly
obtainable pair with horizontal distance greater than M+/2w + 2 — 2
from the line. The Euclidean distance from L for that wholly obtainable
pair is greater than M (v/2w + 2—2)/v/2w + 2. Since that pair is wholly
obtainable, it is the image of a long-short pair which is obtainable
at level N — 1. Since the Markov process of subdivision contracts
distances to the line L by a factor w, there must be a long-short
pair obtainable at level N — 1 which has Euclidean distance at least

wM (V2w +2 —2)/v/2w + 2 from L.

So for M to be large enough for the lemma to be true, we need:

wM(\/2w+2) -2
V2w + 2
WMV2w+2—2w > MV2w+ 2

wMV2w+2— M\V2w+ 2 > 2w
(w—1)vV2w +2M > 2w

M >

> M

2w
(w—1)V2w+2
So Lemma 6 holds for

2w \/5
M> —————==1/14+ —=1.3065.... O
wW—1)vV2w+2 2

Lemma 6 gives the following consequence:

Lemma 7. If a long-short pair (a,b) is within distance .3 of the line
L:y=wz and (a +4)w™N +bw™N=1 < 1, then (a,b) is obtainable at
level N.

Proof. First we subdivide the unit interval to any w-regular subdivi-
sion with interval lengths w™" and w~"~!. Since the total number of
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longs and shorts (A, B) in the entire subdivision lies on the line L with
Aw™N + Bw N1 =1 and the pair (a,b) is within distance .3 of the
line with a smaller sum aw™" 4+ bw™~1 < 1, we know that b must be
smaller than B. Thus, there are at least b+ 1 shorts in the subdivision
of [0, 1] and it follows from Lemma 4 that there is a range of 5 obtain-
able subdivisions (ag,b) ... (ag +4,b). And we know by Lemma 6 that
if one of the obtainable subdivisions is at Euclidean distance greater
than 1.4 from the line L, then there is also an obtainable subdivision
at distance greater than 1.4 at level N — 1 as well, and thus at all lower
levels as well. But there are no obtainable subdivisions that far from
the line at, for example, level 2. Thus, none of the 5 contiguous ones
with b short intervals can be greater than Euclidean distance 1.4 away
from the line. Thus, none can be greater than horizontal distance 1.4
V2w + 2 =3.66... away from the line L. Since there are 5 obtainable
points in a line with each separating distance exactly one, the worst
case is that one of the end obtainable points is 3.66 away from the line.
In that case the opposite obtainable point on the other side of the line
would be distance 4 — 3.66 = .34 away from the line. Thus, we have
that all points within distance .34 are obtainable. u]

This lemma also gives us a good estimate of how far the subdivision
process needs to go to reach an obtainable subdivision for a fixed
| € Z[V2]. That is, if | = a + bw, we compute the distance from
(a, b) to the line L. Since each subdivision will move the image of (a, b)
closer to L by a factor of w, we can easily tell how many subdivisions
will be sufficient to get an expression for [ which is actually obtainable.

Now we return to proving the main lemma, which was to show that we
can find an w-regular subdivision of the interval containing an arbitrary
point of Z[v/2].

So given an arbitrary point a + bw of Z[v/2] N [0, A + Bw], we want
to find an w-regular subdivision of [0, A + Bw] containing a + bw. So
we will begin by subdividing [0, A + Bw] successively into progressively
finer w-regular subdivisions with interval lengths adjacent powers of w.
We know from Lemma 2 that a + bw can be written in a sequence of
ways, m;w~" + nw~*"!. As i increases, the long-short pairs (m;,n;)
enter the first quadrant and become closer to the line L : y = w1z
since the matrix for the Markov process defined in Lemma 2 contracts
by a factor of w in the direction towards the line L (and expands by a
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factor of w in the direction along the line L). Eventually, we will have
the long-short pair (m;,n;) within distance .3 of the line L. Note that
all long-short pairs (mg, ng) for k > j will also be closer than distance
.3 to the line L. So we subdivide [0, A + Bw] into pieces of length w7
and w771, The question is, can we find an initial segment of this
subdivision with exactly m; long intervals and n; short intervals.

We can assume that we are at a stage j such that there are plenty
(in particular, at least 5) of intervals following the point a + bw in the
subdivision at stage j, since as long as a + bw is not the whole interval,
there will be some distance from a+bw to the end of the interval A+ Bw
and the lengths of the intervals get shorter and shorter. (If the point
a + bw is the end of the interval, we are done already.)

So now we would like to show that (mj,n;) is an obtainable long-
short pair at level j. But we know from Lemma 7 that since (m;,n;)
is close to the line L, that it is an obtainable subdivision. Thus we
can subdivide [0, A+ Bw] with an w-regular subdivision containing the
given point, and thus the main lemma is proven.

So now we prove the remaining direction of the theorem using the
main lemma. That is, given a homeomorphism f € F(1,Z[v2],{w'}),
we look at its set of breakpoints B C Z[/2]. We can construct an w-
regular subdivision of [0, 1] containing the first breakpoint of f and then
we can successively subdivide that subdivision to obtain one containing
the second breakpoint and so on until we have B; which is an w-regular
subdivision of [0, 1] containing all the (finitely many) breakpoints of f.
We consider C; = f(Bj), the images of the breakpoints of f. These
form a subdivision of [0,1] which is not necessarily w-regular. But
we can find a refined subdivision Cy of [0,1] which is w-regular and
contains all the elements of C;. Furthermore, since we can start with
the subdivision C; and subdivide it to obtain C5, we can simultaneously
be subdividing the intervals in the domain in the same manner as those
in the range to obtain Bs, an w-regular refinement of the subdivision
B such that f(B;) = C3. Thus, we have obtained f as the linear
interpolation of a pair of w-regular subdivisions By and Cy with the
same number of points.

4. The classifying space of the poset. Given a poset X, we have
the general construction of the classifying space associated to it. That
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is, the space Y has an m-dimensional simplex for each ordered n + 1
tuple g < 21 < --- < z, in the poset X. The boundary maps d; for
the space Y are those which come from omitting the ith element from
the n + 1 tuple.

We would like to know that the poset we constructed in the previous
section is directed, since by a result of Quillen [4] we have that if our
poset is directed, its classifying space is contractible.

Given f and g in the poset, we want to find h such that f < h and
g < h. We can do this by finding a common expansion in the following
way. Say we have f : [0,a + bw] — [0,1] and ¢ : [0,c + dw] — [0,1],
both elements of the poset X. We know by the theorem in the previous
section than f and g are the linear interpolations of pairs of w-regular
subdivisions. So we have f interpolating C (a subdivision of [0, a+bw])
to Cy (a subdivision of [0,1]), and likewise we have g interpolating
D, (a subdivision of [0,c¢ + dw]) to D2 (a subdivision of [0, 1]) with
all subdivisions w-regular. Then the union C; U Dy in [0, 1] is not
necessarily w-regular, but there is a subdivision D’ which contains the
union and is w-regular. Furthermore, we can arrange for the f and g
preimages of D’ in [0,a + bw] and [0, ¢ + dw] respectively to also be w-
regular by taking finer subdivisions. So now we have three subdivisions
(one each of [0,a + bw], [0, ¢ + dw] and [0,1]) all with the same number
of points, say n. We can expand f and g by lengthening each of
the n intervals in their respective subdivisions to length w to obtain
h: [0,nw] — [0,1]. And now we have that h is a common expansion of
f and g so thus the poset is directed.

So we have that Y is contractible, and we look at the obvious action
of the group F(1,Z[v/2],{w’}) (which we will call F) on the poset X
and thus on the classifying space Y. Given f : [0,1] — [0,1] € F
and z : [0,a + bw] — [0,1] € X we define f(x) to be the composition
foxz:[0,a+bw] —[0,1]. Thus f(z) will have slopes in {w’} and only
finitely many singularities, all lying in Z[v/2]. The action of F' on the
poset X preserves the partial order, since if we have x; and x5 in X
with z1 < x2 via a sequence of simple expansions o = x108,0---087,
we will have f(z3) = f(z1 08, 0---035;) and thus f(z1) < f(z2).

Since the action of F on Y is free and Y is contractible we have that
Y/F is a K(F,1). Now we need to look at the structure of this space
to understand the finiteness properties of the group F'.
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Unfortunately, the K(F, 1) has infinitely many cells in each dimen-
sion. For example, there are infinitely many 0-cells. Each 0-cell corre-
sponds to an equivalence class of maps. Even though all maps from [0, 1]
to [0, 1] (satisfying the requirements about slopes and singularities) are
equivalent mod F, there are maps from other interval lengths [0, a+bw]
which are not equivalent to any maps from the unit interval to itself.
Similarly, there are infinitely many 1-cells mod F since there is one for
each pair of maps f,g with f < g. Of these, there are not too many
“essential” cells with g a simple expansion of f and there are many cells
where there may be many intermediate maps, f < f1 < fo < --+ < g.
To separate the “redundant” cells from the “essential” cells which we
can filter our K(F,1) in the following way.

First we need to filter the space Y by height. For y € Y, we let the
height h(y) be the length of the largest chain yp < y; < --- < yp =y
for y; € Y. We can filter Y by height to obtain Y3, = {f € Y|h(f) < h}.
We would like to use a theorem of Brown [2].

Theorem 4.1 (Brown). Let X be a contractible T'-complex with
a filtration {X;} such that each X; is finite modT'. Then if the
connectivity of the pair (X;41,X;) tends to oo as j tends to oo, T'
is finitely presented and of type F P .

To apply the theorem, we need to verify the condition on the connec-
tivity of the filtration pairs, (Y441, Ys) through the following lemma.

Lemma 8. Suppose Y1,...,Yy are distinct simple contractions of a
poset element Y. Then Yq,...,Yy have a lower bound in the poset if
and only if the intervals which disappear from Y in the contractions of
the Y;’s are disjoint. If they do have a lower bound, then they have a
greatest lower bound Z which is obtained by contracting all the intervals
which disappear for some Y;’s contraction.

Proof. <. If the intervals in Y which disappear during the simple
contractions are disjoint, then we can contract all those intervals
successively to obtain Z which is a lower bound for all the Y;.

=-. Suppose W is a lower bound for all the Y;. So each Y; is an
expansion of W. Think of W as a forest of a + b roots where W has
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size a + bw, and with each root labeled either 1 or w.

W is a lower bound for each of the Y;, so each of them can be
obtained by a sequence of elementary expansions. Each of these simple
expansions can be expressed as one of:

1 w w w
{, L, \ or \
w wwl wlw lww

So we expand W by all the expansions needed to obtain all the Y; then
we expand that to obtain Y. From this, each contraction from Y to
any Y; is a pruning of one or three leaves. Thus, the intervals which
get contracted in Y to get the Y; are disjoint. Furthermore, Z > W
since Z is obtained by pruning only the intervals necessary to go from
Y to Y. |

Thus we have the lemma needed to ensure the connectivity condition.
See Brown [2] for the remaining part of showing that we now have the
connectivity condition; the argument is now completely analogous to
the cases described there (when the slope groups are rank one and
generated by 1/n).

Thus we know that the group F(1,Z[v2], {w}) is finitely presented
and of type F P.

These same techniques work for certain other irrational slope groups;
in particular, if we have an algebraic integer A\ with a subdivision rule
similar to the one for w, the argument is exactly analogous. These cases

include when we have l

I

where the long is divided into n long intervals and one short interval.

In other words, whenever A\ satisfies an equation of the form
1=nA+ A\

for some n > 1, the argument is analogous for the group F (1, Z[A], {\}).
These solutions for A are of the form (—n &+ +v/n? +4)/2. For n even,
solutions for A will give us groups with breakpoint sets of the form
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Z[v/m? + 1], for m € Z*. For n odd, we get groups with breakpoint
sets are of the form Z[v4m?2 + 4m + 5/2], also with m € Z™.
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