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SUPERHARMONIC FUNCTIONS IN HOLDER DOMAINS

DAVID A. STEGENGA AND DAVID C. ULLRICH

1. Introduction. We will call the open set 2 C R™ an LP domain
if fQ uP dr < oo for every function v > 0 which is superharmonic in
Q; we will say that 2 is an LP domain if €2 is an LP domain for some
p>0.

Armitage [3] has shown that every domain of “bounded curvature” is
an LP domain for p < m/(m — 1). A more recent result due to Maeda
and Suzuki states that every Lipschitz domain is an LP domain; this
is proved in [15], with explicit bounds on p. Our main result (Theorem
1) states that Q is LP under much weaker hypotheses; namely, that
be a Holder domain . The converse statement is also true for finitely
connected planar domains. See [21] for a restricted version of this
result for positive harmonic functions and the necessity of the Holder
condition for simply connected planar domains. See [16, 17] for the
result for finitely connected planar domains and [1] for some results
with sharp bounds on p. See also [12] where closely related questions
are studied.

In order to discuss Holder domains we consider proper open connected
subdomains €2 of Euclidean m-space R™, for m > 2. Following [9] we
define the quasi-hyperbolic metric kg, in € by

ds
1.1 ko(xi,22) =inf [ ———
(1) (@2,02) = nf [ 505
where the infimum is taken over all rectifiable arcs < joining z; to xs
in Q. Here we denote by dq(z) the Euclidean distance between z and
00 and ds is integration with respect to arc length.

Fix a point zg € 2. We say that Q is a Holder domain if

(59 (mo)
0a(x)

Received by the editors on January 19, 1994 and in revised form on July 5, 1994.
Key words and phrases. Superharmonic functions, John domains, Holder do-

mains, NTA domains.

(1.2) ko(zg,z) < c1log + 2, z e

Copyright ©1995 Rocky Mountain Mathematics Consortium

1539



1540 D.A. STEGENGA AND D.C. ULLRICH

holds for some finite constants c;, co. See [19] where this terminology
is introduced and the relation to uniform domains, NTA domains and
John domains is discussed.

Briefly, the terminology is motivated by a result of Becker and
Pommerenke [6] where it is proved that simply connected planar Holder
domains are precisely the conformal images of the disk under Holder
continuous Riemann mappings. Gehring and Martio established an R™
version of this result by replacing the Riemann mapping function with
a k-quasiconformal mapping. See [10], where domains satisfying (1.2)
are said to satisfy a quasi-hyperbolic boundary condition.

On the other hand, Hoélder domains are closely related to John
domains. We fix a point xg € 2, then we say that 2 is a John domain
provided that for each z; € €2 there is an arc < joining zy to z; in Q
along which

(1.4) da(z) > al(y(z, 21)), x €.

Here « is a positive constant, y(z,z;) is the portion of v joining z to
z1 and I(y(z,z1)) is its arc length. It is elementary that John domains
are Holder domains. But the thickness condition (1.4), which can be
visualized as a twisted cone condition, does not hold in general for
Holder domains. In [18] an example of a Hélder domain is constructed
which contains a sequence of tubes of width &, > 0 and length
enloge, !, where ¢, tends to zero. Thus (1.4) is violated and hence
Holder domains are not necessarily John domains. See also the example
in [6].

Theorem 1. Let Q C R™, and let By be a ball for which the ball
with the same center but twice the radius is contained in Q. If Q is a
Hélder domain, then there exist p = p(Q2) > 0 and M = M(Q, By) < 00
such that

By

(1.5) / uP dx < M (min u)P
Q
for every function u > 0 which is superharmonic on 2.

Theorem 1 answers a question posed by Armitage in [5]: Suppose
that for any ¢ € 02 there exists an open cone I'c C Q with vertex at ¢,
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such that I'c has opening o and height h, uniformly for { € 9; does
it follow that Q is LP? We shall see below (Example 1 in Section 4)
that the “cone condition” in precisely this form does not imply LP;
however a slightly stronger version of the same condition will suffice:
If we suppose that for each x € ) there exists a cone as above with
vertex at z, then  is a John domain, hence LP.

In fact, Example 1 gives a bounded simply connected domain in the
plane which satisfies an interior cone condition at every point of the
boundary but which is not LP, while Masumoto [16] has shown that if a
domain in the plane bounded by finitely many Jordan curves satisfies an
interior cone condition at every boundary point then the domain must
be LP. One may see that a plane domain as in Masumoto’s theorem
must in fact satisfy a cone condition at every point of the interior, which
implies that the domain must be a John domain, as above; hence this
result follows from Theorem 1. (Another result in [16], the fact that a
plane domain bounded by finitely many quasicircles is LP, can also be
derived from Theorem 1: It was shown in [14] that a domain bounded
by one quasicircle is NT'A, which implies that a domain bounded by
finitely many quasicircles is a John domain).

We shall see that the hypotheses of Theorem 1 are not necessary;
there exist infinitely connected planar domains which are LP but not
Holder (Example 2 in Section 4). The Hélder condition is nonetheless
fairly sharp; as we show in Theorem 2, an LP domain cannot have a
cusp. (Note that dim(9) < m if Q is Holder; see [18]. We do not
know whether there exists an LP domain ? with dim(0Q) = m.)

2. The proof of Theorem 1. A few preliminary definitions:

We will let ©,, denote the set of dyadic cubes of length 2™ in
R™ : Q € D, if there exists k € Z™ such that Q@ = {# € R™ :
k27" <z; <(k;j+1)27",1<j<m}. Weset® =U__D,. Given
Q1, Q2 € D will say that @)1 and Q2 are adjacent if at least one of the
two cubes has a face contained in the other; in this case we will write
Q1 ~ Q2. We say Q1 and Qs are essentially disjoint if Q1 N Q2 has

empty interior, and we set o(Q) = 27" for Q € D,,.

Now suppose {2 is a bounded open set in R™. A Whitney decompo-
sition for Q is a family of dyadic cubes W = W () C © such that
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(ii) the cubes in W are pairwise essentially disjoint,
and finally
(iii) for any Q € W we have

(2.1) 5m'%0(Q) < d(Q,00) < 20m*%0(Q).

Here d(Q, 09) denotes the (Euclidean) distance from @ to 99, the
boundary of Q. Any Q has such a decomposition [22, p. 167]; the
constants in (2.1) have been chosen so as to facilitate the proof of
Lemma 1 below.

The present section is devoted to the proof of Theorem 1. The plan
is to obtain an upper bound for the integral of u? over an arbitrary
Whitney cube @ in terms of the average of u over a fixed cube Qg
and the quasihyperbolic distance from @y to @, and then to use the
exponential integrability of the quasihyperbolic distance on Holder
domains [20]. The next three lemmas hold for any domain whatsoever;
although the first is extremely elementary, we nonetheless include an
explicit proof because the precise value of the constant is of some
importance in the proof of Lemma 1.

Lemma 0. If Q1, Q2 € W(Q) and Q1 ~ Q2 then o(Q2) < 40(Q1).

Proof. Set 0 = 0(Q;), d;j = d(Q;,09). The fact that the diameter
of @y is m'/2¢, shows that

dy < dy +m* %0y < 21m' %0,

so that op < (21/5)0;. This implies oo < 407, since each o; is a power
of two. o

Let |E| denote the Lebesgue measure of the set Ej if u is integrable
on E, set ug = |E| ! fE udx. The following lemma may be regarded as
a version of Harnack’s inequality for positive superharmonic functions.
We thank Professor S. Gardiner for bringing to our attention the fact
that this result is essentially in [4, Lemma 3.2].

Lemma 1. There exists a constant 1, depending only on the
dimension m, with the following property: If Q0 is an open set in R™,
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u > 0 is superharmonic in Q, and Q1, Q2 are two adjacent cubes in a
Whitney decomposition of €1, then

(2.2) ug, < nNug,.

Proof. Let xy denote the center of @)1, and set B; equal to the
Euclidean ball with center z( and radius r;, with 7 = 0(Q1)/2 and
ry = 5m'/?0(Q1). It follows from (1.1) and Lemma 0 that B; C Q
and Q2 C By C 2. Since u > 0, this shows

B
ug, < MuBz and wup, <

Q2

But
uB, < UB,,

because u is superharmonic and ro > r;. This gives (2.2) (with
n=40"m™/? > |Q1[|B2|/|Q2]|B1]). o

Note. Throughout the paper the letter 7 will denote the constant
appearing in (2.2), while the letter ¢ will indicate the traditional
“constant, the value of which may vary from line to line.” We note
that the value of p which will be obtained in Theorem 1 depends on the
value of 7, so that even if there were no loss elsewhere in the argument,
to obtain optimal bounds on p by the present method would require
optimal bounds on 7, a goal which seems fairly ambitious.

Lemma 2. Let W be a Whitney decomposition of Q0 and assume
that Qo € W is a cube with xq in its interior. Then there is a constant
c3 < oo satisfying the following: if u > 0 is a superharmonic function

on Q and Q@ € W then
(2.3) ug < quece'k”(””O’wQ)

where xq s the center of Q.

Proof. Let u > 0 be a superharmonic function on 2 and Q € W with
center zg. Since the quasihyperbolic distance between the centers of
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any two adjacent Whitney cubes is comparable to 1, it follows that there
is an absolute constant ¢ and a chain of adjacent cubes Qq, Q1,...,Qn
with n < ckq(zo,zq) and such that @, = Q (see [19, Lemma 9]). So,
by Lemma 1,

cska(zo0,2q)

uQ < nano < uQy€ »

where c3 = clogn. u]

Proof of Theorem 1. Suppose 2 is a Hélder domain , and let W be a
Whitney decomposition; we may suppose that max{c(Q):Q € W} =
1. Suppose u > 0 is superharmonic in 2. Note that

(2.4) (u")q < (u@)?
if 0 < p <1, by Holder’s inequality.

Suppose that 0 < p <1 and that @ € W; then by (2.3) and (2.4) we
have that

(2.5) / uw? dz = |Q|(u)q < |Q(ug,)Peres e lora).
Q

Thus, by (2.5)

/Qupd:z:: Z

/upda:
Qew /@

(26) S (qu)p Z ‘Q|€P63k9(wo,zQ)

QewW

< C(UQO)P/ercskn(zoym) dz.

[20, Theorem A] shows that if p = p(cy,n) > 0 is small enough then
the integral above is finite.

Finally, let By be a ball contained in 2, and let B; be a ball with
the same center x; as By and radius r1 = dq(z1), so By C B;. By the
definition of W, there is an absolute constant v and a Whitney cube
Q@ C By for which |Bi| < v|Q|. If w > 0 is a superharmonic function,
then it follows from Lemma 2 that

uQ, < cug < corup, < CcQUUB,-
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By using Lemma 1 and the super-mean-value property it is easy to see
that up, is smaller than some absolute constant times the minimum
value of u on By. Hence (2.3) follows from the above and (2.6). o

Various other interesting inequalities follow by the same sort of
argument. One may easily show by the method above that

(2.7) /Qu(:v)5g(x)q dr < ©
and
(2.8) /959(33)77‘ dx < 0o

for some ¢, r > 0. (Note that (2.7) and (2.8) imply Theorem 1 by
Holder’s inequality, as in [15].)

3. Domains with cusps. As mentioned earlier, there is a Holder
domain (in fact a Jordan domain in C) which is not a John domain,
although Theorem 1 shows it must be an LP domain. Nonetheless
Theorem 2 shows that the John condition is sharp in a fairly strong
sense:

Definition. Suppose 2 C R™ is a bounded and connected domain
with Whitney decomposition W, and let 27 denote the maximal side
length of a cube in W. Suppose {N,,} is a sequence of natural numbers.
We will say that Q is an {N,}-John domain if the following holds:
Whenever Q € W and o(Q) = 27" < 27¥ then there exists a chain of
Whitney cubes Q = Q1 ~ Q2 ~ -+ ~ Q with 0(Qk) > o(Q) and
K <N,,.

(Thus the John domains are precisely the {IV,,}-John domains with
sup NV,, < 00.)

Theorem 2. Suppose lim, .., N,, = o0o. There exists a bounded
domain @ C R™ with connected boundary which is an {N,}-John
domain but not LP.

This will follow immediately from the following:
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Proposition 1. Let @ = {(z,y) € RxR™ 1 0 < z < 1,
lyl < f(z)}, where f :[0,1] — [0,1] is a continuously differentiable
function such that £(0) =0, f'(0) = 0, and f'(x) is increasing on [0,1].
Then Q is not an LP domain. In fact, if 6q(x,y) denotes the distance
from (z,y) € Q to 0N then there exists a positive harmonic function u
in Q such that [, P4 dz dy = oo for every p >0 and g > 0.

Given a sequence N,, — 00 it is clear that we may choose f as in
the proposition in such a way that Q will be an {N, }-John domain,
giving Theorem 2. (The proposition also gives an example of a domain
bounded by the graph of a Hélder function of order e < 1 which is not
LP; in fact if lims_,0 § 1w(§) = 0 we may obtain a domain (locally)
bounded by the graph of a function with modulus of continuity w which
is not LP.)

Proof of Proposition 1. Choose z; € (0,1) such that f(z1) =1 — ;
having chosen z;, choose z; 41 € (0, 1) such that f(z;41) = z; — zj41.
Then the sequence x; decreases to zero, while the fact that f'(0) =0
shows that

(3.1) lim S5 g
J—oo Tj_1 — Ty

Let u be a strictly positive harmonic function in Q such that u(z,) —
0 for any sequence {z,} C Q with z, — ¢ € 9Q, ¢ # (0,0). (In other
words, u is a kernel function with pole at the origin; such a function
may be obtained as a limit of suitably normalized harmonic functions
continuous on £ which vanish everywhere on the boundary except in a
small neighborhood of the origin.)

Let ¢; = max{u(z,y) : (z,y) € Q,z > z;}, and set Q; = {(z,y) €
Q:iz; <z <zj_2}j>2),and P; ={(z,y) € Q:z =z;}. Note that
in fact ¢; = max{u(z,y) : (z,y) € P;}, by the maximum principle. It
follows from (3.1) that €; is essentially a cylinder of radius z; 1 — z;
and height 2(z; 1 — ;). In particular, it is clear by comparison with
the cylinder {z; < x < x;_2, |y| < f(x;_2)} that there exists a constant
0 < a < 1such that if z € P;_; then the harmonic measure of P;UP;_»
at z, relative to (2, does not exceed a. Since u is no larger than c; on
P; U P;_, and vanishes elsewhere on the boundary of Q; it follows that
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u(z) < ac; for z € P;j_1. This shows that c;_; < acj, so that
(3.2) g >aft, j>2

where B8 =a ! > 1.

It is not hard to see that the maximum of u on the “vertical slice” P;
must be achieved at the center: ¢; = u(z;,0). It follows from Harnack’s
inequality that

(3.3) u(z) > cf?, z € Bj

where Bj is the ball with center (z;,0) and radius (z; — x;_1)/2.

Now note that 6o (z) ~ (zj—1 — x;) for z € Bj. It follows from (3.3)
that

(3.4) / ule,y)Poa(w,y)t dudy > ¢S BP(a; — aj)™ .
Q

i=1

But 87 > 1, so lim 37(z;_y — z;)™*? = oo, by (3.1). O
j—o0

Similar results hold for domains which look like twisted versions of
the domain in Theorem 2. For example:

Theorem 3. Suppose that lim,, .., N, = 0o, and let Q1,Q2, ... be a
sequence of pairwise essentially disjoint dyadic cubes such that o(Q;) =
27" for M, < j < Mpy1, where My = 1 and My41 = My + Ny.
Suppose that Q; ~ Q. if and only if |j — k| = 1, and that there exists
J < oo such that Q; NQ = & for |j —k| > J. Let Q be the interior of
the union of the Q;. Then Q is not an LP domain.

The proof is essentially the same as the proof of Theorem 2, with
Q; N Q41 in place of P;; the inequality corresponding to (3.3) follows
from Lemma 3. We define Dy = U?;L,‘CI_JQ]-, k>J.

Lemma 3. Suppose {Q;} is a sequence of cubes as in Theorem
2, and set P; = Q; N Qjy1. Suppose u > 0 is continuous on Dy,



1548 D.A. STEGENGA AND D.C. ULLRICH

harmonic in Dy, and vanishes everywhere on the boundary of Dy, except
on Py_j_1UPyy5. Then

(3.5) u(pg) > cmax{u(z) : z € Py},

if pr is the center of Py.

The lemma may be deduced from the “boundary Harnack principle”
for Lipschitz domains [2, 8, 14] together with the Carleson-Hunt-
Wheeden lemma [7, 13 Lemma 2.1, 14, Lemma 4.1]. (Note that up
to a change of scale there are only finitely many possibilities for Dy,
so that these results for Lipschitz domains hold in Dy with constants
independent of k.)

Finally, another interesting extension to Proposition 1 can be ob-
tained by replacing the smoothness and convexity assumptions by a
Lipshitz condition. This yields a more natural cusp condition but its
proof requires a subtle fact about the geometry of Holder domains.

Theorem 4. Let ) be defined as in Proposition 1, except that we
only require that f(z) be Lipschitz continuous, f(z) > 0 for z > 0 and
f(z)/x — 0 as ¢ — 0. Then the conclusion of Proposition 1 holds.

Proof. Consider a Whitney decomposition of €2 into dyadic cubes. By
taking the lower vertices of the Whitney cubes with bottom side on the
real axis we determine a sequence {z,}, with 0 < z,, < 1, which tends
to zero (and replaces the sequence in the proposition). Next, we define
cj, §; and P; as before. Since ); is a Lipshitz domain we can use
the boundary Harnack principle again along with standard facts about
Lipschitz domains to obtain a similar harmonic measure estimate and
thus (3.3) holds. Now the proof must change since (3.1) is no longer
true; it’s easy to construct examples where f'(xz) = 0 on (relatively)
large intervals near the origin.

We want to prove that the series in (3.4) diverges and so we need
only prove that there does not exist a < 1 with

(3.6) Tj -z < Mo forallj=1,2,....

To obtain a contradiction suppose there is such an a. By the construc-
tion and the fact that f is Lipschitz it follows that J; = do((z;,0)) is
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comparable to z;_; —z;. Now (3.6) implies that there are constants c,
c1, co satisfying:

(3.7)  ka((1,0), (xJaO)) <cj<a IOg(l/JJ) + c2, J=12,...,

where kq is the quasihyperbolic metric on Q. It can be shown that
(3.7) implies that © is a Holder domain and hence cannot contain a
cusp. A version of this last fact (for m = 2) is Corollary 6 in [18] and
a more general version follows from the results in [19], see Theorem 3
or Lemma 3 in that paper.

Following a suggestion from the referee we give a direct proof using
the full strength of (3.6). It follows from (3.6) that

o0

zj= Z(mk —Zpy1) S M1 —a) tad
P

for j =1,2,... and hence
. 1 .
(3.8) j < clog —, ji=12,....
Zj

On the other hand, the remaining hypothesis on f(z) implies that
0o (z) < ex for all small z. Hence,

1 1 Vi dx Lode
ar _ ) 1 ;
/z - < . NES) ka((z;,0),(1,0)) < cj

J

1
log — < 2c3ej for all sufficiently large j
Zj
where c3 is an absolute constant and ¢ is an arbitrary positive number.
Combining the above inequality with (3.8) we get a contradiction which
proves the theorem. m]

4. Some examples. We describe four examples in this section.
For Example 1, we take Q to be the simply connected planar domain
obtained from the open unit disk by removing a Jordan arc which is
contained in the disk except for one endpoint which is on the boundary.
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FIGURE 1. A non-Hélder LP domain.

It is easy to see that such a curve can be constructed with the property
that for every ¢ € 0f2 there exists an open sector S¢ C €2 with vertex at
¢, and with a fixed opening and height. (Of course, if we supposed the
same condition at every point of €2, instead of just on the boundary,
then  would be a John domain.) Furthermore, this can be done in
such a way that € is not LP. One simply constructs a curve which
is nice on one “side” but has a cusp on the other. If such a domain
were to be LP then it would have to be a Holder domain by Theorem
3 in [21]. But 2 would have a cusp at one of its prime ends, and hence
cannot be a Holder domain, by Corollary 6 [18].

For Example 2 (see Figure 1 above), we start with a simply connected
John domain which is an LP domain by Theorem 1. Then, we remove
an infinite discrete sequence of interior points so that 2 is no longer
a Holder domain. We force the quasihyperbolic distance between the
center of the room R, and the center of the fixed room Ry below to
be too large compared to the diameter of the room R, dq(z,) where
zp, is the center for (1.2) not to hold. On the other hand, the discrete
sequence is a removable set for any positive superharmonic function on
Q, see for example [11, Chapter 7]. Hence Q is an LP domain.

While Figure 2 gives a very simple example of an LP domain which
does not satisfy the Holder condition, there are at least two natural
questions left unanswered by this example: First, Example 2 leaves
open the question of the existence of a non-Ho6lder LP domain which is
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FIGURE 2. A non-Holder LP domain in space which is topologically a ball.

regular for the Dirichlet problem. Second, the proof that the domain in
Example 2 is LP uses the curious fact that there exists a Holder domain
Q; such that every positive superharmonic function in ) extends to
another such function in Vi; thus it might be the case that every LP
domain is Holder “modulo a removable set,” as in Example 2.

We shall see in a moment that Example 2 can be modified to give a
non-Holder LP domain which is regular for the Dirichlet problem. We
wish to point out that such an example cannot be obtained by simply
starting with a Holder domain and removing a “removable” set, as was
done in Example 2; that is to say that an example answering the first
of the two objections to Example 2 mentioned above must necessarily
answer the second as well. In fact, it is clear that if K is a compact
subset of a bounded open set R and R\K is regular for the Dirichlet
problem, then there exists a positive superharmonic function in R\K
which does not extend to a superharmonic function in R.

It is nonetheless very easy to modify Example 2 to obtain a non-
Hoélder LP domain which is also regular for the Dirichlet problem:
We obtain Example 3 by beginning with the domain constructed
in Example 2 and removing a countable family of pairwise disjoint
horizontal line segments, with one segment centered at each of the
points which were deleted in Example 2. The resulting domain is
regular for the Dirichlet problem because every component of the
boundary contains more than one point, and it is clear that the Holder
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condition fails, exactly as in Example 2.

It is also clear that if the removed segments are too long (so that
the distance between two adjacent segments is much shorter than the
length of the segment in question) then the rectangles R,, will be almost
separated from Ry, so that the domain will not be LP. (One might
consider this a “room with Venetian blinds” example, in analogy with
the traditional “rooms with corridors” examples in potential theory).

On the other hand, it seems clear that the fact that we have removed
segments instead of points should have no effect on the (global) integra-
bility of superharmonic functions, if the removed segments are short
enough, and in fact Example 3 will be LP in this case: For n > 1, let
@, denote the reflection of R,, in the upper edge of Ry. Proposition 2
below will show that

/ ude <M wder, n=1,2,...,
RTL Q'ﬂo

if the removed segments are short enough, so that
Z/ updw§(1+M)/ uPdr < c0.
n=0 Ry Ro

We will need some notation: We define S = {z +iy € C : |z] <
1,ly] < 2}, and if F is a finite subset of the open interval (—1,1)
and 0 > 0 we define K(F,0) = Ugep[x — J,z + 6]. Note that if F is
fixed then K (F,d) C S for all sufficiently small §; for each such 6 we
set R = R(F,0) = S\ K(F,9). Finally, R, ={z+iy € S:y >0} and
R_={z+iyeS:y <0}

Proposition 2. There exist constants M < oo and p > 0 with the
following property. If F is any finite subset of (—1,1) then there exists
o > 0 such that

wPde < M uP dx
R, R_

whenever 0 < § < dp and u > 0 is superharmonic in R = R(F, ).

Proof. Let Dy and D_ denote the closed discs of radius 1/2 with
centers ¢ and —i. Suppose u > 0 is superharmonic in R(F,§) and set
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t = min.cp, u(z). Now a square is certainly a John domain, so that
Theorem 1 shows that there exists p > 0 and M; < oo with

/ uP dr < MytP.
Ry

Thus we are done if we can demonstrate the existence of a constant
¢ > 0 (depending on F') such that u(z) > ct for all z € D_, whenever
¢ is small enough. This follows by a harmonic measure argument:

Given a domain (2, regular for the Dirichlet problem, and a Borel set
E C 09, the notation w(z, E, ) will refer to the harmonic measure of
E relative to Q. We define w(z) = w(z,0D4+,R\ D+). If z € 0D,
then u(z) > tw(z); since u is superharmonic it follows that v > tw in
R \ D+ .

Thus we need only show that there exists a constant ¢ > 0 such that
if ¢ is small enough then

(4.5) w(z) > ¢, ze€D_.

This seems quite clear if we interpret w(z) as the probability that the
first place a Brownian path starting at z hits the boundary of R\ D4
is at a point of 0D, ; surely our Brownian traveler will most likely not
notice that K is there, if § is small enough! For the skeptical reader we
include a sketch of a proof without Brownian motion:

Let F = {z1,...,zn}, and denote I; = [z; — §,z; + J], so that
K = U}, I;. The fact that w(z, E, Q) increases with Q shows that

w(z) =1—-w(z,0S, R\ D+ Zw(z,Ij,R\D—i—)
Zw(z,lj,S \I;).

1

N
)_
>1—w(z,08 8\ D+)—

<

Note that the term w(z,dS,S \ D+) does not depend on J; certainly

sup w(z,08,8\ D+) =7 <1,
zeD_
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since D_ is a compact subset of S\ Dy. And it is clear that for each j
we have lims_,ow(z,I;, S \ I;) = 0 uniformly for z € D_ (it is easy to
give explicit examples of subharmonic functions in the unit disc showing
this); this gives (4.5) with ¢ = (1 — «)/2, if § is sufficiently small.

Finally, our last example is a domain in R3. As noted in the
introduction, a simply connected planar domain is LP if and only if it
is Holder. Now we have proved that a Holder domain in 3-space is LP
and hence it is natural to ask whether the converse holds for domains
which are topologically equivalent to a ball in R®. This might seem
plausible due to the result of Gehring and Martio which proves that
the Holder continuous quastconformal images of the ball are precisely
the Holder domains which are homeomorphic to a ball. However, a
small modification of LP domain which is topologically equivalent to
the ball and yet is not a Holder domain. We start with a cube and then
add an infinite sequence of smaller cubes to one side (which is depicted
in the figure below). So far we have a John domain and hence it is LP.
Finally, we remove an infinite sequence of intervals so as to violate the
Holder condition. Since a line segment is a polar set it is removable for
the class of positive superharmonic functions, see Chapter 7 of Helms’
book [11]. Hence, the domain is LP since the family of segments is a
removable set (see [11, Theorem 7.6]) and clearly it is homeomorphic
to a ball.

Another, perhaps simpler, example is to remove countably many
segments of various lengths from the unit cube. The resulting set will
be a cube with one side cluttered with “spikes” forming a “bed of nails.”
This example can be constructed in such a way as to be a non-Holder
domain which is homeomorphic to a ball and equal to a cube minus a
removable set.
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