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ON GORENSTEIN MONOMIAL IDEALS
OF CODIMENSION THREE

YUJI KAMOI

Introduction. Let S = K[X3,...,X,] be a polynomial ring over a
field K and I C S be an ideal generated by monomials. Buchsbaum-
Eisenbud’s structure theorem [1] tells us that if I is a Gorenstein ideal
of codimension three, then it is generated by pfaffians of certain skew-
symmetric matrix.

Our aim in this paper is to give explicit description of generators of
codimension three Gorenstein monomial ideals, and we state our result
as follows.

Theorem 0.1. We put m = p(I) a number of minimal generators
of I and s = (m+1)/2. Letv : Z — {1,...,m} be a map such
that i = v(i) (mod(m)) for i € Z. Then the following conditions are
equivalent.

(1) I is a Gorenstein monomial ideal of codimension three.

(2) mis odd and I = P f,,—1(M) where M = (a;;) is an mxm skew-
symmetric matriz of monomials satisfying the following conditions.

(a) Qi = nonzero, if j = V(i + s — 1) or I/(i + s)
Y 0, otherwise.
(b) {aij | a;j #0,i < j} is the set of pairwise coprime monomials.

(3) m is odd and there exist m pairwise coprime monomials
bi,... by, such that

s—1

I= <{ [T bvciw 11 §i§m}>.
k=1

Example 0.2. Let M be a matrix with coefficients in K[Xy, ... , X7]
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such that

0 0 0 Xy -X3 0 0
0 0 0 0 X5 X5 0
0 0 0 0 0 Xe —X3

M= -X4 0 0 0 0 0 X7
X1 —X5 0 0 0 0 0
0 Xo —Xg 0 0 0 0
0 0 X;s —X7 0 0 0

Then M satisfies conditions (a) and (b) of (0.1), (2) and Pfs(M) is
generated by

{X1 X2 X3, Xo X3 X4, X3 Xy X5, Xy X5 X, X5 X6 X7, X6 X7 X1, X7 X1 X},

1. A syzygy module of a monomial ideal. In this section we
consider the first syzygy module of a monomial ideal and determine
minimal generators of this module for a Gorenstein monomial ideal of
codimension three.

Let S = K[X4,...,X,] be a polynomial ring over a field K. We
denote by Z (respectively N) the set of all integers (respectively, the
set of all nonnegative integers). We define a Z"-grading on S by

deg (X;) = (0,...0,1,0,...,0) € Z". For a = (ay,...,an) € Z",
we set X = X{*1 X5 .. X0,

Let I be a monomial ideal of S with minimal generators X1,... X%
and F be a free S-module with free basis ey, ... ,e,. We define a map
¢:F — Sby pe;) = X% for 1 <i < m. We put deg(e;) = o; for
1 <4 < m and regard F as a Z"-graded module. Then ¢ preserves
Z"-gradings and Ker (p) can be regarded as a Z"-graded module.

We set
Y={X%;|aeN",1<i<m}

Eﬂ:{Xaeﬂa—i—ai:B}, 8 e N"
I = ({X*}jz), 1<i<m.

Definition 1.1. We define an equivalence relation on Xg, 8 € N"”,
as follows. For u,v € g, we denote u ~ v if either v = v or there
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exist Xﬁleil, ... ,Xﬁpeip € X such that u = Xﬁleil, v = Xﬁpeip and
Ged (XPi, XPi1) £ 1 for 1 <i<p-—1.

Let Xﬁleil,... ,XBPeip € X be representatives of Yg/ ~ with
1<4 <+ <ip <m. We put

Ga— {{Xﬁlei1 — XP2e;,, ..., XPre, —Xﬁpeip}, ifp>2
* 7 o, ifp<1

and G = UgGg. Then it is easy to see that G is a minimal basis of
Ker (¢). (The proof is essentially the same as Proposition 1 in Eliahou
[2] or Proposition 1.5 in Herzog [3].)

We define a graph G = (V| E) on vertices V = {e1,... ,e,} and the
set of edges E = {e;e; | X%e; — Xﬁej € G or Xﬁej — X%; € G for
some X“e;, XPe; € £}. We put degy (e;) =% {e; | e;e; € E}.

Remark 1.2. (1) G is connected.
(2) For any X%e; — XPe; € Ker (p), we have

X“eiXﬂej:X7<Lcm(X HX%)  Lem (X%, X J)ej>

e;
Xa,- g Xa]-

for some monomial X7. Thus, if +(X“e; —Xﬂej) and +(X7e; — XVey,),
are distinct elements of G, then j # k. Therefore, we have |G| = |E| =
Yim i degy(ei)/2.

We want to determine elements of G more precisely.

Let I' = {X%¢; | X* is in the minimal basis of [[; : X*],1 < i <
m} C ¥ and IV = {(X %, XPe;), (XPe;, X%;) | X%; — XPej € G} C
Y x X. We define a map ® : I' — IV as follows.

Let X%¢; € T and 8 = o + ;. Since X € [I; : X%], we have
|X5| > 2. If there exists u € X such that u # X%; and u ~ X%e;,
then by definition of the relation, we have X € m[I; : X*| where
m = (Xy,...,X,). This contradicts that X is in the minimal basis
of [I; : X®]. Thus the equivalence class of X%e; in ¥z is equal
to {X%e;}. Since |Xg| > 2, we have Gg # ¢. We put Gg =
{XPre;, — XPre;y, ..., XPre; — XPre; } with 1 < iy < - < ip < m.
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Then there exists 1 < ¢ < p such that Xﬂqeiq = X%¢;. Therefore we
define a map @ by

(XﬁleiuXﬂqeiq)v q> 1

B(X%e;) =
( e) {(XﬁqeizaXﬁleh)a qg=1

Proposition 1.3. We have degv(e;) > w([I; : X%]) for any
1 <1 < m. Hence,

u(Ker (p)) = 3 de8v(e) o s pllli: X0 mibt (D) =1)

i=1 i=1

Proof. Considering the correspondence between I'" and E (cf. Remark
1.2, (2), the first assertion is trivial. We show the last inequality of
the second assertion. Since dim (S/I) < dim (S/I;) < dim (S/I) + 1,
we have ht (I) — 1 < ht([I; : X*]). Hence Y .-, pu([L : X*]) >
S bt (152 X)) = m(hb(I) - 1).

Lemma 1.4. Suppose that I is a Gorenstein ideal of ht (I) = 3.
Then G is a cycle of length m.

Proof. Since G is a connected graph, we only need to show that
degy(e;) =2 forany 1 <i < m.

Since I is Gorenstein and ht (I) = 3, the second betti number by (S/I)
of S/I is equal to m. Hence, by (1.3), we have

m=by(S/1) = 1G] = deg;(ei) =3 u((T; :2X“f])
L mbt() -1 _

- 2
Thus > degv(e;) = >y p([L; - X*]) and, by (1.3), deg v (e;) =
p([L; « X)) for any 1 <1 < m. Also, since u([I; : X*]) > ht (I)—1
2and Y7" u([I; : X*]) = 2m, we have deg v (e;) = p([L; : X*]) =
Hence, G is a cycle of length m. O

2.
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Propostion 1.5. Suppose that I is a Gorenstein ideal of ht (I) = 3.
Then a homogeneous minimal basis of Ker (¢) (with respect to Z™-
grading) is uniquely determined for I (up to multiplication by units).
Furthermore, after the renumbering of X*t,... , X*m G can be written
in the form

G = {X%ig; — X¥itie, | XOmme, — X¥mig; |1<i<m—1}

Proof. By the proof of (1.4), ® is bijective and, by definition of
®, if Gg # ¢, then |Gg| = 1. If we put G = {XPre; — XP2e;}, then
XPre;, XﬁZej € I' and, by the construction of ®, X3 = {Xﬂlei,Xﬁ%j}.
Note that the set of all degrees of a homogeneous minimal basis of
Ker (y) is independent on the choice of a minimal basis and is equal to
{B | Gg # ¢}. Therefore, G is the unique homogeneous minimal basis
of Ker (¢).

The second assertion follows from (1.4). O

2. A proof of the main theorem. First, we determine Pf(M) of
a skew-symmetric matrix M satisfying condition (a) of Theorem 0.1,
(2)-

Let m > 0 be an odd integer and s = (m +1)/2. We denote by [m] =
{1,...,m} and by v : Z — [m] a map such that i = v(z)(mod(m)).

Let 7 € &,, be a permutation on [m]. We denote by (1) = (7;;) an
m X m-matrix such that

e {0
Yoo, i # T().

For an m x m matrix M = (a;;), we set 7TM = (7) - M and M1 =

M - (7)~'. Namely, if we put 7M = (b;;), respectively, M7 = (c;;),

then b.(;); = a;j, respectively, ci(j) = a;j, for 1 <4, j <m.

Definition 2.1. Let M = (a;;) be an m x m matrix.
(1) We say that M is of type (1), if
(a) for 1 <i,j<m,

g — {nonzero j=torv(i+1)
v 0 otherwise
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(b) for 1 <i <m, aii = —ay(i4s—1)v(its)-

(2) We say that M is of type (II), if M is skew-symmetric and, for
1<i,j5<m,

g — {nonzero j=v(i+s—1)orv(i+s)
Y 0 otherwise.

We define a permutation o € &,, by (i) =v(i —s+1) (=v(i+s))
for ¢ € [m]. Then it is easy to see that M is of type (I) if and only if
oM is of type (II) for an m x m matrix M.

For an m X m matrix M, we denote by M the submatrix of M
consisting of the first k£ rows and columns and by M;; the (m — 1) x
(m — 1) matrix obtained from M by deleting the i-th row and j-th
column.

By definition of type (I), we have the following.

Lemma 2.2. Let M = (ai;) be an m x m matriz of type (I).

(1) M,,s can be written in the form

(M, 0
Mms - < 0 t(Ms—1)> .

(2) Letl <k <m and T € &, such that 7(i) = v(i — k) fori € [m].
Then TMT is again of type (I).

Proposition 2.3. Let m be an odd integer and M = (a;;) be an
m X m matriz of type (I).

(1) Pfm—1(cM) is generated by {I1;_1 av(iryv(isr) | 1 < i < m}
and, for any 1 < i # j < m, there exists 1 < k < m such that k # i,j
and Pfm_1(0cM) C (aii, ajj, akk)-

(2) Furthermore, we assume that coefficients of M are monomials.
Then the following are equivalent.

(a) bt (Pfo_1(cM)) = 3.

(b) {a11,--- ,amm} 1s the set of pairwise coprime monomials.
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Proof. (1) By definition of o, we have det ((0M)4(i)o(:)) = (—1)Pdet
(M;y(i4s)) for some p > 0. Let 7 € &, such that 7(j) = v(j — i) for
j € [m] and N = 7M7. Then, by (2.2), we have det (M;,(;i1s)) =
(=1)4det (N,,s) = (=1)?T!(det (N,_1))? for some ¢ > 0. Thus,
det (0 M) iyo(iy) = (1) (TT52) @u(iskyw(isry)? 7 > 0, and

s—1
Pfm 1(cM) = <{ H Ay (itk)w(itk) | 1 <1< m})

k=1

The second statement follows from the first.

(2) (a) = (b). Suppose that Ged(asi,a;;) = b # 1. Then, by
(1), Pfm—1(cM) C (b,akk) for some k # i,j. This contradicts that
ht (Pfr_1(cM)) = 3.

(b) = (a). By (1), we have already seen that ht (P fn—1(cM)) < 3.
Conversely, for any 1 < i # j < m, (as;,a;;) contains only m — 1
elements of {Hz;ll Ay (itk)w(i+k) | 1 < @ < m}, since a1y, ..., Gmm are
pairwise coprime. Hence, 2 < ht (P f,,—1(cM)) = 3. o

Proof of Theorem 0.1. By (2.3), we have already proved implications
(2) < (3). Furthermore, by Theorem 2.1 of Buchsbaum-Eisenbud [1],
the statement (2) implies that I is a Gorenstein ideal.

(1) = (2). Let I be a Gorenstein ideal of ht (I) = 3 with minimal
basis X“t,...,X*m. Then, by a theorem of Watanabe [6], we may
assume that m is odd. We put s = (m + 1)/2 and denote a Z"-graded
minimal free resolution of S/I by

F:=0— S(—) 2% o™ ,S(—8,) 2 o™, S(—a;) 125 8

where d; = (X% ... X%") and d3 = ((—1)"1 X% ... (—1)"m X %%m),
r; = 0 or 1. Furthermore, by (1.5), we can write the m X m matrix
dy = (a;j) as

X i 1<i<m,j=i,

— X%t 1 <g<m,j=1+1,
=X (i,5) = (m, 1)

0 otherwise.
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Since d3 -dy = 0, r; = --- = 1, and we may assume that ds =
(X%1 ... X%m). Then we shall show that the matrix ds is of type (I)
of (2.1).

Taking S(—<)-dual of F, we have a minimal free resolution

G.=0— S(—) 2 a™,S(-B) -3 &™,S(~ay,) —> §

of S/I. Then, by Theorem 1.5 and Theorem 2.1 of Buchsbaum-
Eisenbud [1], there exists a Z™-graded isomorphism ¢. : G. — F.
such that the matrix 5 - do is skew-symmetric. Since t. preserves a
Z"-grading, t, respectively to, is determined by a permutation of free-
basis of Fi, respectively Fo, and a multiplication of a unit. Hence, we
have t; = (—1)%(r 1) and t, = (—1)¢(r) where 7 € &,, such that
7(p;) = i for i € [m]. Since ty, respectively t3, is an identity, we have
q = 0, respectively ¢’ = 0.

On the other hand, by the form of d» and ®d>, we have either
pi = v(pr — (i — 1)) for all i € [m] or p; = v(p1 + (1 — 1)) for all
i € [m], cf. (1.5). Namely, 7 is determined as 7(i) = v(p; — i + 1) for
any 7 € [m] or 7(¢) = v(i — p1 + 1) for any i € [m).

We note that the matrix s - dy = 7ds is skew-symmetric. It is only
possible in the case that 7(7) = v(i —p; +1) for any i € [m] and p; = s.
This implies that 7ds is of type (II) (or ds is of type (I)).

This completes the proof of Theorem 0.1. O

Corollary 2.4. Let I C S be a Gorenstein monomial ideal of codi-
mension three. Then the Rees algebra R(I) = @;>¢l" is isomorphic to
the symmetric algebra Sym (I) and is Cohen-Macaulay. Furthermore,
the associated graded ring G(I) = ®;>ol/I'T! is Gorenstein.

Proof. By a theorem of Huneke [5] and Theorem 2.6 of Herzog-Simis-
Vasconcelos [4], we only need to show that u(Ip) < ht(P) for any
P eV(I).

Let P € V(I) of ht (P) = t < n. Then there exist 1 < 4; < --- <
in—t < nsuchthat X; ,...,X; ,¢P. Weput A=K[X;,,...,X;,_,]
and T = S®a K(X;,,...,X;,_,). Then T is a polynomial ring over
K(Xi,,...,Xi,_,) with ¢ variables and IT is a Gorenstein monomial
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ideal of codimension three. Hence, by (0.1), u(IT) < t and thus
p(Ip) < u(IT) <t =ht(P). u]
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