ON GORENSTEIN MONOMIAL IDEALS OF CODIMENSION THREE

YUJI KAMOI

Introduction. Let $S = K[X_1, \ldots, X_n]$ be a polynomial ring over a field K and $I \subset S$ be an ideal generated by monomials. Buchsbaum-Eisenbud's structure theorem [1] tells us that if I is a Gorenstein ideal of codimension three, then it is generated by pfaffians of certain skew-symmetric matrix.

Our aim in this paper is to give explicit description of generators of codimension three Gorenstein monomial ideals, and we state our result as follows.

Theorem 0.1. We put $m = \mu(I)$ a number of minimal generators of I and s = (m+1)/2. Let $\nu : \mathbf{Z} \to \{1, \ldots, m\}$ be a map such that $i \equiv \nu(i) \pmod{m}$ for $i \in \mathbf{Z}$. Then the following conditions are equivalent.

- (1) I is a Gorenstein monomial ideal of codimension three.
- (2) m is odd and $I = Pf_{m-1}(M)$ where $M = (a_{ij})$ is an $m \times m$ skew-symmetric matrix of monomials satisfying the following conditions.

(a)
$$a_{ij} = \begin{cases} nonzero, & if \ j = \nu(i+s-1) \ or \ \nu(i+s) \\ 0, & otherwise. \end{cases}$$

- (b) $\{a_{ij} \mid a_{ij} \neq 0, i < j\}$ is the set of pairwise coprime monomials.
- (3) m is odd and there exist m pairwise coprime monomials b_1, \ldots, b_m such that

$$I = \left(\left\{ \prod_{k=1}^{s-1} b_{\nu(i+k)} \mid 1 \le i \le m \right\} \right).$$

Example 0.2. Let M be a matrix with coefficients in $K[X_1, \ldots, X_7]$

Copyright ©1995 Rocky Mountain Mathematics Consortium

Received by the editors on October 12, 1993, and in revised form on June 1, 1994.

such that

$$M = \begin{pmatrix} 0 & 0 & 0 & X_4 & -X_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & X_5 & -X_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & X_6 & -X_3 \\ -X_4 & 0 & 0 & 0 & 0 & 0 & X_7 \\ X_1 & -X_5 & 0 & 0 & 0 & 0 & 0 \\ 0 & X_2 & -X_6 & 0 & 0 & 0 & 0 \\ 0 & 0 & X_3 & -X_7 & 0 & 0 & 0 \end{pmatrix}.$$

Then M satisfies conditions (a) and (b) of (0.1), (2) and $Pf_6(M)$ is generated by

$$\{X_1X_2X_3, X_2X_3X_4, X_3X_4X_5, X_4X_5X_6, X_5X_6X_7, X_6X_7X_1, X_7X_1X_2\}.$$

1. A syzygy module of a monomial ideal. In this section we consider the first syzygy module of a monomial ideal and determine minimal generators of this module for a Gorenstein monomial ideal of codimension three.

Let $S=K[X_1,\ldots,X_n]$ be a polynomial ring over a field K. We denote by \mathbf{Z} (respectively \mathbf{N}) the set of all integers (respectively, the set of all nonnegative integers). We define a \mathbf{Z}^n -grading on S by $\deg(X_i)=(0,\ldots,0,\stackrel{i}{1},0,\ldots,0)\in\mathbf{Z}^n$. For $\alpha=(a_1,\ldots,a_n)\in\mathbf{Z}^n$, we set $X^\alpha=X_1^{a_1}X_2^{a_2}\cdots X_n^{a_n}$.

Let I be a monomial ideal of S with minimal generators $X^{\alpha_1}, \ldots, X^{\alpha_m}$ and F be a free S-module with free basis e_1, \ldots, e_m . We define a map $\varphi: F \to S$ by $\varphi(e_i) = X^{\alpha_i}$ for $1 \le i \le m$. We put $\deg(e_i) = \alpha_i$ for $1 \le i \le m$ and regard F as a \mathbb{Z}^n -graded module. Then φ preserves \mathbb{Z}^n -gradings and $\operatorname{Ker}(\varphi)$ can be regarded as a \mathbb{Z}^n -graded module.

We set

$$\Sigma = \{ X^{\alpha} e_i \mid \alpha \in \mathbf{N}^n, 1 \le i \le m \}$$

$$\Sigma_{\beta} = \{ X^{\alpha} e_i \mid \alpha + \alpha_i = \beta \}, \qquad \beta \in \mathbf{N}^n$$

$$I_i = (\{ X^{\alpha_j} \}_{j \ne i}), \qquad 1 \le i \le m.$$

Definition 1.1. We define an equivalence relation on Σ_{β} , $\beta \in \mathbf{N}^{n}$, as follows. For $u, v \in \Sigma_{\beta}$, we denote $u \sim v$ if either u = v or there

exist $X^{\beta_1}e_{i_1}, \ldots, X^{\beta_p}e_{i_p} \in \Sigma_{\beta}$ such that $u = X^{\beta_1}e_{i_1}, v = X^{\beta_p}e_{i_p}$ and $Gcd(X^{\beta_i}, X^{\beta_{i+1}}) \neq 1$ for $1 \leq i \leq p-1$.

Let $X^{\beta_1}e_{i_1},\ldots,X^{\beta_p}e_{i_p}\in \Sigma_{\beta}$ be representatives of Σ_{β}/\sim with $1\leq i_1<\cdots< i_p\leq m$. We put

$$G_{\beta} = \begin{cases} \{X^{\beta_1}e_{i_1} - X^{\beta_2}e_{i_2}, \dots, X^{\beta_1}e_{i_1} - X^{\beta_p}e_{i_p}\}, & \text{if } p \geq 2\\ \phi, & \text{if } p \leq 1 \end{cases}$$

and $G = \bigcup_{\beta} G_{\beta}$. Then it is easy to see that G is a minimal basis of Ker (φ) . (The proof is essentially the same as Proposition 1 in Eliahou [2] or Proposition 1.5 in Herzog [3].)

We define a graph $\mathcal{G}=(V,E)$ on vertices $V=\{e_1,\ldots,e_m\}$ and the set of edges $E=\{e_ie_j\mid X^{\alpha}e_i-X^{\beta}e_j\in G \text{ or } X^{\beta}e_j-X^{\alpha}e_i\in G \text{ for some } X^{\alpha}e_i,X^{\beta}e_j\in\Sigma\}$. We put deg $V(e_i)=\#\{e_i\mid e_ie_j\in E\}$.

Remark 1.2. (1) \mathcal{G} is connected.

(2) For any $X^{\alpha}e_i - X^{\beta}e_j \in \text{Ker}(\varphi)$, we have

$$X^{\alpha}e_{i}-X^{\beta}e_{j}=X^{\gamma}\bigg(\frac{\operatorname{Lcm}\left(X^{\alpha_{i}},X^{\alpha_{j}}\right)}{X^{\alpha_{i}}}e_{i}-\frac{\operatorname{Lcm}\left(X^{\alpha_{i}},X^{\alpha_{j}}\right)}{X^{\alpha_{j}}}e_{j}\bigg)$$

for some monomial X^{γ} . Thus, if $\pm (X^{\alpha}e_i - X^{\beta}e_j)$ and $\pm (X^{\gamma}e_i - X^{\delta}e_k)$, are distinct elements of G, then $j \neq k$. Therefore, we have $|G| = |E| = \sum_{i=1}^{m} \deg_{V}(e_i)/2$.

We want to determine elements of G more precisely.

Let $\Gamma = \{X^{\alpha}e_i \mid X^{\alpha} \text{ is in the minimal basis of } [I_i:X^{\alpha_i}], 1 \leq i \leq m\} \subset \Sigma \text{ and } \Gamma' = \{(X^{\alpha}e_i, X^{\beta}e_j), (X^{\beta}e_j, X^{\alpha}e_i) \mid X^{\alpha}e_i - X^{\beta}e_j \in G\} \subset \Sigma \times \Sigma. \text{ We define a map } \Phi:\Gamma \to \Gamma' \text{ as follows.}$

Let $X^{\alpha}e_i \in \Gamma$ and $\beta = \alpha + \alpha_i$. Since $X^{\alpha} \in [I_i : X^{\alpha_i}]$, we have $|\Sigma_{\beta}| \geq 2$. If there exists $u \in \Sigma_{\beta}$ such that $u \neq X^{\alpha}e_i$ and $u \sim X^{\alpha}e_i$, then by definition of the relation, we have $X^{\alpha} \in m[I_i : X^{\alpha_i}]$ where $\mathfrak{m} = (X_1, \ldots, X_n)$. This contradicts that X^{α} is in the minimal basis of $[I_i : X^{\alpha_i}]$. Thus the equivalence class of $X^{\alpha}e_i$ in Σ_{β} is equal to $\{X^{\alpha}e_i\}$. Since $|\Sigma_{\beta}| \geq 2$, we have $G_{\beta} \neq \phi$. We put $G_{\beta} = \{X^{\beta_1}e_{i_1} - X^{\beta_2}e_{i_2}, \ldots, X^{\beta_1}e_{i_1} - X^{\beta_p}e_{i_p}\}$ with $1 \leq i_1 < \cdots < i_p \leq m$.

Then there exists $1 \leq q \leq p$ such that $X^{\beta_q}e_{i_q} = X^{\alpha}e_i$. Therefore we define a map Φ by

$$\Phi(X^{\alpha}e_i) = \begin{cases} (X^{\beta_1}e_{i_1}, X^{\beta_q}e_{i_q}), & q > 1\\ (X^{\beta_q}e_{i_2}, X^{\beta_1}e_{i_1}), & q = 1. \end{cases}$$

Proposition 1.3. We have $\deg_V(e_i) \geq \mu([I_i : X^{\alpha_i}])$ for any $1 \leq i \leq m$. Hence,

$$\mu(\operatorname{Ker}\left(\varphi\right)) = \sum_{i=1}^{m} \frac{\deg_{V}(e_{i})}{2} \geq \sum_{i=1}^{m} \frac{\mu([I_{i}:X^{\alpha_{i}}])}{2} \geq \frac{m(\operatorname{ht}\left(I\right)-1)}{2}.$$

Proof. Considering the correspondence between Γ' and E (cf. Remark 1.2, (2), the first assertion is trivial. We show the last inequality of the second assertion. Since $\dim(S/I) \leq \dim(S/I_i) \leq \dim(S/I) + 1$, we have $\operatorname{ht}(I) - 1 \leq \operatorname{ht}([I_i:X^{\alpha_i}])$. Hence $\sum_{i=1}^m \mu([I_i:X^{\alpha_i}]) \geq \sum_{i=1}^m \operatorname{ht}([I_i:X^{\alpha_i}]) \geq m(\operatorname{ht}(I) - 1)$.

Lemma 1.4. Suppose that I is a Gorenstein ideal of $\operatorname{ht}(I) = 3$. Then $\mathcal G$ is a cycle of length m.

Proof. Since \mathcal{G} is a connected graph, we only need to show that $\deg_V(e_i) = 2$ for any $1 \le i \le m$.

Since I is Gorenstein and ht (I) = 3, the second betti number $b_2(S/I)$ of S/I is equal to m. Hence, by (1.3), we have

$$m = b_2(S/I) = |G| = \sum_{i=1}^m \frac{\deg_V(e_i)}{2} \ge \sum_{i=1}^m \frac{\mu([I_i : X^{\alpha_i}])}{2}$$
$$\ge \frac{m(\text{ht } (I) - 1)}{2} = m.$$

Thus $\sum_{i=1}^m \deg_V(e_i) = \sum_{i=1}^m \mu([I_i:X^{\alpha_i}])$ and, by (1.3), $\deg_V(e_i) = \mu([I_i:X^{\alpha_i}])$ for any $1 \leq i \leq m$. Also, since $\mu([I_i:X^{\alpha_i}]) \geq \operatorname{ht}(I) - 1 = 2$ and $\sum_{i=1}^m \mu([I_i:X^{\alpha_i}]) = 2m$, we have $\deg_V(e_i) = \mu([I_i:X^{\alpha_i}]) = 2$. Hence, $\mathcal G$ is a cycle of length m. \square

Propostion 1.5. Suppose that I is a Gorenstein ideal of $\operatorname{ht}(I) = 3$. Then a homogeneous minimal basis of $\operatorname{Ker}(\varphi)$ (with respect to \mathbb{Z}^n -grading) is uniquely determined for I (up to multiplication by units). Furthermore, after the renumbering of $X^{\alpha_1}, \ldots, X^{\alpha_m}$, G can be written in the form

$$G = \{ X^{\alpha_{ii}} e_i - X^{\alpha_{ii+1}} e_{i+1}, X^{\alpha_{mm}} e_m - X^{\alpha_{m1}} e_1 \mid 1 \le i \le m-1 \}.$$

Proof. By the proof of (1.4), Φ is bijective and, by definition of Φ , if $G_{\beta} \neq \phi$, then $|G_{\beta}| = 1$. If we put $G_{\beta} = \{X^{\beta_1}e_i - X^{\beta_2}e_j\}$, then $X^{\beta_1}e_i$, $X^{\beta_2}e_j \in \Gamma$ and, by the construction of Φ , $\Sigma_{\beta} = \{X^{\beta_1}e_i, X^{\beta_2}e_j\}$. Note that the set of all degrees of a homogeneous minimal basis of Ker (φ) is independent on the choice of a minimal basis and is equal to $\{\beta \mid G_{\beta} \neq \phi\}$. Therefore, G is the unique homogeneous minimal basis of Ker (φ) .

The second assertion follows from (1.4).

2. A proof of the main theorem. First, we determine Pf(M) of a skew-symmetric matrix M satisfying condition (a) of Theorem 0.1, (2).

Let m > 0 be an odd integer and s = (m+1)/2. We denote by $[m] = \{1, \ldots, m\}$ and by $\nu : \mathbf{Z} \to [m]$ a map such that $i \equiv \nu(i) \pmod{m}$.

Let $\tau \in \mathfrak{G}_m$ be a permutation on [m]. We denote by $(\tau) = (\tau_{ij})$ an $m \times m$ -matrix such that

$$\tau_{ij} = \begin{cases} 1, & i = \tau(j)) \\ 0, & i \neq \tau(j)). \end{cases}$$

For an $m \times m$ matrix $M = (a_{ij})$, we set $\tau M = (\tau) \cdot M$ and $M\tau = M \cdot (\tau)^{-1}$. Namely, if we put $\tau M = (b_{ij})$, respectively, $M\tau = (c_{ij})$, then $b_{\tau(i)j} = a_{ij}$, respectively, $c_{i\tau(j)} = a_{ij}$, for $1 \leq i, j \leq m$.

Definition 2.1. Let $M = (a_{ij})$ be an $m \times m$ matrix.

- (1) We say that M is of type (I), if
- (a) for $1 \leq i, j \leq m$,

$$a_{ij} = \begin{cases} \text{nonzero} & j = i \text{ or } \nu(i+1) \\ 0 & \text{otherwise} \end{cases}$$

(b) for $1 \le i \le m$, $a_{ii} = -a_{\nu(i+s-1)\nu(i+s)}$.

(2) We say that M is of type (II), if M is skew-symmetric and, for $1 \leq i, j \leq m$,

$$a_{ij} = \begin{cases} \text{nonzero} & j = \nu(i+s-1) \text{ or } \nu(i+s) \\ 0 & \text{otherwise.} \end{cases}$$

We define a permutation $\sigma \in \mathfrak{G}_m$ by $\sigma(i) = \nu(i-s+1)$ (= $\nu(i+s)$) for $i \in [m]$. Then it is easy to see that M is of type (I) if and only if σM is of type (II) for an $m \times m$ matrix M.

For an $m \times m$ matrix M, we denote by M_k the submatrix of M consisting of the first k rows and columns and by M_{ij} the $(m-1) \times (m-1)$ matrix obtained from M by deleting the i-th row and j-th column.

By definition of type (I), we have the following.

Lemma 2.2. Let $M = (a_{ij})$ be an $m \times m$ matrix of type (I).

(1) M_{ms} can be written in the form

$$M_{ms} = \begin{pmatrix} M_{s-1} & 0 \\ 0 & {}^t(-M_{s-1}) \end{pmatrix}.$$

(2) Let $1 \leq k \leq m$ and $\tau \in \mathfrak{G}_m$ such that $\tau(i) = \nu(i-k)$ for $i \in [m]$. Then $\tau M \tau$ is again of type (I).

Proposition 2.3. Let m be an odd integer and $M = (a_{ij})$ be an $m \times m$ matrix of type (I).

(1) $Pf_{m-1}(\sigma M)$ is generated by $\{\prod_{k=1}^{s-1} a_{\nu(i+k)\nu(i+k)} \mid 1 \leq i \leq m\}$ and, for any $1 \leq i \neq j \leq m$, there exists $1 \leq k \leq m$ such that $k \neq i, j$ and $Pf_{m-1}(\sigma M) \subset (a_{ii}, a_{jj}, a_{kk})$.

(2) Furthermore, we assume that coefficients of M are monomials. Then the following are equivalent.

(a) $ht(Pf_{m-1}(\sigma M)) = 3.$

(b) $\{a_{11}, \ldots, a_{mm}\}$ is the set of pairwise coprime monomials.

Proof. (1) By definition of σ , we have $\det\left((\sigma M)_{\sigma(i)\sigma(i)}\right) = (-1)^p \det\left(M_{i\nu(i+s)}\right)$ for some $p \geq 0$. Let $\tau \in \mathfrak{G}_m$ such that $\tau(j) = \nu(j-i)$ for $j \in [m]$ and $N = \tau M \tau$. Then, by (2.2), we have $\det\left(M_{i\nu(i+s)}\right) = (-1)^q \det\left(N_{ms}\right) = (-1)^{q+1} \left(\det\left(N_{s-1}\right)\right)^2$ for some $q \geq 0$. Thus, $\det\left((\sigma M)_{\sigma(i)\sigma(i)}\right) = (-1)^r \left(\prod_{k=1}^{s-1} a_{\nu(i+k)\nu(i+k)}\right)^2, \ r \geq 0$, and

$$Pf_{m-1}(\sigma M) = \left(\left\{ \prod_{k=1}^{s-1} a_{\nu(i+k)\nu(i+k)} \mid 1 \le i \le m \right\} \right).$$

The second statement follows from the first.

- (2) (a) \Rightarrow (b). Suppose that $Gcd(a_{ii}, a_{jj}) = b \neq 1$. Then, by (1), $Pf_{m-1}(\sigma M) \subset (b, a_{kk})$ for some $k \neq i, j$. This contradicts that $ht(Pf_{m-1}(\sigma M)) = 3$.
- (b) \Rightarrow (a). By (1), we have already seen that ht $(Pf_{m-1}(\sigma M)) \leq 3$. Conversely, for any $1 \leq i \neq j \leq m$, (a_{ii}, a_{jj}) contains only m-1 elements of $\{\prod_{k=1}^{s-1} a_{\nu(i+k)\nu(i+k)} \mid 1 \leq i \leq m\}$, since a_{11}, \ldots, a_{mm} are pairwise coprime. Hence, $2 < \operatorname{ht}(Pf_{m-1}(\sigma M)) = 3$.

Proof of Theorem 0.1. By (2.3), we have already proved implications (2) \Leftrightarrow (3). Furthermore, by Theorem 2.1 of Buchsbaum-Eisenbud [1], the statement (2) implies that I is a Gorenstein ideal.

 $(1) \Rightarrow (2)$. Let I be a Gorenstein ideal of ht (I) = 3 with minimal basis $X^{\alpha_1}, \ldots, X^{\alpha_m}$. Then, by a theorem of Watanabe [6], we may assume that m is odd. We put s = (m+1)/2 and denote a \mathbb{Z}^n -graded minimal free resolution of S/I by

$$\mathbf{F} := 0 \longrightarrow S(-\gamma) \xrightarrow{d_3} \oplus_{i=1}^m S(-\beta_{p_i}) \xrightarrow{d_2} \oplus_{i=1}^m S(-\alpha_i) \xrightarrow{td_1} S$$

where $d_1 = (X^{\alpha_1} \cdots X^{\alpha_m})$ and $d_3 = ((-1)^{r_1} X^{\alpha_{p_1}} \cdots (-1)^{r_m} X^{\alpha_{p_m}})$, $r_i = 0$ or 1. Furthermore, by (1.5), we can write the $m \times m$ matrix $d_2 = (a_{ij})$ as

$$a_{ij} = \begin{cases} X^{\alpha_{ii}} & 1 \le i \le m, \ j = i, \\ -X^{\alpha_{ii+1}} & 1 \le i < m, \ j = i+1, \\ -X^{\alpha_{m1}} & (i,j) = (m,1) \\ 0 & \text{otherwise.} \end{cases}$$

Since $d_3 \cdot d_2 = 0$, $r_1 = \cdots = r_m$, and we may assume that $d_3 = (X^{\alpha_{p_1}} \cdots X^{\alpha_{p_m}})$. Then we shall show that the matrix d_2 is of type (I) of (2.1).

Taking $S(-\gamma)$ -dual of **F**, we have a minimal free resolution

$$\mathbf{G}. = 0 \longrightarrow S(-\gamma) \xrightarrow{d_1} \oplus_{i=1}^m S(-\beta_i) \xrightarrow{t_{d_2}} \oplus_{i=1}^m S(-\alpha_{p_i}) \xrightarrow{t_{d_3}} S$$

of S/I. Then, by Theorem 1.5 and Theorem 2.1 of Buchsbaum-Eisenbud [1], there exists a \mathbf{Z}^n -graded isomorphism t.: \mathbf{G} . $\to \mathbf{F}$. such that the matrix $t_2 \cdot d_2$ is skew-symmetric. Since t. preserves a \mathbf{Z}^n -grading, t_1 , respectively t_2 , is determined by a permutation of free-basis of F_1 , respectively F_2 , and a multiplication of a unit. Hence, we have $t_1 = (-1)^q(\tau^{-1})$ and $t_2 = (-1)^{q'}(\tau)$ where $\tau \in \mathfrak{G}_m$ such that $\tau(p_i) = i$ for $i \in [m]$. Since t_0 , respectively t_3 , is an identity, we have q = 0, respectively q' = 0.

On the other hand, by the form of d_2 and td_2 , we have either $p_i = \nu(p_1 - (i-1))$ for all $i \in [m]$ or $p_i = \nu(p_1 + (i-1))$ for all $i \in [m]$, cf. (1.5). Namely, τ is determined as $\tau(i) = \nu(p_1 - i + 1)$ for any $i \in [m]$ or $\tau(i) = \nu(i - p_1 + 1)$ for any $i \in [m]$.

We note that the matrix $t_2 \cdot d_2 = \tau d_2$ is skew-symmetric. It is only possible in the case that $\tau(i) = \nu(i - p_1 + 1)$ for any $i \in [m]$ and $p_1 = s$. This implies that τd_2 is of type (II) (or d_2 is of type (I)).

This completes the proof of Theorem 0.1.

Corollary 2.4. Let $I \subset S$ be a Gorenstein monomial ideal of codimension three. Then the Rees algebra $R(I) = \bigoplus_{i \geq 0} I^i$ is isomorphic to the symmetric algebra $\operatorname{Sym}(I)$ and is Cohen-Macaulay. Furthermore, the associated graded ring $G(I) = \bigoplus_{i \geq 0} I^i / I^{i+1}$ is Gorenstein.

Proof. By a theorem of Huneke [5] and Theorem 2.6 of Herzog-Simis-Vasconcelos [4], we only need to show that $\mu(I_P) \leq \operatorname{ht}(P)$ for any $P \in V(I)$.

Let $P \in V(I)$ of ht $(P) = t \leq n$. Then there exist $1 \leq i_1 < \cdots < i_{n-t} \leq n$ such that $X_{i_1}, \ldots, X_{i_{n-t}} \notin P$. We put $A = K[X_{i_1}, \ldots, X_{i_{n-t}}]$ and $T = S \otimes_A K(X_{i_1}, \ldots, X_{i_{n-t}})$. Then T is a polynomial ring over $K(X_{i_1}, \ldots, X_{i_{n-t}})$ with t variables and IT is a Gorenstein monomial

ideal of codimension three. Hence, by (0.1), $\mu(IT) \leq t$ and thus $\mu(I_P) \leq \mu(IT) \leq t = \operatorname{ht}(P)$.

Acknowledgments. The author would like to express his appreciation to Professor Junzo Watanabe and Dr. Kazuhiko Kurano for stimulating discussion. Thanks are also due to Professor Kei-ichi Watanabe and Professor Shiro Goto for several useful suggestions.

REFERENCES

- 1. D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447–485.
- ${\bf 2.~S.~Eliahou},~Courbes~monomiales~et~algèbre~de~Rees~symbolique,~Thèse~N^{\circ}\,2080,~Universit\'e~de~Genève,~1983.$
- 3. J. Herzog, Generators and relations of Abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193.
- 4. J. Herzog, A. Simis and W.V. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), 466-493.
- 5. C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), 1043-1062.
- 6. J. Watanabe, A note on Gorenstein rings of embedding codimension 3, Nagoya Math. J. 50 (1973), 227–232.

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, TOKYO, 192-03 JAPAN