ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 4, Fall 1995

BIQUADRATIC RESIDUES AND
SELF-ORTHOGONAL 2-SEQUENCINGS

STEPHEN D. COHEN AND PHILIP A. LEONARD

1. Introduction. Let 2K, denote the complete multigraph on
n vertices in which each edge has multiplicity two. If 2K, can be
partitioned into Hamiltonian paths such that any two distinct paths
have exactly one edge in common, write 2K,, — P,. The object of
this paper is to examine a particular class of such partitions introduced
in [2], to which the reader is referred for wider discussion of this and
related graph decomposition problems. In particular, attention is paid
to constructions of these partitions that are based on self-orthogonal
2-sequencings of the additive groups of finite fields.

Definition 1. Suppose H is a finite group of order n with identity
element e. A 2-sequencing (or terrace) of H is an ordering e, ca, ... , ¢y
of elements of H (not necessarily distinct) such that

(i) the partial products e,ecg,ecacs, ... eco e, = €,da,... ,d,
are distinct (and hence all of H),

(i) ifh#h 1 then |{i:2<i<mnand (¢c;=horc=h1)} =2
(iii) if h=h"! then |{i: 1 <i<mandc¢; =h}| =1.

As all groups considered in this paper are abelian, additive notation
is used. An example taken from [2] on Zjg is useful as an illustration.

Consider, on Zjg9, the 2-sequencing S, and associated partial sum
sequence P, as follows:

S: 0,2,5,6,4,1,7,-3,-2,9,6,-8,1,5,—3,4,9,7, 8
P: 0,2,7,13,17,18,6,3,1,10,16,8,9, 14,11, 15, 5,12, 4

The sequence P can be thought of as a Hamiltonian path through the
vertices of K9, the complete graph with vertices labelled by elements
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of Zi9. In the sequel, the same notation P will be used to represent
both a partial sum sequence associated with a 2-sequencing of the
additive group of a finite field F; and the corresponding Hamiltonian
path through K,. (In most places only the partial sum sequence P,
and not the underlying 2-sequencing S, appears in our discussion).

Let S be a 2-sequencing of H, taken henceforth to be an additive
abelian group of odd order, with h representing an element different
from the identity element of H.

The edge {d;—1,d;} in P is associated with the element ¢; in S by
di—1+c¢i =d;, 2 <i<n. Each 2-set {h, —h} will be represented twice
among the ¢;, the differences of edge pairs from P. If these two pairs are
{d;i—1,d;} and {d;_1,d;}, these pairs are said to have the same length.
There is then an element z;, such that z, +{d;_1,d;} = {d;_1,d;} (and
thus —zp + {d;j—1,d;} = {di—1,d;}); a representative of {zp, —2p} is
called a distance, and a selection of one distance for each h provides a
set of distances for the 2-sequencing S.

In the illustration, the pairs {7,13} and {10,16} have length 6, and
the distance can be taken as zg = 3.

Definition 2. Let S be a 2-sequencing of the abelian group H of odd
order.

(i) S is said to be self-orthogonal if and only if every set of distances
of S is a transversal for {{h, —h}: h # 0}.

(ii) If S is self-orthogonal, then S is said to admit a 2-coloring if
and only if, whenever two edges in P have the same length, they are
separated by an odd number of edges of P.

The importance of the first of these concepts is due to a result implicit
in [7], a proof of which is outlined in [8], namely,

Theorem 1. If H is a finite Abelian group of order n with self-
orthogonal 2-sequencing S, then 2K,, — P,.

In fact, the collection {P + h : h € H} consists of n Hamiltonian
paths, any two of which have exactly one edge in common.
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The importance of the second concept in Definition 2 is that a product
theorem in [8] requires partitions that admit a 2-coloring. The example
in Zg is self-orthogonal; however, it does not admit a 2-coloring.

In [2], constructions of self-orthogonal 2-sequencings related to finite
fields were employed to give many new values of n with 2K,, — P,,. The
constructions were shown to be successful for infinitely many values
of n. In some cases the solutions admit 2-colorings. The methods
employed involve starters and other tools developed in the study of
Room squares and Howell designs. The reader unfamiliar with these
may consult references [6, 12]; additional terms appearing in the
statements of the results mentioned below are defined in [2]. The
principal results (Theorems 17 and 19) obtained there are as follows:

Theorem 2. Suppose m and r are positive integers, 7 odd, such that
(m,r) ¢ {(1,1),(2,1)}. There is a positive integer Bi(m,r) such that
if p>5 is a prime, g =p" =2"rs+ 1> By(m,r) and

(i) (rs)=1,
(ii) 2 and 3 are not (2™r)-th power residues in F,
(iii) at most one of 2,3 is a (2™ r)-th power residue in F,

then the additive group of F, has a self-orthogonal 2-sequencing.

Theorem 3. Suppose m > 2 and r (odd) are positive integers.
There is a positive integer Bo(m,r) such that if p > 5 is a prime,
g = p" = 2™rs+1 > Bs(m,r), (r,s) = 1 and 1,2,3,4 are in
different cosets of the subgroup of (2™r)-th power residues in Fy, then
the additive group of Fy has a self-orthogonal 2-sequencing that admits
a 2-coloring.

The case (m,r) = (2,1), excluded from Theorem 2, was studied
independently. Results valid for sufficiently large p™ = 5 (mod 8), were
combined with computations for primes p = 5 (mod 8) not exceeding
300. It was evident that the methods of construction were much better
than the theoretical bounds obtained. The present paper is devoted to
this “4-coset” case. We prove the following result

Theorem 4. Let p be a prime, and suppose ¢ = p” = 5 (mod 8).
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If 3 is not a fourth power in Fy, then the additive group of Fq has a
self-orthogonal 2-sequencing.

Theorem 4 provides a complement to [2], and a tribute to the effective-
ness of constructions developed by Bruce Anderson, to whose memory
this paper is dedicated.

2. The case of four cosets. Suppose p is prime and ¢ = p™ = 4s+1
with s odd, so that p =5 (mod 8) and n is odd. For a primitive element
z of the finite field Fg, let

C(i) = {z"T:0<t < s}, 0<i<3,

so that C'(i) are the cosets of the subgroup C(0) of Fy.

As 2 is a nonsquare in Fy, under the conditions imposed, it is possible,
interchanging z~! for z if necessary, to choose a primitive element z
for which 2 € C(1). This will be assumed in the sequel. The 1-2-3-4
construction of [2] does not apply if 3 € C(0). In what follows we
treat the three remaining possibilities completely. The exposition will
be particular to the 4-coset case, but expansive enough to suit readers
not familiar with the general construction.

It will be helpful to have a numerical example in mind. When ¢ = 37,
x = 2 is a primitive element, and 22 = 3 (mod 37) so that 3 € C(2).
Consider the following array, in which indications of the construction
are superimposed on a Hamiltonian cycle through a graph labelled so
that [¢] represents the coset C/(7).

zbeC@B) , zeC(1) 3eC(2) _, 1€C(0)
0] —*— [3] ] —2— 2 — [0]
1€ C(0) a e C(3) 2eC(1) 4¢€C(2)

The construction relies on finding a and b such that the cosets of ¢ and
b are specified according to the Hamiltonian cycle, the cosets of a — 1
and b — 1 satisfy conditions needed for lengths (or “differences”) in the
eventual path, and the cosets of a — b and 1 — ab satisfy conditions
needed for “distances” in the eventual path. (The precise conditions
are in Case 2 below). For this example, a = 5 and b = 30 yield “base
pairs” for two starters U, with base pairs {1,3} and {z,zb} = {2, 23},
and V, with base pairs {2,4} and {1,a} = {1,5}, the 18 pairs in each
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starter being {ur,vr} where {u,v} is a base pair and r € C(0). This
choice of a and b gives a Hamiltonian cycle because p =a-b"1.2.37!
has order 9 = (37 — 1)/4 in F%;. The two starters U and V give a
Hamiltonian cycle through F3,, with — representing an edge arising
from a pair in U and = representing an edge arising from a pair in V,
namely,

1 = 5 - 31 = 26 — 33 = 17 — 24 = 11 — 16 = 6
- 15 = 30 - 10 = 13 - 14 = 28 — 34 = 22 — 18

= 36 — 12 = 23 - 2 = 4 — 26 = 19 — 29 = 21

7 =3 - 32 =27 - 9 = 8 — 20 = 3 — 1

(Passage from any element in C'(0) to the next-occurring one is
effected by multiplication by p = a-b71-2-371) The pair {2,4}
is replaced by {0,2} to make a path through Fgs;; the length, and
the distance from the pair {1,3} are unaltered by this replacement.
This path, arising from a self-orthogonal 2-sequencing, gives a solution
for 2K37 — Ps37. This solution does not admit a 2-coloring, as two
edges with the same length are always separated by an even number of
edges. (This situation arises whenever the base pairs give starters; in
case 3 € C(3) the base pairs yield “supplementary half-starters,” and
the resulting solution to 2K, — P, does admit a 2-coloring. See Case
3 below.)

Remark. It can be noted (see Table 2 in [2]) that for ¢ = 37 exactly
six pairs a, b meet the conditions needed to make starters appropriate
for the construction, but that in three of these cases the associated
element p € C(0) has order 3. Thus, in place of the Hamiltonian
cycle shown above, the procedures of the 1-2-3-4 construction produce
a decomposition of F3. into three disjoint 12-cycles.

The existence of solutions to 2K, — P, (including those that admit 2-
colorings) can be guaranteed by proving the feasibility of the following
project from [2].

Case 1. If 3 € C(1), the Hamiltonian cycle is [0] — [1] — [2] — [3] — [0]
i) Pick a € C(3) so that a — 1 € C(0) U C(2).

ii) Pick b€ C(1) so that b—1 € C(0)U C(2).

iii) This builds starters U : {1,3}, {22, 22b} and V : {2,4},{1,a}.
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iv) Then pick the pairs (a,b) so that a — b, 1 —ab € C(1) U C(3).
v) Ensure that p=3-2-b-a"! = 6ba~! is a generator of C(0).

Case 2. If 3 € C(2), the Hamiltonian cycle is [0] — [3] — [1] — [2] — [0].
i) Pick a € C(3) so that a — 1 € C(0) U C(2).

ii) Pick be C(2)sothatb—1€ C(1)UC(3).

iii) This builds starters U : {1,3}, {z,2b} and V : {2,4},{1,a}.

iv) Then pick pairs (a,b) so that a — b,1 —ab € C(0) U C(2).

v) Ensure that p = ab=!-2-37! is a generator of C(0).

Case 3. If 3 € C(3), the Hamiltonian cycle is [0] — [3] — [1] — [2] — [0].
i) Pick a € C(2) so that a — 1 € C(0) U C(2).

ii) Pick be C(2)sothatb—1€ C(1)UC(3).

ii) This builds half-starters U : {1,3},{2,4} and V : {1, a}, {z, xb}.
Then pick pairs (a,b) so that a — b,1 —ab € C(0) U C(2).

v) Ensure that p = 3b='2a~! = 6b='a~! is a generator of C(0).

iii)
iv)

1v

Examples for the three cases (all for primes p with primitive root
x = 2) are as follows:

Case 1. p=317; a=T78, b=2, p=244

Case 2. p=349; a=105, b=3, p=256

p=2373; a=28, b=3, p=209

p=2613; a=238, b=3, p=138

Case 3. p=389; a=46, b=4, p=255

The proof of Theorem 4 depends on a detailed analysis of the
character sums in the original paper. This is preceded by a careful
balancing of coset membership conditions with order conditions, and

depends on special features of the 4-coset case. The argument occupies
the next three sections.

3. Guarantee of a generator of C(0). Rather than first choosing a
and b to meet specified coset conditions and then asking if the resulting
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p is a generator of C(0), we first seek an appropriate generator of the
set C(0) of biquadratic residues, stipulating as well that one condition
on a and b also be satisfied. This balances conditions between the two
parts of the argument and leads to more useful estimates.

The shape of p in the three cases suggests how to proceed. In cases
1 and 2 let ¢ = ab~ !, and in case 3 let ¢ = ab. The requirement
that p € C(0), and coset membership conditions on a and b, lead to a
coset membership condition on ¢ in each case. The quadratic condition
on b — 1 leads to a quadratic condition on a — ¢. The conditions on
a—0b, 1 —ab lead to a quadratic condition on a? — ¢ and to a quadratic
condition on ¢ — 1. This last condition, and the requirement that p be
a generator of C(0), are treated together in the present section. In the
next section, c is regarded as already selected, and the argument shows
that a may be chosen so that all remaining conditions are satisfied.
Explicit conditions for the three cases are not introduced until they are
needed for the next section.

It is required, then, to choose an element ¢ of F, so that, for
appropriate fixed elements e, d1, d2, it is the case that d;ec lies in C(0)
and has (odd) order s, and d2(c—1) € Q = C(0)UC(2). Let M denote
the number of ¢’s satisfying those conditions. Then, with 1 denoting
a fixed fourth-power character, (specified, say, by n(z) = ¢), and X the
quadratic character, on Fg, it follows (as in [3], for example) that

(3.1) M:% %%q%—%@z;%gﬂe@

{14 n(d1ec) + n*(d1ec) + n*(6rec)} - {1+ A(d2(c — 1)}|.

Here the sum on X is over all characters of order d, that on d over all
divisors of s, and that on c over all elements of Fy; u and ¢ are the
arithmetical functions of Mébius and Euler, respectively. Note that

1+ n(w) +n*(w) + n*(w) = (1 + n(w))(1 + A(w)) for all w in F,.
The principal term comes from taking d = 1. For d > 1, observe that

the terms coming from choosing “1” in {1 + A(o2(c — 1))} are zero as
(with ¢/ = é1ec summed over F,)

ZX(C')nj(c') =0 in all cases.
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Let w(s) denote the number of distinct (odd) primes dividing s. In
what remains there are two character sums of magnitude 1, namely,
S Xo(ec)A(d2(c — 1)) and 3, Xo(ec)A(61edzc(c — 1)), and 4 - 2¢(s) — 2
character sums that are essentially Jacobi sums, each of magnitude
< /4. Therefore M > 0 provided

(3.2) g—1>(4-20) —2) /g +2.

This last surely holds when g > [4(2¢(*) — 1/2)]2. If w(s) > 4, then
M > 0 whenever ¢ > 3844; on the other hand, w(s) > 4 implies
s=(¢g—1)/4>3-5-7-11, or ¢ > 4621. Therefore M > 0 whenever
w(s) > 4. When w(s) =1 or w(s) = 2, then the same argument gives
M > 0 whenever ¢ > 36 or ¢ > 196, respectively. Cases below these
bounds are covered by the computations in [2]. It remains to consider
cases in which w(s) = 3. The inequality (3.2) is valid for ¢ > 904. The
prime power values ¢ =5 (mod 8), ¢ < 904, w(s) = 3 are handled one
by one.

The only integral values of ¢ with odd s = (¢ — 1)/4, w(s) = 3, and
q < 904 are ¢ = 421, 661 and 781. Of these 781 = 11 - 71 is not prime,
and 421 = 9-5% + 4 - 7% so that 3 € C(0) and the value is not covered
by the 4-coset case [2]. It remains to check ¢ = 661.

The value ¢ = 661 requires a simple sieve [4]. (For a more extensive
treatment of the sieving process and its many applications, see [5].) For
a divisor r of s = (661 —1)/4 = 3-5-11, let S(r) denote the set of ¢ in
F, such that ec has order divisible by r, d1ec € C(0) and d2(c—1) € @,
and let N(r) denote the cardinality of S(r). In analogy with (3.1) we
have

(3.3) 8N(r) = @q -+ @ > % > D X(eo)
dlu ordx=d “F

- (L+n(d1ec)) (1 + A(61ec))A(o2(c — 1)).

From S((u,v)) 2 S(u)US(v) it follows that, for any v and v dividing s,
N([u,v]) > N(u)+ N(v) — N((u,v)), where [u,v] and (u,v) denote the
least common multiple and greatest common divisor, respectively, of u
and v. This inequality is useful with u = 15, v = 11. All four character

sums (two with magnitude 1, as above, and two with magnitude ,/q) for
r =1 = (15,11) also occur in N(15), N(11) and N (1) with coefficients
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8/15, 10/11 and 1, respectively. The remaining character sums all have
magnitude ,/g. The sieve inequality thus implies

§ 10 8 10
N165) > [+ 2 —1)(g-1-20/g-2) - [4- > .34+4.- -1
8 (65)—[<15+11 >(q va )] [ AT

so that (taking ¢ = 661) 8 N(165) > 10.3316. .., implying N(165) > 1
as required. This completes the proof that a suitable generator of C(0)
may always be found.

4. The coset conditions on a. Suppose ¢ has been chosen
to satisfy the conditions of Section 3. In order to complete the
construction of a self-orthogonal 2-sequencing it is necessary to choose
a, with the coset of a and the quadratic character of a — 1, a — ¢ and
a? — c assigned in advance. With 6,0, and o5 to be specified according
to the three cases under consideration, let N; denote the number of

elements a of F, satisfying

da € C(0), ie. i{l + n(6a) + n*(da) + n°(da)} =1,

Aa —¢) = o1, ie. %{1+01)\(a—c)} =1

(4.1)
Aa? = ¢) = oy, ie.

1
5{1 + o9A(a® — )} =1,

AMa—1) =1, ie.

1
S{l+A@-1}=1.

For each a € Fy, let £, denote the error from using the product of the
four “character quantities” above to count a precisely when it satisfies
the required conditions. In this way, IV; is represented in a standard
manner by

1 .
(4.2) Ny = ) Z {(character quantity) + 1 (a)},

acF,

that is, (ignoring the e;(a) for the moment) as a sum of 32 character
sums. In order to show the construction can be completed, it is enough
to show that N; > 0. This will be done by estimating the character
sums that appear in the expansion of Ny.
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The number of cases to be settled by direct calculation can be made
quite small if the interplay between a and c¢/a is taken into account by
way of the following:

n(c/a) = n(e)n’(a),
Ae/a—1) = Aa)A(a — ¢),
(4.3) (c/a _ c) — )\(ac))\(a - 1),
A((e/a)* = ¢) = A(e)A(a® = o).

As @ runs through the nonzero elements of F,, so does c/a. The
conditions on a give rise to corresponding conditions on c¢/a. With
v, 71 and 72 to be specified later, let No denote the number of elements
z (= c/a) of F satisfying

vz € C(0), Mz —¢) =7,

(44) )\(xz —¢) =12, Mz —-1)=-1,

the last because A(a)\(a — ¢) = —1 in each of the three cases under
consideration. Incorporating these conditions and counting z (= ¢/a)
instead of a, a second way of counting solutions is realized, namely,

1
(4.5) Ny = — Z {(character quantity) + e3(z)}.
32 zeF

Of course No = Nj, and we distinguish between them only to note
connections between character sums that occur in the two expansions.

It is easy to verify that the quantities introduced in (1) and (3) above
are as indicated in the following table:

TABLE 1.
d|lv|ol |og | 11 | ™
Casel |2 |2 |+1|-1|-1] -1
Case2 |2 |4 | +1 | +1|+1]| -1
Case3 |4 |4 | —-1|+1|+1] +1

Now also using x in place of a in Nj, form the expression for
(N1+Nz)/2. This contains 32 character sums; in the following table we
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give for each sum the general term, an estimate and/or description of
the sum, and the coefficient in each of the three cases. Note that values
of the quartic and quadratic characters of § and v are incorporated into
the coeflicients.

TABLE 2.

Estimate/ | Coefficient (by Case)

Sum | 41 42 i3 ia Term Descr. | 1 2

110 0 O O 1 q princ. 1 1
210 0 0 1 Az? —¢) triv. -1 0 1
310 0 1 O Az —c) triv. 0 1 0
410 0 1 1 A(z — ¢)(z? — ¢)) 2,/q 0 0 0
5/0 1 0 0 Az —1) triv. 0 0 0
6/0 1 0 1 A(z —1)(z2 - ¢)) 2,4 0 1 0
70 1 1 O A(z — 1)(z —¢)) triv. 1 0 -1
80 1 1 1 A(z = 1)(z — ) (22 — ¢)) 2,/q J2 -1 1 -1
9|1 0 0 O n(z) triv. i | (-1479)/2| -1
10(1 0 0 1 n(z)X(z? - c) 2,/ —i| (1+4)/2 | -1
111 0 1 0 n(z)A(z — ¢) Vi 0 |(=1+4)/2] 0
121 0 1 1 n(z)\((z — ¢)(z? — ¢)) 3.4 0| (1+:)/2 | 0
31 1 0 0 n(z)A(z — 1) Va N1 0| (1+4)/2 | 0
141 1 0 1 n(z)A((z — 1)(z? - ¢)) 34 0| (=1+4+4)/2| 0
15/1 1 1 0 n(z)A((z — 1)(z —¢)) 2,/q i | (1414)/2 1
6|1 1 1 1 |n@X(z—1)(z—c)(@?—c))|4/q —i | (-144)/2| 1
172 0 0 O A(z) triv. -1 0 1
182 0 0 1 Az(z? — ¢)) 2,9 J2 1 -1 1
1912 0 1 0 Az(z —¢)) triv. 0 0 0
2002 0 1 1 Mz(z —c)(z? — ¢)) 2,/9 0 —1 0
2102 1 0 0 A(z(z — 1)) triv. 0 -1 0
2202 1 0 1 Mz(z —1)(z2 - ¢)) 2,/9 0 0 0
232 1 1 0 AMz(z — 1)(z —¢)) 2./q -1 -1 -1
2412 1 1 1 AMz(z —)(x —c)(z? —¢)) |44 1 0 -1

Remark 1. Entries 25-32 are omitted; these are the same as 9-16,

with 73 replacing 1 in each case. For each of 25-32, the general term
(respectively, the coefficient in each of the three cases) is the complex

conjugate of the corresponding table entry from 9-16.
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Remark 2. Trivial sums are of two types, those involving A, n or n®
summed over all elements of F, and those involving A and a general
term that is a quadratic in z. Estimates of the form k,/q follow from
the work of A. Weil, applied as in [1], for example.

Remark 3. A special circumstance occurs for entry 10 and its
companion entry 26. Instead of pairing the occurrence of each in Ny
with its occurrence in Ny, we pair the terms in N; (and, separately, in
N,) for entries 10 and 26. This results in cancellation. To see this, let
Y. denote the sum of terms from entries 10 and 26 in the sum Ny. Then

L= {n(6a) +71’(6a)}A(a® —¢)

a€F,

= n(da){1+ A(da))A(a® - ¢)}
=3 n(=sa) {1+ A(~da)}A(a® - ¢)

(summing over —a in place of a)
= (1) Y _n(6a){l+ A(da)}A\(a® —¢) = n(-1)S = -,

as p = 5 (mod 8), and it follows that ¥ = 0. The details for the
corresponding terms from N, are similar.

Let A = (N; + N2)/2, the number of interest for completing the
construction. Then

where W is the “Weil constant” resulting from accumulating the
estimates of the form k,/q, and L is the result of accumulating both
counting errors and terms having trivial estimates.

Somewhat remarkably, counting errors do not occur, that is, the terms
e€1(a) and e2(x) noted above are all zero. Partial details will suffice to
indicate the nature of the argument.

The four expressions in (4.1), and their counterparts in (4.4), provide
the “character quantity” terms in (4.2) and (4.5). Counting errors ;1 (a)
would occur for a = 0, a = ¢, a = ++/c or a = 1 if the four bracketed
expressions had a product other than zero. We consider only a = ++/c.
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In Case 1, ¢ € C(2) so this possibility does arise, and without loss of
generality we may suppose /c € C(1), —/c € C(3). As o = 2, the
expression governing /a € C(0) is zero when a = /c. As o7 =1 and
A(v/c) = —1, the conditions A(a — ¢) = o7 and A(a — 1) = 1 cannot
both hold when a = —/c and so one of the corresponding expressions
is zero. In Case 2, ¢ € C(1) so that a = +/c does not arise. In Case
3 an argument similar to that for Case 1 again shows that £1(a) = 0
whenever @ = +/c. The remaining possibilities, both for ¢;(a) and for
ga(x), can be argued in a similar fashion.

Among terms with trivial estimates, sums 3, 5, 9 (and 25) and 17
are zero, as each is of the form )+ (x) for a nontrivial character .
Sums 2, 7 and 17 are of the form ) A(f(z)) for a monic quadratic
with distinct roots. Therefore, each has value —1 by ([11, Theorem
5.48]). Taking coefficients into account, we find that L = 0 in Cases 1
and 3, while we may take L = 1 in Case 2.

As the estimates from the table give W = 22 in Cases 1 and 3, and
W =10 + 14v/2 ~ 29.8 in Case 2, we conclude that the construction
can be realized in Cases 1 and 3 when ¢ > 484, and in Case 2 when
q > 900.

5. Computations, comment and conclusion. In [2, pages
177-178], the existence of solutions from the construction studied here
was tabulated for all ¢ = p (prime), p =5 (mod 8), 29 < p < 300. In
general, when 3 ¢ C(0) there are many choices of a and b that provide
solutions. There are two small primes omitted from the table of values.
When p = 13, 2¢ = 3 € C(0) and the methods under discussion do not
apply. When p = 5 it is not possible to realize the coset conditions on a
and a — 1 called for by these methods; on the other hand, the sequence
P :0,2,1,3,4 and its translates P + a provide a solution to 2K5 — Ps.

Prime powers ¢ = p*¥ = 5 (mod 8) must have p = 5 (mod 8) and
k odd. The only case with £ > 1 that falls in the range determined
in the previous section is ¢ = 5% = 125. In order to show that the
construction provides solutions for all ¢ =5 (mod 8) with 3 ¢ C(0), it
suffices to consider ¢ = 125 and those primes p =5 (mod 8) below the
bounds described earlier.

The following results from [2] allow primes to be classified into the
three cases followed in the construction.
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Proposition. Suppose ¢ = p™ = 5 (mod 8) and z is a primitive
element of Fy chosen so that 2 € C(1).

(i) 3 € C(0) if and only if ¢ = 13 (mod 24) and p = 9u® + 4v? for
integers u and v,

(ii) 3 € C(1) if and only if g =5 (mod 24) and p = 2x? + 3y? for
positive integers x and y with A\(zy) = —1,

(iii) 3 € C(2) if and only if ¢ = 13 (mod 24) and p = u® + 36v? for
integers u and v,

(iv) 3 € C(3) if and only if g =5 (mod 24) and p = 22 + 3y? for
positive integers x and y with A\(zy) = 1.

Cases (ii), (iii) and (iv) in this Proposition correspond to Cases 1, 2
and 3, respectively, of the construction under consideration here.
The next table lists all primes p = 5 (mod 8), 300 < p < 900, and

the data needed to determine cos 3, the number of the coset to which
3 belongs.

TABLE 3.

p | p (mod 24) | Representation | cos3
317 5 2.11%2 +3 .52 1
349 13 52 4 36 - 32 2
373 13 72 43632 2
389 5 2-1124+3.72 | 3
421 13 9.5%2+4.7? 0
461 5 2.7 43112 3
509 5 212 4+3.132 1
541 13 4-7%4+4-52 0
557 5 2.524+3-132 | 3
613 13 172 + 36 - 32 2
653 5 2.1724+3.52 | 3
661 13 252 + 36 - 12 2
677 5 2.124+3.15%2 | 3
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TABLE 3. continued

p | p (mod 24) | Representation | cos3
701 5 2.132+3-112| 1
709 13 9-524+4-112 0
733 13 9-92+4.12 0
757 13 9-32+4-13? 0
773 5 2.7 +3-15° 1
797 5 2-19% +3 .52 3
821 5 2172 +3.92 1
829 13 9.9% +4.52 0
853 13 232 4 36 - 32 2
877 13 292 + 36 - 12 2

In view of the remark that concludes Section 4, the following primes
must be checked, as well as ¢ = 125, for which 3 € C(3) as 5 =
2.124+3.1%

Case 1. p = 317,509
Case 2. p = 349,373,613,661,853,877
Case 3. p = 389,557

For ¢ = 5% a primitive element x such that 2® — z + 2 = 0 gives
2 € C(1). In this case p = 6b~1a™! = (ab)~! as 6 = 2-3 = 1 in this
field. It can be verified easily that, with b = 4, the conditions required
for the construction are satisfied for five values of a, namely, 2z + 2,
3z + 4, 4% + 32z + 3, 2? + 4z and 422 + = + 1. Hence, comfortably,
2K 125 — Pigs.

We reduce the number of cases requiring computation by considering
special character sums involved in the argument. Let g be a primitive
root of the prime p = A%+ B2, where A and B are uniquely determined
by A = 1 (mod 4) and B = Ag» /4 (mod p). Let i be a fixed
primitive complex fourth root of unity, and let  be the character of
order four with n(g) = . Explicit evaluations have been given by
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Emma Lehmer for Jacobi sums [10] and Jacobsthal sums [9] as follows:

(5.1)
JmA) = > n@)A(z-1)=A+Bi
@ (mod p)

(5.2)
—2A ifa € C(0),
B \ | -2B ifaeC(l),
Pa(a) = ) % ) MM T =104 e o),
2B ifa € C(3).

Jacobi sums occur, and are described by J;, as sums 11, 13 (and
their conjugates as 27, 29) in Table 2. In particular, sum 13 is exactly
J(n, A), while sum 11 is n(c)A(—c)J(n,\) (see Lemma 4 of [1]). These
sums have zero coefficients except in Case 2. As ¢ € C(1) in Case
2, Sum 11 is (—i)J(n,A). The evaluation provided by (5.1) above,
together with the coefficients from Table 2, give the contribution of the
four Jacobi sums occurring in Case 2 as 2(A — B).

Jacobsthal sums occur, and are described by Js, as sums 8 and 18; in
particular, Sis = ¢2(—c), while replacing = by (z — ¢)/(x — 1) in sum
8 gives Ss = A(1 — ¢){¢2(—c) — 1}. The coefficients from Table 2 and
the fact that A(1 —¢) = 1 in cases 1 and 3, gives Ss + S1s = 1 in these
cases. In case 2, where A(1 — ¢) = —1 and —c € C(3), formula (5.2)
above gives Sg + S1s=1—2-2B=1-4B.

In Cases 1 and 3, the result of considering the special sums is to
replace two sums, each estimated by 2,/q, by the exact value 1. This
reduces the Weil constant from 22 to 18. The values p = 509 (Case
1) as well as p = 389 and 557 (Case 3) are comfortably completed.
In Case 2, four Jacobi sums and two Jacobsthal sums have explicit
evaluations combining to 24 — 6B + 1. The substitution of this exact
value for estimates of the sums in question can result in significant gain
only if one is fortunate. (The estimates contribute 4 + 2v/2 =2 6.8284
to the “Weil constant.” The absolute value of (24 — 6B)/,/q can only
be bounded by 6.3248, so the gain is not great in general.) The details
for the primes that remain in Case 2 are instructive.

Beginning from 32A = ¢+ (remaining terms), and letting J denote the
contribution from Jacobi and Jacobsthal sums, [32A—¢—J| < 23,/g+L
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in Case 2. Thus
32A >q—23\/g+J — L.

For the values ¢ to be considered, the following data are needed:

TABLE 4.
q q—23,/q A B J=2A-6B+1
349  —80.68 5 18 —-97
373 —-71.20 -7 18 —121
613 43.55 17 18 —73
661 69.67 25 —6 87
853 181.26 —23 18 —153
877  195.87 29 -6 95

For ¢ = 661, 853 and 877, analysis of character sums thus leads to
the desired conclusion (A > 0) as L is quite small. For ¢ = 317 (from
Case 1) and the three remaining values from Case 2, examples showing
2K, — P, were provided in Section 1.

REFERENCES

1. B.A. Anderson, K.B. Gross and P.A. Leonard, Some Howell designs of prime
side, Discrete Math. 28 (1979), 113-134.

2. B.A. Anderson and P.A. Leonard, A class of self-orthogonal 2-sequencings,
Des., Codes Cryptogr. 1 (1991), 149-181.

3. L. Carlitz, Distribution of primitive roots in a finite field, Quart. J. Math. 4
(1953), 4-10.

4. S.D. Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math.
Soc. 93 (1985), 189-197.

5. , Primitive elements and polynomials: existence results. In Finite fields,
coding theory and advances in communication and computing, Lecture Notes in
Pure and Appl. Math. 141 (1992), 43-55.

6. J.H. Dinitz and D.R. Stinson, Room squares and related designs. In Contem-
porary design theory: a collection of surveys, J. H. Dinitz and D. R. Stinson (eds.),
John Wiley and Sons, Inc., New York, 1993, 137-204.

7. K. Heinrich and G. Nonay, Path and cycle decompositions of complete multi-
graphs, Ann. Discrete Math. 27 (1985), 275-286.

8. J.D. Horton and G. Nonay, Self-orthogonal Hamilton path decompositions,
Discrete Math. 97 (1991), 251-264.




1242 S.D. COHEN AND P.A. LEONARD

9. E. Lehmer, On the number of solutions of u* + D = w? (mod p), Pacific J.
Math. 5 (1955), 103-118.

10. , On Jacobi functions, Pacific J. Math. 10 (1960), 887-893.

11. R. Lidl and H. Niederreiter, Finite fields. encyclopedia of mathematics and
its applications, vol. 20, Addison-Wesley, Reading, Mass., 1983.

12. W.D. Wallis, Room squares. In Combinatorics: room squares, sum-free sets,
Hadamard matrices, Lecture Notes in Math. 239 (1972), 29-121.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GLASGOw, GrLAsgow G12
8QW, ScoTtLAaND, U.K.

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, AZ
85287-1804, USA



