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NONLINEAR OSCILLATION OF FIRST ORDER
DELAY DIFFERENTIAL EQUATIONS

NORIO YOSHIDA

ABSTRACT. First order delay differential equations with
forcing term and the related differential equations are studied
and sufficient conditions are derived for all solutions to be
oscillatory.

1. Introduction. Oscillation properties of first order functional
differential equations has been investigated by many authors. We
refer the reader to Bainov and Mishev [1], Gyori and Ladas [3],
Ladde, Lakshmikantham and Zhang [4] and the references cited therein.
In particular, the oscillation of functional differential equations with
forcing term was studied by Onose [5, 6] and Tomaras [7]. However, it
seems that very little is known about the sufficient conditions which
imply that all solutions of certain nonlinear functional differential
equation with forcing term are oscillatory.

The objective of this paper is to establish oscillation criteria for the
delay differential equation

(1) y' () +p)f(y(o(t)) =a(t),  t>to,
and the related differential equation

k

(2) ¥ (O)+a®y(&)+Y_bi(Oy(pi(t)+p(O)F (y(o(1)) = a(t),  t>to,

i=1

where t¢ is a positive number. In what follows, by a solution of (1) or
(2), we mean a function y(t) € C([t_1,00); R)NCY([ty, 00); R!) which
satisfies (1) or (2) for all ¢ > to, where

f infy>4, o(t) in the case of (1)
- min{inf;>,, o(t), minj<;< inf;>,, p;(t)} in the case of (2).
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A solution of (1) or (2) is said to be oscillatory if it has arbitrarily
large zeros. In Section 2 we consider equation (1), and in Section 3 the
oscillation results of Section 2 are extended to equation (2).

2. Delay differential equations. In this section we derive
sufficient conditions for every solution y(t) of (1) to be oscillatory. The
following hypotheses are assumed to hold:

(H1) p(t) € C([to, 0); [0,00)) and q(t) € C([to, 00); R');

(H2) f(s) e C(RYRY), f(s) >0fors >0, f(—s) = —f(s) for s > 0,
and f(s) is nondecreasing for s > 0;

(H3) o(t) € C([tg,0); RY), lim;_,o o(t) = 00, o(t) < t for t > ¢y,
and o(t) is nondecreasing for t > to.

Theorem 1. Assume that (H1)—(H3) hold. Assume, moreover, that
the following hypothesis holds:

(H4) there exists a positive constant 5 such that f(s) > Bs in (0,00).
If there is a sequence {t,} C (to,00) such that

lim ¢, = oo, o(o(tn)) > to,

n—o0

q(t) =0 in[o(o(tn)), o(tn)l,

tn
/ a(s)ds = 0,
a'(tn)

tn 1
p(S) ds Z Y
/U(tn) B

then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that there is a solution y(t) of (1)
which has no zero in [t1,00) for some ¢; > ty. First we assume that
y(t) > 0 in [t;,00). Since lim; ., 0(t) = oo, there exists a number
to > t; such that y(o(¢)) > 0 in [t2,00). Then, equation (1) implies
that

(3) y'(t) <qt), t>t.
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If s € [0(t),t], then we see that o(s) < o(t). Integrating (3) over
[o(s),a(t)] yields

o(t)
u(o(t) — ylols)) < / GO
which is equivalent to
o(t)
y(o(s)) = y(o(t)) - / arydr, s e lo(t) 1.
o(s)

It follows from (H2) that f(s) is nondecreasing in R! and therefore

o(t)

@ SN 2 (sow) - [ anar),  seio.n

(s)

We integrate (1) over [o(t),t] and find

(5) y(t)—y(o(t) + / p()F(y(0(5))) ds = / R OL T

Combining (4) with (5), we obtain

t o(t)

)= vlo®) + [ (t)p(S)f<y(o(t)) -/ ) dr> ds

t
s/ a(s)ds,  t>1s,
o(t)

or equivalently,
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By the hypothesis (H4) there exists T > to for which

(7) Mzﬁ for t > T.

y(a(t))
We see from (6) and (7) that

® v+ pueo)( [ ;)p<s> is-3)

- ;) o)1 (sto0) - [ (()) 0(r)dr) = flalo(0)] ds

t
< / q(s) ds, t>T.
o(t)

There exists a number ny € N such that ¢, > T for any n > ng.
Letting ¢t = t,, in (8), we find that the lefthand side of (8) is positive in
view of the fact that

U(tn)
/ q(r)dr=0 for s € [o(tn),tn].
o(s)

However, the righthand side of (8) is zero. This is a contradiction.
In the case where y(t) < 0 in [t1,00) for some t1 > to, 2(t) = —y(t)
satisfies

Z(t) +p)f(2(c()) = —q(t),  t>to.

Proceeding as in the case where y(t) > 0, we are led to a contradiction.
This completes the proof. o

Corollary 1. Assume that (H1)—(H4) hold. If there is a sequence
{tn} C (to, 0) such that

lim ¢, = oo, o(o(tn)) > to,

n—o0

q(t) <0 in[o(o(tn)), o(tn)l,
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then the differential inequality
(9) y' () +pt)f(y(o(t))) < alt)

has no eventually positive solution.

The proof follows by using the same arguments as in Theorem 1 and
will be omitted.

Theorem 2. Assume that (H1)-(H3) hold. If

(10) / " p(6)F(@4(0(s))) ds = oo,
(11) /T " D) F(Q(o(s))) ds = oo

for all large T', then every solution of (1) is oscillatory, where Q(t) is
a Cl-function such that Q'(t) = q(t), t > to and

Qx(t) = max{+Q(t), 0}.

Proof. Suppose that y(¢) is a solution of (1) such that y(¢) > 0 in
[t1,00) for some t; > ty. As in the proof of Theorem 1, the inequality
(3) holds for some ty > t;. It is clear that (3) reduces to

(y(t) — Q1)) <0,  t >ty

Then, either y(t) — Q(¢) > 0 in [t2,00) or y(t) — Q(¢) < 0 in [t3,00)
for some t3 > to. If Q(t) is eventually nonnegative (respectively,
eventually nonpositive), then Q_ (t) = 0 (respectively, @ (t) = 0) for
all sufficiently large ¢, which implies that (11) (respectively, (10)) does
not hold. Hence, Q(t) must change sign as ¢t — co. Then it does not
occur that 0 < y(¢) < Q(¢) in [t3,00). Consequently, y(t) > Q(t) in
[t2,00). Since y(t) > 0 in [t2, 00), we find that y(¢) > Q4 (t) in [t2, 00).
Then there exists a number T' > t5 such that y(o(t)) > Q4 (c(t)) for
t > T. Taking (H2) into account, we see from (1) that

y'(t) +p() f(Q4(a(t) <a(t), t>T.
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Integrating the above inequality over [T, ¢], we obtain

t t

p(5)F(@Q4 (o(5))) ds < / gs)ds, t>T,

T

y(t)—y(T) + /

T
or

t

(12) y(H)—Q(t)+Q(T)—y(T) < — / p(5)f(Qs(o(s)ds,  t>T.

T

Since y(¢t) — Q(t) > 0 in [T, 00), the lefthand side of (12) is bounded
from below. However, the righthand side of (12) is not bounded from
below by the hypothesis (10). This is a contradiction. In the case where
y(t) < 0in [t;,00) for some t; > tg, the same arguments as in the case
where y(t) > 0 lead us to a contradiction. O

The following corollary is an immediate consequence of Theorem 2.

Corollary 2. Assume that (H1)—(H3) hold. If (10) holds for all
large T, then the differential inequality (9) has no eventually positive
solution.

Remark 1. The hypothesis (H4) was used in the paper of Cui [2].

Remark 2. In Theorem 2 the function Q(¢) must change sign as
t — oo, and therefore ¢(t) must also change sign as t — oco.

Remark 3. We cannot apply Theorem 2 to the case where ¢(t) = 0
in [T, 00) for some T' > ty. However, Theorem 1 can be applied to this
case.

Remark 4. In Corollaries 1 and 2, the condition “f(—s) = —f(s) for
s > 07 is unnecessary.

Example 1. We consider the equation

(13) y'(t) + e 2y(t — 7 /2) = e’ sint, t>0.
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Here p(t) = ™2, f(s) = s, o(t) =t — /2, to = 0 and ¢(t) = e’sint.
We easily see that Q(t) = (1/v/2)e! sin(t — /4) satisfies Q' (t) = q(t). It
is clear that Q (t —7/2) = (1/v/2)[e*""/?sin(t — 37 /4)] .. There exists
a positive integer m € N such that T < 37 /4 + 2mm. Let n(t) € N
be the largest integer which satisfies 3w/4 4+ (2n(t) + 1)m < t. An easy
calculation shows that

(14) /t "2 [”/25‘ < 3 )] d
e — | € mi|s— —m S
T \/§ 4 +
3n/44+(2n(t)+1)w 1 3
> —|efsin|s— -7 ds
/37r/4+2m7r \/§|: < 4 >:|+

n(t) 3x/4+(2j+1)n

L e’ sin (s 3 > ds

= — - -7
\/ij:m 37 /4425w 4

n(t)

1 .

_ (37r/4) ™ 25w

= ——e e" +1 E e™".
2\/5 ( )

j=m

Since lim;_, o, n(t) = 0o, we see from (14) that

> 1 3
w/2 s—7/2 o _ 2 d
e — | € sin | s ™ s = OQ.
/T \/5|: < 4 >:|+

Analogously, we obtain

w/2_~ | s—7/2 2 — )
/T € \/5 |:€ sin <3 47T>:| B ds (0.o]

Theorem 2 implies that every solution y of (13) is oscillatory. One such
solution is y = e’ sint.

3. Related differential equations with delay. This section is
devoted to establishing oscillation criteria for the related differential
equation (2) using the oscillation results obtained in Section 2.

Theorem 3. Assume (H1) and (H3) hold, and that the following
hypotheses hold:
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(H5) a(t) € C([to,0);RY), bi(t) € C([to,00);[0,00)), pilt) €
C([to,0);RY), pi(t) < t for t > ty, and limy_,o pi(t) = oo(i =
]',27" ? );

Lk
(H6) f(s) € C(RYRY), f(=s) = —f(s) for s > 0 and f(s152) >
f1(s1)f2(s2) for s1 > 0, s2 > 0, where f1(s1) > 0 for sy >0, f2(s2) >0
for so > 0 and f(s2) is nondecreasing for so > 0.

Every solution y(t) of (2) is oscillatory if the differential inequalities
o(t)
1) '@+ POp(eo (- [ A1) )T Ew)

<en( [ :A<s> is) B0

a6) v/ + PO (e (- | :(t) As)ds) ) 120 (o0)

<-en( [ :A<s> is) B0

have no eventually positive solutions, where

= aft) + > bi(t)

Proof. Let y(t) be a solution of (2) with the property that y(t) > 0
in [t1,00) for some t; > tg. Then the inequality (3) holds. Integrating
(3) over [p;(t),t], we obtain

v -vp) < [ a)as,  tzt
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Combining the above inequality with (2) yields

which is equivalent to
a7 YO+ AMy®) +p(t)f(y(e(t) < B(t),  t=>to

Multiplying (17) by exp(fti A(s) ds), we have

19) (e /t:“‘(s) ds)y<t>)'+ P (e (- /t:(t)A(@ is)
exp < / " () ds
<o [[a00

Taking account of (H6), we see from (18) that

v'(0)+ P (e - / A(s)ds) ) £ (o0)
gexp</t:A(s)ds>B(t), £ t,

where Y'(t) = exp ft 8)ds)y(t) > 0 in [t2, 00). This contradicts the
hypothesis. The case where y(t) < 0in [t1,00) can be handled similarly,
and we are led to a contradiction. The proof is complete. ]

N—— —
Uu
~
V
o

Combining Theorem 3 with Corollaries 1 and 2, we can obtain the
following results.

Corollary 3. Assume that (H1), (H3), (H5), (H6) hold, and that
f2(s) satisfies (H4). Every solution y(t) of (2) is oscillatory if there is
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a sequence {t,} C (to, 00) with the properties that:

lim ¢, = oo, o(o(ts)) > to,

n—oo

exp < /t:A(s) ds)B(t) =0 info(o(tn), o(tn)],
/U " exp< " A(s) ds)B(r) dr =0,

(tn) to

[ (e [ ae))o=

Corollary 4. Assume that (H1), (H3), (H5), (H6) hold. Ewvery
solution y(t) of (2) is oscillatory if

/Too P(r) fu <exp ( - /t:(r) Als) ds))fQ(Qi(g(T))) P

for all large T, where Q(t) is a C'-function for which

Q'(t) = exp </t: A(s) ds)B(t).

By the same arguments as were used in Theorem 3, we can prove the
following.

Corollary 5. Assume that (H1), (H3), (H5) and (H6) hold. The
differential inequality

k

Y () +a(t)y()+ Y bit)y(pi(t)+p(t)f (y(o (1)) < alt),  t>to

i=1

has no eventually positive solution if (15) has no eventually positive
solution.

Remark 5. Corollary 5 holds true without the condition “f(—s) =
—f(s) for s >0.”
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Example 2. We consider the equation

™

(19) ¥ (¢) +y(t) + <e”/2y (t - §> +eTy(t — 7r)> + e*Ty(t — 27)
= 2¢! cost, t>0.
Here ty = 0, a(t) = 1, k = 2, by (t) = e™2, p1(t) =t — /2, ba(t) = €T,
p2(t) =t —m, p(t) = e*, f(s) = s, o(t) =t — 2w and q(t) = 2¢ cost.
It is easy to see that
P(t) = exp(2m + (1 + ™2 4 e™)t),

Aty =1+e™? 4 ¢,
¢
B(t) = 2¢t cost + e™/? / 2e® cos s ds
t—m/2

t
+e™ / 2¢e® cos s ds
t

-

= kel cost + koel sint,

where k1 =4 +¢e™/2 +e™ and ky = €™/2 + 7. Therefore,
t
exp (/ A(s) ds)B(t) = kie"t cost + kyesint,
0

where L = 2 + ¢™/2 + ¢™. We observe that the function
~on_ ki+koL 1, k1L — ko g,

Q(t) = L2—+16 Sint -+ L2——‘,—16 cost

= /K2 + k2P sin(t + a)

satisfies Q' (t) = kie™® cost+kye sint, where ks = (k1 +koL)/(L?+1),
ks = (k?lL — k?g)/(Lz + 1) > 0and a = tanfl(k4/k3), I<ac< 7T/2.
Since f(s182) = s182, we may choose f;(s;) = s;, ¢ = 1,2. It is obvious
that

t
/ exp(2m + (1 4+ €™/2 + e™)r)
T

exp < - /0 A ds) O (r — 27) dr

=/k3 + k2 /t[eLT sin(r — (27 — «@))]4 dr.

T
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There is a positive integer M € N such that 7" < 27 — a4+ 2Mm. Let
N(t) € N be the largest integer which satisfies 2r —a+ (2N (¢)+1)7 < ¢.
We easily obtain

\/k2+k2/ "sin(r — (27 — ))]4 dr
2r—a+(2N(t)+1)w
>\ /K2 + ki/ [eL’" sin(r — (27 — )]+ dr

2r—a+2Mm
N(#)  or—a+(2j+1)n

\/k2+k22/ e sin(r — (2m — ) dr

2r—a+2jm

N(t)
_ V k3 + k3 eL2m—a) (oL | 1) Z 2Ljm

L2+1
Since lim;_, o, N(t) = 0o, we conclude that

/ exp(2m + (14 €™/2 + e™)r)
T

exp < - /Orzw Als) ds) Qo (r — 2m) dr = oo

In the same way, we obtain

/ exp(2m 4 (14 €™/% +e™)r)
T

exp ( - /OT_% Als) ds>c}(r —2m)dr = oc.

It follows from Corollary 4 that every solution y of (19) is oscillatory.
For example, y = e! cost is such a solution.
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