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DUALITY FOR LOCALLY
COMPACT LIPSCHITZ SPACES

NIK WEAVER

ABSTRACT. It is known that lip (X)** is isometrically
isomorphic to Lip (X) for a large class of compact metric
spaces X. A generalization for certain locally compact spaces
has been asserted but is false. We give a correct generalization
and determine, for a large class of locally compact X, in
exactly which cases it holds.

0. Introduction. Let X be a metric space. Then Lip (X) is
the Banach space consisting of all bounded scalar-valued Lipschitz
functions on X with the norm

171z = max (Iflloo, sup M)

x,yeX p(ma y)
Ay

and lip (X) is the closed subspace of Lip (X) consisting of those func-
tions with the property that for every € > 0 there exists 6 > 0 such

that
f(z) — fy)l

<e.
p(z,y)

p(z,y) <§ implies <
Several researchers have investigate the equation lip (X)** = Lip (X),
where 22 stands for isometric isomorphism. This does not always hold;
for example, if the unit interval [0, 1] is endowed with the usual metric,
then any function in lip [0, 1] has zero derivative at every point, hence
is constant. However, Lip [0, 1] is infinite-dimensional (in fact [10], it
is isomorphic to L*°[0, 1]), so (lip [0, 1])** = Lip [0, 1] fails abysmally.

The equation lip (X)** = Lip (X) was first proved by de Leeuw [3]
in the case that X is the unit circle with the metric p* where p is
normalized arc length and « € (0,1). Jenkins [6] then showed that if
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the scalar field is real the result holds for any compact metric space
with a “Holder” metric, i.e., a metric of the form p* where a € (0,1)
and p is also a metric. Jenkins also proved the result in the complex
case under a certain restriction on X.

Using a more subtle argument, Johnson [7] removed this extra condi-
tion, thus establishing the result for any compact Hélder metric space
with real or complex scalars. This result was rediscovered by Bade,
Curtis and Dales in [2], where it was given a somewhat different proof,
and the special case where X C R" and the scalars are real was redis-
covered by Wulbert [15]. Finally, assuming real scalars, Hanin [5] gave
a condition on lip (X) which is equivalent to lip (X)** = Lip (X) and
used it to prove this equation for a certain generalization of compact
Holder metric spaces.

Jenkins and Johnson also claimed the result (lip (X) N Co(X))** =
Lip (X) in case X is a “finitely compact” Holder metric space, meaning
the metric is of the form p® and every closed ball is compact. This result
is false but the flaw is not that difficult to correct (see Section 2). Much
later, Jonsson [8], apparently aware only of de Leeuw’s result, proved
that Lip (X) is the double dual of a certain subspace of lip (X) in the
case that X is a closed subset of R™ with a Holder metric; the definition
of this subspace is heavily dependent on the fact that X C R”.

In correcting Jenkins’ and Johnson’s result, we find that the assump-
tion of finite compactness is not necessary and can be replaced by the
weaker assumption that X is “rigidly locally compact,” meaning that
for every x € X and k < 1 the closed ball of radius k about z is
compact. The following well-known example is therefore also an in-
stance of our result. Give N the metric p(z,y) = 2 for all z # y; then
Lip (N) 2 {* and lip (N)NC(N) = ¢o, and we have ¢f* =2 . Here N
is neither finitely compact nor Hélder, but it is rigidly locally compact.

Rather than deal with Lipschitz spaces as defined above, we prefer to
treat the spaces Lip ¢ (see Section 1). These have appeared before (e.g.,
in [11] and [15], among others), but apparently without the realization
that they represent a generalization of the Lipschitz spaces. (This result
is quite trivial but perhaps deserves special emphasis nonetheless; see
the end of Section 1.) We also define a subspace lip ¢(X) of Lip o(X)
and under the assumption that X is rigidly locally compact, for a
more general definition of this term, we give exact conditions under
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which lip o (X)** is naturally isometrically isomorphic to Lip ¢(X). Our
condition simplifies and generalizes Hanin’s condition and is suitable
for complex as well as real scalars. The spaces lip (X) and Lip (X) are
special cases of the spaces lip (X ) and Lip¢(X), so that our results
generalize all of the results described above. Our results also imply a
complex version of Hanin’s generalization of Johnson’s result.

(Incidentally, the space lipo(X) in general depends on a choice of
“base point” for X, but the space Lip o(X) does not. Thus, our results
yield a large class of examples of Banach spaces which are not naturally
isometric but whose duals are naturally isometric. The well-known fact
that ¢ =2 ¢* =2 ! is one such example.)

1. Lip(X) and Lipo(X). If X is a metric space and f is any map
from X into the scalar field, define the Lipschitz number of f to be

@) = FW)]
L) = oty pl@,y)

and say that f is Lipschitz if L(f) < oco. More generally, say that a
map between metric spaces is Lipschitz and define a Lipschitz number
accordingly if the same sup is finite, replacing |f(z) — f(y)| by the
distance between f(z) and f(y) in the range space. For any metric
space X we let Lip(X) be the space of all bounded scalar-valued
Lipschitz functions on X, with the norm ||f||r = max(||f]|ec, L(f))-
If X is equipped with a base point e we let Lip ¢(X) be the set of all
scalar-valued Lipschitz functions on X which vanish at e; this is also
a vector space and is given the norm L(f). The spaces Lip (X) and
Lip o(X) are called Lipschitz spaces.

As we mentioned in the introduction, complex scalars present more
difficulties than real scalars. Therefore, we shall assume complex scalars
throughout; the same proofs work for real scalars, with occasional
simplifications.

It is standard that Lip (X) and Lip¢(X) are Banach spaces. One
also often defines the spaces Lip“(X) and Lip §(X) for a € (0,1) by
replacing p with p® in the preceding definitions. For example, a typical
member of Lip §(X) is a scalar-valued function f which satisfies

p F@) = £

Ty (p(xay))a =
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and vanishes at the base point. We prefer to treat these spaces as
special cases of the spaces Lip (X) and Lip ¢(X) which arise when the
metric of X has the special form p® for some other metric p (that is,
when some power 1/« > 1 of the metric is again a metric). We call
such a metric a Hélder metric and the corresponding metric space a
Holder metric space.

Note that up to isometric isomorphism the space Lip o(X) does not
depend on the choice of base point of X: if e and €’ are elements
of X, then the map f — f — f(e’) takes Lipo(X) with base point e
isometrically onto Lip ¢(X) with base point e’. Thus, Lip ¢(X) can be
identified with the space of all scalar-valued Lipschitz functions on X
with the seminorm L(-), modulo the constant functions; it is sometimes
defined in this way.

For any metric space X, let X’ be the space remetrized by p'(z,y) =
min(p(z,y), 2). Then it is easy to check that Lip (X) = Lip (X’). (This
was proved by Vasavada [13] and independently rediscovered by Weaver
[14].) Now if Y is any metric space with diameter less than or equal
to 2, let Y U {e} be the same space with an additional base point e,
where we set p(z,e) =1 for all z € Y. Then Lip (Y') 2 Lipo(Y U {e})
by the map which extends a function f € Lip (Y) to Y U {e} by setting
f(e) = 0. Combining these two observations yields the following trivial
but nonobvious result (if one can use such a phrase), which appears to
be new:

Proposition 1.1. Let X be a metric space, and let X' be as above.
Then Lip (X) = Lip o(X' U {e}).

This result shows that Lipspaces are a special case of Lipy spaces.
Note that if X is compact, locally compact, or equipped with a Holder
metric, then it is easy to check that X’ U {e} has the same properties.

2. lip(X) and lipo(X). For any metric space X let X be the
topological space X2—{(z,z) : z € X }. Then we have a (nonsurjective)
isometry ® : Lip o(X) — Cy(X) (the bounded continuous scalar-valued
functions on X) defined by

of(z,y) =
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Let Xo = X' U {e}, as in the last section. If X is compact it is
fairly easy to check that for f € Lip (X) 2 Lip¢(Xy), the condition
®f € Cy(Xy) is equivalent to the requirement that for every & > 0
there should exist 6 > 0 such that

p(z,y) <§ implies |Df(z,y)| <e.

We abbreviate the latter condition as “®f(z,y) — 0 as p(z,y) — 0,”
and for any metric space X we define the little Lipschitz space lip (X)
to be the subspace of Lip (X) consisting of all f € Lip (X) such that
Df(z,y) — 0 as p(z,y) — 0. It is standard that this subspace is
complete.

The main tool used in studying lip (X) when X is compact is the
fact that ®(lip (X)) C Co(Xy). Note that for locally compact X,
®(lip (X) N Co(X)) is generally not contained in Cy(Xy), e.g., consider
a function on X = R which goes to zero at infinity while its derivative
does not. This falsifies Jenkins’ [6] and Johnson’s [7] argument that
(lip (X) N Cyp(X))** = Lip(X) when X is a finitely compact Holder
metric space. (A finitely compact metric space is one in which every
closed ball is compact.)

The correct definition of lipo(X), for X a locally compact metric
space with base point e, is: the set of all f € Lipo(X) such that
f(x)/p(z,e) € Co(X) and ®f(x,y) — 0 as either p(z,y) — 0 or
z,y — oo, where “@f(z,y) — 0 as z,y — c0” means that for every
e > 0 there exists a compact subset K C X such that |®f(z,y)| < ¢
for z,y € X — K. If X is finitely compact, then with this definition,
®(lip o(X)) € Co(X). We also call lip o(X) a “little Lipschitz space.”

With the preceding definition of lip o(X), the argument of Jenkins
and Johnson can easily be made into a correct proof that lip o(X)**
Lip ¢(X) when X is a finitely compact Holder metric space. However, as
we indicated in the introduction, this excludes the example X = NU{e}
(when lipo(X) = ¢y and Lipo(X) = [*°). In this case ®(lipo(X)) is
not contained in Cj (X ), which introduces serious difficulties. However,
we are able to get around these difficulties; the main consequence of
containment in Co(X) used in earlier papers, namely that every element
of the dual of lip o (X)) is representable as a measure on X, remains true
provided only that X is rigidly locally compact (see Section 4).

Note that if X is compact then lip (X) = lip o(X U {e}). In this case
the conditions having to do with behavior near infinity are vacuous.



342 N. WEAVER

This shows that results about lipg spaces will specialize to results about
lip spaces.

We omit the formal proof of the following proposition. Briefly, one
proves that lip o(X) is complete in the same way that one proves lip (X)
is complete, and the rest of the proposition follows from the fact that

|®h(z,y)| < max(|®f(z,y)l, |®g(z,y)])

forh=Ref,Imf, fVgor fAg.

Proposition 2.1. Let X be a locally compact metric space with base
point. Then lip o(X) is a closed subspace of Lipo(X). The real and
imaginary parts of a function in lip o(X) are in lipo(X), and the join
and meet of real functions in lip o(X) are in lip o(X).

One interesting facet of lip ¢(X) is that it does depend on the choice of
base point. Shifting to a new base point e’ by the map f — f— f(€’) is
not possible since this map does not preserve the property of vanishing
at infinity (unless X is compact).

This ambiguity is especially interesting in light of the fact, to
be proved in Section 5, that under certain conditions lip o(X)** =
Lipo(X), for the latter space does not depend on a choice of base
point. This gives rise to examples of nonisometric Banach spaces whose
duals are isometric. The best-known example of this phenomenon,
ch = ¢* =2 11 is a special case. For lip (N) = lipo(N U {e}) = ¢,
but if the base point of N U {e} is changed to, say, 1 € N, then
lipo(N U {e}) is isometrically isomorphic to ¢ by the map taking
the function f : N U {e} — C to the sequence whose nth term is

fin+1) = f(e).

3. The separation property. The condition relevant to satisfac-
tion of lip o(X)** 2 Lip ¢(X) is contained in the following proposition.

Proposition 3.1. Let X be a locally compact metric space with base
point e. Then of the following conditions, a) and b) are equivalent, and
both imply c).

a) There exists ky > 0 such that for any z,y € X, ¢ > 0 and
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a € [0,p(y,e)], some real-valued g € lipo(X) satisfies L(g) < ki,
9(z) <& +max(0,a - p(z,y)), and |g(y) — a < ¢;

b) there exists ko > 0 such that for any € > 0, f € Lipo(X), and
finite subset A C X, some g € lipo(X) satisfies L(g) < ko - L(f) and
1(g = f)lalle <&

c) there exists ks > 1 such that the closed p(y,e)/ks-ball about y is
compact for every y € X

Proof. a) = b). Suppose a) holds; let € > 0, f € Lip(X) and A C X
be finite. We may assume f is real by separating it into real and
imaginary parts and using Proposition 2.1. (Passing to the complex
case introduces a factor of v/2 into ks and £.) By separating f into
positive and negative parts, i.e., by approximating f V0 and —f V0
separately on A and then combining the result, we can also reduce to
the case where f is positive. (This introduces a factor of 2 into kg and
¢.) Dividing f by L(f) reduces to the case that L(f) = 1. Finally, we
may also assume that e € A.

Now for any distinct z,y € A, we have f(z) > max(0, f(y) — p(z,y))
since f is nonexpansive and positive. Thus, setting a = f(y), by a) we
can find a real-valued function g,y € lip ¢(X) such that

L(gay) < k1, gay(@) < fl2)+e,  gay(y) — f¥) <&
Then let
g = \/ /\ 9y
rzcAycA
y#T

this is in lip o(X) and satisfies |[(g — f)|allcc < € and L(g) < k1 =
k1 - L(f). Thus b) holds with ks = k; in the real, positive case, which
is enough.

b) = a). Let z,y,e and a be as in part a) and assume b) holds. By
an analogue of the Tietze extension theorem due to McShane (see [12,
Proposition 1.4]) we can extend the function z — max(0,a — p(z,y)),
y — a, e = 0 to a nonexpansive real-valued function f € Lip (X).
Then apply b) with A = {z,y} and take the real part of the resulting
function g; this has the properties required by a). Thus, a) holds with
k1 = ko.
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a) = c). Suppose a) holds and c) fails. Then for each n € N
there exists y, € X such that the closed p(yn,e)/n-ball about y is
not compact. Apply a) with z =e, y = y,, € > 0, and a = p(yn, €); we
get g € lip o(X) such that L(g) < ky and |9(yn) — p(yn,€)| < €.

Since the p(yn,e)/n-ball about y, is bounded but not compact and
g € lipp(X), g must take arbitrarily small values on this ball; hence

there exists z,, € X such that p(zn,yn) < p(yn,e)/n and |g(z,)| < e.
It follows that

9(xn) — g(yn)|  n(p(yn,€) — 2¢)
L(g) = p(wmyn) = p(yme) ‘

Taking ¢ — 0 implies that L(g) > n, hence k; > n. As n was arbitrary,
this is a contradiction. ]

We say that lip o(X) has the separation property if it satisfies either
condition a) or condition b) of Proposition 3.1; the terminology derives
from part a), which asserts that the little lipschitz functions separate
the points of X in a certain manner. In the compact case we have the
following simplification.

Proposition 3.2. Let X be a compact metric space and recall the
notation of Proposition 1.1. Then lip (X) = lipo(X’' U {e}) has the
separation property if and only if there exists k1 > 0 such that for all
z,y € X, some g € lip(X) satisfies ||g9]|r < k1 and |g(z) — g(y)| =
min(p(z,y), 2).

We omit the proof of this proposition. It is a fairly easy consequence
of the a) form of the separation property and the fact that lip (X)
contains the constant functions.

When we show in Section 5 that lip ¢(X) having the separation prop-
erty implies lip o(X)** = Lip o(X), we will deduce several equivalent
conditions. We now discuss some examples where lip (X ) has the sep-
aration property.

If X is any “uniformly discrete” metric spce, meaning the distances
p(z,y) are bounded away from zero (for z and y distinct), and if X has
finite diameter, then lip o(X) has the separation property for arbitrary
base point. For in this case Lipo(X) is isomorphic to I®(X — {e})
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and lip ¢(X) is isomorphic to ¢o(X — {e}), and given any element of
the former and a finite subset of X — {e}, multiplying the element
by the characteristic function of the finite subset yields an element
of the latter, which shows satisfaction of the b) form of the separation
property. This example includes the case X = NU{e} discussed earlier.

Now let X be a locally compact Holder metric space. We will show
that if X satisfies condition c) of Proposition 3.1 for every k3 > 1 then
it has the separation property. This requirement plays a big role later
in the paper, so we give it a name: we say that such an X is rigidly
locally compact. Note that if X is a locally compact metric space and
X" U {e} is defined as in Section 1, so that Lip (X) = Lip o(X' U {e}),
then X' U {e} is rigidly locally compact if and only if every closed ball
of radius less than 1 is compact.

Proposition 3.3. Let X be a rigidly locally compact Holder metric
space with base point e. Then X has the separation property.

Proof. We will verify the a) form of the separation property for any
k1 > 1. Thus, choose z,y € X, ¢ > 0 and a € [0, p®(y,e)]. Then we
claim that the function

9(z) =[(a— (1+e)p*(z,y) A(a—¢)] VO
is the desired.

First, we have
9(z) < max(0,a — (1+¢)p%(x,y)) < max(0,a — p*(z,y))

and g(y) = max(0,a — €) hence |g(y) — a| <e. Also, L(g) <1+e. So
we have only to show that g € lip ¢(X).

Since g is supported on the p®(y,e)/(1 + €)-ball about y, which is
compact, the only thing to check is that ®f(z’,y') — 0 as p*(2’,y’) —
0. By compactness it is enough to check that for every z in the support
of g and for every &' > 0 there exists 6’ > 0 such that |®g(z, z)| < & for
all z within ¢’ of z. This is certainly true for z = y since g is constant
in a neighborhood of y. On the other hand, if b = p(z,y) > 0 then for
any z € X, letting 0 = p(z, z) we have p(z,y) > b — d, hence

(2, y) — p*(z9)| _ 0% = (b—6)*
p*(z, 2) - 5 '

|®g(z, z)| <
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This goes to zero as 6 — 0, since differentiability at b of the function
t — t* on R implies that the numerator is O(4). So for some §’ we do
have |®g| < &’ on the §’-ball about z, as desired. o

We mention that the above proof works equally well for a certain
generalization of Holder metric spaces due to Hanin [5]; these are
the spaces whose metric is of the form w(p) where p is a metric and
w: Rt — R™ satisfies the conditions w(0) = 0, w is continuous and
nondecreasing, lim;_,ow(t)/t = 0o, and w has finite oscillation at each
t > 0. (This definition is actually more general than Hanin’s.)

If one has satisfaction of the b) form of the separation property for
every ks > 1, the proof that lipo(X)** = Lip¢(X) becomes much
easier. This is why the case of complex scalars is genuinely harder
than the case of real scalars; in the complex case one can usually only
directly verify the separation property for ky > v/2. Oddly, having
the separation property for any ko actually implies having it for every
ko > 1, as we will see in Corollary 5.5. However, in most cases there
seems to be no direct verification of this fact. We mention this in
order to make the point that our extension of Hanin’s result to include
complex scalars is a real generalization.

4. The dual of lip¢(X). The purpose of this section is to show
that if X is rigidly locally compact then every element of the dual
of lipo(X) can be represented by a Borel measure on X of the same

norm; in other words, for every I € lipo(X)* there exists u € M(X),
the space of finite Borel measurds on X, such that |u|(X) = ||F|| and

F(f) = / (f) du

for all f € lipo(X). We also say “®*pu agrees with F on lipo(X).” In
the finitely compact case this result is trivial since then ® takes lip o(X)
isometrically into Cy(X) (and M (X) = Cp(X)*).

We use the notation 3Y to denote the Stone-Cech compactification of
a completely regular topological space Y, and if f : ¥ — C is a bounded
continuous map we write f for its unique continuous extension to 5Y .

Lemma 4.1. Let Y be a completely regular topological space, and
let E be a closed subspace of Cy(Y). Suppose there exist Borel maps
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¢r: BY = Y and ¢y : BY — [~1,1] such that f = ¢o- (f o ¢1) for
all f € E. Then for every F € E* there exists u € M(Y) such that
lul(Y) = ||F|| and

F(f) = [ £

forall f € E.

Proof. Let F € E* and extend it to a measure v € M (8Y) & Cy(Y)*
such that |v|(8Y) = ||F||. Then define u € M(Y") by setting

n(A) = ¢2 - (Xa 0 ¢r)dr.
BY

Since the integrand is always less than or equal to 1 in absolute value,
we get |p|(Y) < |v|(BY) = ||F||. Also, for any f € E, we have

Afdu—/ﬂy@-(fo@)dv

= fdl/
BY
= F(f).

(The first equality holds for all simple f € L(Y,u), hence for all
f € L (Y, i), hence for all f € Cp,(Y).) This also implies |u|(Y) > ||F]|,
which completes the proof. o

Theorem 4.2. Let X be a rigidly locally compact metric space with

base point e, and let F' € lipo(X)*. Then there exists p € M(X) such
that |u/(X) = [|F|| and

F(f) = [ @) du
for all f € lipo(X).

Proof. We apply Lemma 4.1 with Y = X? and E = ®(lip(X)). For
the purpose of this proof we consider ®(lip o(X)) as lying in Cy(X?), by
extending the functions on X by zero on the diagonal. After applying
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Lemma 4.1, the restriction of the resulting measure u to X has the
desired properties.

Thus, we need to exhibit Borel maps ¢; : 8(X?) — X2 and ¢5 :
B(X?) — [~1,1] with the property that

(%) Of =g (2f o)
for all f € lipo(X).

Let ¢, : B(X?) — (8X)? be the natural continuous map (defined via
the universal property of the Stone-Cech compactification) and define
o : BX — X by ¢o(z) =z if x € X and ¢o(z) = e if z € fX — X.
Then we set ¢1 = (2 X 12) 01);. Since X is locally compact, it is open
in X, hence 5 is Borel; and ; is continuous, so ¢ is also Borel.

Let g : B(X?) — [0,1] be the unique continuous extension of the
function g(z,y) = min(1, p(z,e)/p(x,y)). Then we define ¢ by
1 if ¥1(€) € X°
0 () € (BX - X)?
3€) i r(6) € X x (BX - X)
~3(6) if ¥a(€) € (BX — X) x X.
This is Borel because it is defined by patching together Borel maps on
Borel sets.

To verify (x), let f € lipo(X) and £ € B(X?). Suppose first that
£ = (3,y) € X*. Then ¢;(€) = £ and 5 (€) = 1, 50

DF(€) = ¢2(6)@f(¢1(€))

¢2(§) =

as desired.
If ¥1(€) € (BX — X)2, let (zx,yx) be a net in X2 converging to &;
then zy,yx — 00, hence @ f(zx,yn) — 0. Thus,
Df(£) = 0= h2(8),
which implies () in this case.

If ¥1(€) € X x (BX — X), let z € X and let (xx,yr) be a net in
X which converges to §&. Then z)x — x and f(yx)/p(e,yx) — 0 (since

yx — 00), hence f(ya)/p(zxr,yr) — 0, hence
®F(€) = Iim(f(2x)/p(xa,9)) = f (. €) - 5(£)
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(note that lim(p(zx,yx)) = lim(p(z,yr)) > p(z,e) since X is rigidly
locally compact). Thus () holds in this case as well. The final case
that ¥, (€) € (BX — X) x X is handled similarly. o

5. The equation lip((X)** = Lip¢(X). For any metric space
with base point, it is possible to construct a Banach space whose
dual space is isometrically isomorphic to Lip ¢(X). Such a space was
given in a neglected paper by Arens and Eells [1]; they did not prove
isometric isomorphism but this is easy enough to check. By the natural
embedding of a Banach space in its double dual, the space of Arens
and Eells is identified with the linear span of the point evaluations
on Lipy(X). (For z € X, the point evaluation at z, written X, is
defined by X, (f) = f(z).) Alternatively, Johnson’s result [7, Theorem
4.1] that the point evaluations span a predual of Lip (X) can easily
be extended to cover Lipo(X). We therefore take as known that the
space Lip o(X). defined as the closed span in Lip(X)* of the point
evaluations, naturally satisfies (Lip o(X).)* = Lip o(X).

There is a natural nonexpansive map from Lip o(X), into lip o(X)*,
which takes an element of Lip o(X). C Lipo(X)* to its restriction to
lipo(X). We now want to show that if X is rigidly locally compact
this map has dense range, and if X also has the separation property
then it is a surjective isometry. Our method of proof follows that used
by Bade, Curtis and Dales [2] in the compact Holder case; Johnson’s
proof in [7] relies crucially on separability of lip (X )* and therefore is
not suitable in the locally compact case (when X may have arbitrary
cardinality).

In the last section we determined that if X is rigidly locally compact,
then for any F € lip o(X)*, there exists . € M (X) such that |u|(X) =
||F|| and ®*p agrees with F' on lipo(X). Thus, the following lemma
implies that if X is rigidly locally compact, then the natural map from
Lip (X)) into lip o(X)* has dense range.

Lemma 5.1. Let X be a locally compact metric space with base
point, let p € M(X), and let € > 0. Then there exists an element
o € Lip o(X). which is a finite linear combination of point evaluations,

such that || — ®*u|| < e.
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Proof. Find a compact subset K C X such that |u/(X — K) < /2.
Since p is bounded away from zero on K, it follows that ' = (u/p)|x
is a Borel measure of finite total variation.

Define v € M(X) by v(E) = p/(E x X) — /(X x E). Then as an
element of Lip¢(X)*, v = ®*(u|k). Since v is compactly supported,
we can apply a lemma originally due to Kantorovich (see [9, Lemma
4.44] or [6, Lemma 4.5] or [2, Lemma 3.2]) to conclude that there
exists a linear combination o of point evaluations on Lipo(X) such
that ||o — v|| < /2. Since v = ®*(u|k) and

1@ = @ (ulx)l| = 12" (nl3_ o)l < ul(X = K) <

9
2)

we get || — ®*p|| < e, as desired. o

Lemma 5.2. Suppose X is a locally compact metric space with base

point which has the separation property. Then for any u € M(X), if
®* 1 € Lip o(X)* vanishes on lip o(X), it is zero.

Proof. Let p € M(X), suppose ®*y vanishes on lip o(X), and let
f € Lipo(X); we must show that ®*u(f) = 0. Let € > 0 and use
Lemma 5.1 to find o = Y} a;X,, such that ||oc — ®*u|| < e. By the b)
form of the separation property, we can then find g € lip o(X) which
satisfies L(g) < ko - L(f) and agrees with f to within ¢/||o||; on the
support of o, where ||o|/; = Y 7 |ai|. We get

|2*u(f)| < |@*u(f) — o(f) +lo(f) —o(g)l
+lo(g) — 2" u(g)] + [2*p(g)l
<e-L(f)+e+eks-L(f)+0
=e(L+ L(f) + k2 - L(f))-

Taking ¢ — 0, we get ®*u(f) = 0. O
We can now prove the main theorem.

Theorem 5.3. Suppose X is a rigidly locally compact metric space
with base point which has the separation property. Then the natural
map from Lip o(X )« to lip o(X™) is a surjective isometric isomorphism.
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Proof. The map is automatically nonexpansive, and it has dense
range by Lemma 5.1 and Theorem 4.2. Thus, we need only show it is
noncontractive. It is enough to check this on elements of Lip o(X), of
the form ) | a;X,, since such elements are norm-dense in Lip ¢(X)s.

Thus, let 0 = Y[ a1Xy,. Let F be the restriction of o to lipo(X),
and by Theorem 4.2 find a measure . € M (X) such that |u|(X) = ||F||
and ®*p restricted to lip o(X) agrees with F'.

A

Defining the discrete measure v € M (X) by v(z;,e) = a; - p(z4,€),
1 < i < n, and zero elsewhere, we get ®*v = o. Since ®*(p — v)
vanishes on lip ¢(X), Lemma 5.2 implies that it is zero. It follows that
®*1 = o, hence ||o|| < |p|(X) = ||F||, as we needed to show. mi

The following corollary follows from Proposition 3.3 and the com-
ments immediately preceding and following it. This result includes all
of the results mentioned in the introduction. (The result for X is proved
by replacing X with X’ U {e} as in Proposition 1.1 and applying the
result for Y.)

Corollary 5.4. let X be a Hélder metric space in which every closed
ball of radius less than 1 is compact, let Y be a rigidly locally compact
Holder metric space, and let Z be a rigidly locally compact uniformly
discrete space with finite diameter. Then lip (X’ U {e})** = Lip (X),
lipo(Y)** = Lipo(Y), and lip o(Z)** 2 Lipo(Z). If X is compact, then
lip (X)** = Lip (X).

The same results hold if the Hoélder hypothesis is replaced by the
weaker condition described following Proposition 3.3.

We conclude by giving some equivalent forms of the separation
property and showing that it is not only sufficient to imply lip o (X)** =
Lip o(X), but also necessary.

Corollary 5.5. Let X be a rigidly locally compact metric space with
base point e. Then the following are equivalent:

a) lip o(X) has the separation property;
b) lip (X )** = Lip o(X) naturally;
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c) lipo(X) has the separation property with ki = ke = 1;

d) for all ko > 1, f € Lipo(X), and A C X finite there exists
9 € lipo(X) such that fla = gla and L(g) < ks - L(f).

Proof. a) = b). This follows immediately from Theorem 5.3.

b) = c). Suppose b) holds; then the unit ball of lip¢(X) is weak*
dense in the unit ball of Lip(X), i.e., [7, Corollary 4.4], it is dense
in the topology of pointwise convergence. This shows that lip o(X)
satisfies the b) form of the separation property with k2 = 1; and from
the proof of Proposition 3.1 b) = a), we also have satisfaction of the
a) form of the separation property with k; = 1.

c) = d). Suppose c¢) holds and let ks > 1 and A C X be finite.
Without loss of generality, suppose e ¢ A. Consider the map T :
lipo(X) — C4 which takes a little Lipschitz function on X to its
restriction to A. Give C4 the norm

Ifllca = inf{L(g) : g € Lipo(X) and g|4 = f}.

Then by c), the map T satisfies the hypotheses of a simple result of
Grabiner [4] (the “approximation lemma”) for £ = 1 and ¢ arbitrarily
close to 0. This result asserts that if 7" is a bounded linear map between
Banach spaces and k and ¢ are positive constants, ¢t < 1, such that for
any y in the range space there exists « in the domain space such that
[lz|]| < E|ly|| and || Tz — y|| < t|ly||, then for any y in the range space
there exists « in the domain space such that ||z|| < k||y||/(1 — ¢) and
Tz =y. So, choosing t < 1 — 1/ky, we get that for every f € Lipo(X)
there exists g € lipo(X) such that T'g = f|4, i.e., g|a = f|a, and

L(g) < ||flallca/(1 = t) < k2 - L(f).
d) = a). Trivial. o

Another condition equivalent to the separation property is that the
unit ball of lip ¢(X) should be lattice-dense in the unit ball of Lip o(X).
This follows from Theorem 2 of [14].
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