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TORSION OF DIFFERENTIALS OF AFFINE
QUASI-HOMOGENEOUS HYPERSURFACES

RUTH I. MICHLER

ABSTRACT. In this paper we prove that the torsion mod-
ules of the module of Kaehler differentials of affine hyper-
surfaces defined by a reduced quasi-homogeneous polynomial
with an isolated singularity at the origin are cyclic. We give
explicit expressions for generators. Moreover, we exhibit an

isomorphism between the torsion submodule of QX/_I;

QX/K for such hypersurfaces. A — D — E singularities provide
examples of such hypersurfaces.

and

0. Introduction. Let K be a field of characteristic zero. We
consider reduced affine quasi-homogeneous hypersurfaces in A¥ with
an isolated singularity at the origin. In the local analytic case we
already know by Theorem 4(1) of [11] that for reduced hypersurfaces
with an isolated singularity at the origin only QX/_; and Qg /K have
nonzero torsion, where N —1 is the dimension of our hypersurface. The
proof extends to the algebraic case as well. Since Q% /K is clearly cyclic
on generator wi A- - - Awpy, it remains to consider the torsion submodule

N—
onA/é.

The main result of this paper is an elementary proof that the torsion

submodule of QZ/_I%, henceforth denoted by T(QX/}%), is a cyclic A-

module and an explicit formula for its generator. We show

Theorem 1. If A is a reduced affine hypersurface with an isolated
singularity at the origin defined by a quasi-homogeneous polynomial F
with weights \; and of (total) degree n, then T(QX/}%) is a cyclic A-
module generated by

wy = Z(—l)iﬂ()\i/n)mi dzi A Adzi A+ Ndzy.

We then proceed to show
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Theorem 2. Let A be a reduced hypersurface in AY with an isolated
singularity at the origin defined by a quasi-homogeneous polynomial F
with weights \; and of (total) degree n. Then we have the following
A-module isomorphisms:

A ~ QN
(0f0x1,0f [0z, ... ,0f [Ozn) — K

where wo = S (=1)"FY(\;/n)ziday A~ Adzg A+ Aday.

T(Qg/};) ~ Awgy ~

The fact that for local analytic algebras dim ¢7'(2x ;) = dim cOx o/
(0F/0X1,...,0F/0XN),) was already shown by [4, Proposition 1.11],
or by [21, Proposition 2.8]. My result holds for (global) reduced
hypersurfaces with only isolated singularities. Moreover, it uses very
elementary methods. With the help of Macaulay it is possible to
implement this algorithm on a computer.

In the last section we use the isomorphism of Theorem 2 to compute
the Milnor number for A — D — E singularities; for a definition and
further details on A — D — E singularities, we refer to [5] or [7].

1. Preliminaries. Let K be a field of characteristic 0, R =
K[Xi,...,Xy], and consider the hypersurface A = R/(F), where
F € R is a reduced quasi-homogeneous polynomial with weights A;.
Recall (cf. [1]) that a nonvanishing polynomial F € K[X;,...,Xy] of
degree n is quasi-homogeneous with weights A; if and only if it satisfies
the generalized Euler equation:

N
oF

To ease notation, let 0f/0x; = 0F/0X; + (F) fori=1,... ,N. The
singular locus Sing (A4) of a hypersurface in A defined by a quasi-
homogeneous polynomial is defined by the ideal (0F/0X7,... ,0F/0XN)
in R. A has an isolated singularity at P € Spec(A) if there exists
s € A — P such that Sing (4;) = {Ps}, cf. [6].

Lemma 1 (special case of [11, Satz 4(1)]. For reduced hypersurfaces
A with an isolated singularity at the origin:

T(yx) =0 fori<N—1 andi>N.
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The following result characterizes hypersurfaces defined by a quasi-
homogeneous polynomial with a single isolated singularity at the origin
by a condition on the partial derivatives of F'.

Lemma 2. Let R, A and F be as before, and assume that A
has at most isolated singularities. Then the following conditions are
equivalent:

(i
(it

(iii

(OF/0X1,... ,0F/0XN) is an R-sequence,
let I =(0f/0x1,...,0f/0xn) C A, then dim g (A/I) < oo

Spec (A) has an isolated singularity at the origin,

)
)
)
)

(iv) Spec(A) has only a single isolated singularity at the origin.

We have the following well-known (cf. [11] or [6]) description of €%, /K

Lemma 3. For all positive integers i, we get surjections m; : Q%/K —
QA/K Ker (;) is the R-submodule FQR/K + QR/K ANdF.

Moreover, we have the following description of T'(Q’. A/ ) for reduced
affine hypersurfaces A, cf.

Lemma 4 [9, Lemma 4.11]. For all integers j > 0, there is an
A-module isomorphism Ker (0;) ~ T(QA/K) where §; : Qil/K —

A®Q] Ry K 18 defined by 6; i(day A~ -Adaj) = (1/3)1®@dri A---Adrj AdF,
where r; are elements of R that reduce to a; modulo (F).

If the hypersurface is nonsingular, then all the Qix / 8 are torsion-free
and the maps §; are all injective.

2. Proofs of the main theorems.

Proof of Theorem 1. Let us first show that wy € T(QZ/I&) We have
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=y~ 1) o A

0N,1(w0) ®R X Xm/\"'/\dXN
(N —~n
(—1)N-1

Since Ay _1 is A-linear, we get T(Q]X/;) D Awg. So we need to prove
the opposite inclusion. Let w = Y w;dx; A -+ A Jaf:i A ANday

be an arbitrary element of T(Qgﬂé) That means w € Ker (6y_1).

Equivalently,

OF
1®g (Z( 1)y, 6X)dX1/\---/\dXN:0,

where u; =U; + (F),i=1,... ,N. So we have

S0 = P,

%

for some polynomial P € R. So expressing F' in terms of its partial
derivatives, we get

N
> (=i <U,- — (71)”1)\ PX; > 5; =0.

i=1

Let C; = U; — (=1)"1()\;/n)PX;. Then

N
Z 1+1C oF =0.

X

i=1
We define a Koszul complex K (z, R/J) withz=[...,(—=1)"T'0F/8X;,...]
by
Ko=R and Kp = ®i1<---<ipRei1---iP7
where

eil...ip :Xm/\"'dXil /\"'/\dXip/\"-dXN.
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The differential d,, : K}, — K,_; is given by

P
611 E : xl] i1~ 5 BT

So we recognize (Nx*) as a Koszul relation, cf. [8, p. 127]. Since
OF/0X4,...,0F/0Xy are an R-sequence, we know that the Koszul
complex is exact. Thus, one has an equality of vectors:

i1 OF
[Cl,...,CN]: |:”-’(_1)Z+1(9X"”-:| . Z alkAlk,
v 1<I<k<N

where q; € R and Ay, with 1 <[ < k < N denotes the alternating
N x N matrix d;x — dx; where §_ is the Kronecker delta. From

N-1
QN 1 _ QR/K
A/K T poN—-1 N2
K FQN g+ QN 2 NdF
we get
. F :
[...,(1)”1%,... -Ai- | e; | =0mod Ker (my_1),

where e¢; =dX{ AN --- A dXi A ---ANdXpy. Therefore,
N
> CidXy A+ AdX; A--- AdXy = 0mod Ker (my_y).

It then follows that w = Pwyp in Q) / . We have shown that T(QN D)

is a cyclic A-module with generator wy = Y_((—1)1\;/n)z; dzi A+ A
dz; \--- Ndzy. o

Proof of Theorem 2. Note that since our hypersurface is singular we
have that Qg K # 0. From the definition of exterior product Qg /K is
a cyclic R-module generated by dX; A--- AdXy.

Q)

o __ R/K
A/K = Ker ()
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and the R-submodule Ker (7y) is generated by {(0F/0X;)dX1 A--- A
dX,}i<i<n. By Lemma 2, QQ/K is a cyclic A-module on generator

dxy N---ANdzxy, so
of
A/K_A/<6w1 ’&EN)'

Next we want to show: Ann (T(Q) 1)) = (f/0z,...,0f/dxy). For

A/K
alli=1,... N,
OF \j OF R
— J—129 j N
8XiW0 Z( 1) X ANdX; A NdXy
+1 F 0
= (-1) XXm/\ ANdXj A NdXy

J#i
+ (-1 FdX, A ANdXGA - ANdX Y

\; OF 5
! ’+1—8—de1 S NdX; A NdXy
i
= (1) FdX A NdX; A AdXy
N+i+j+1)‘]' % %
+) (-1 ZXjdX Ao ANdXG A - N dX;
j<i "
s
A ANdX _ _1\N+i+j+17
N AdF Z( 1) X dXoA
1<)
- ANdXiA---ANdXjA---ANdXy AdF € Ker (ny_1).

So we have, by Theorem 1,
( of of

— .., — | C Nt
oyl ) € A @),

Since d(wp) = (D Ai)/ndzy A---Adzy # 0, we know that T(QX/;) #
0. Clearly d is K-linear and by Lemma 1, QX x 1is finite dimensional,
so to show that d is a vector space isomorphism it suffices to show
that d is surjective. Let {x’llxéz- czd dzy Ao Ndey i € N} be
a generating set for QJX/K. We need to show that zi*z% - .- 2% dzy A

-Adzy € d(T (Qg/;)) for all possible i, € N, k = 1,...,N. Since
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Az - 2 wy) = 3, (0 + D(e/n)aal - 2y day A -+ Adey,
and Y, (ix + 1)(Ax/n) # 0, we have shown that

d: T(QJX/_é) — QX/K is a vector space isomorphism.
Hence Ann (T(Qg/_;)) = (0f/0x1,...,0f/0xN), and so

T(Q) g) =~k o

3. Examples. Let K be an algebraically closed field of char 0, e.g.,
the complex numbers. The so-called A— D — E singularities are defined
by the following quasi-homogeneous polynomials:

Ap: F(A k)= XM 4L X2 4 X2+ 4+ X3,
Dy:F(D,k)= X1 (XF 2+ X2)+ X2+ .-+ X3
Es:F(E,6) =X} + X3+ X2 4.+ X%
E;:F(E,T)= Xo(X; + X))+ X3+ -+ X3
Eg: F(E,8) = X7 + X5 + X3 +--- + X}

The name A — D — E singularity stems from the fact that the Dynkin
diagram obtained from successive blow-ups is the Dynkin-diagram of
a Lie algebra of the form Ay, Dy or Eg, E7, Fs, where k denotes the
number of vertices. For more information on the characterization of
A — D — E singularities, see the paper by G. Greuel [5]. Using the fact

that T(Q ) = QY «, we get that

. _ ) K[X{,Xs,...,X
dlmKT(Qg/;):dlmK<( X1, X5 ] )>7

0F/0X,...,0F/0XN
where F' has to be replaced by any of the quasi-homogeneous polyno-

mials from above. So, for A — D — E singularities corresponding to a
Dynkin diagram with k vertices, we have
. N-1
dim KT(QA/K) =k.
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