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PERTURBATION ANALYSIS OF A
SEMILINEAR PARABOLIC PROBLEM

WITH NONLINEAR BOUNDARY CONDITIONS

A.A. LACEY, J.R. OCKENDON, J. SABINA AND D. SALAZAR

ABSTRACT. We consider a diffusion model in which a
distributed nonlinear absorption mechanism competes with a
nonlinear boundary source. By assuming both these nonlin-
earities to be weak, a formal asymptotic approximation can be
constructed to describe the magnitude and stability of the dif-
ferent responses that can occur in different parameter regimes.

1. Introduction. Our objective is the study of the behavior of
positive solutions of the nonlinear, parabolic, initial-boundary value
problem:

ut = uxx − λup, x ∈ (0, 1), t > 0,(1.1a)
ux(0, t) = 0, ux(1, t) = uq(1, t), t > 0,(1.1b)
u(x, 0) = u0(x),(1.1c)

where λ, p, q are constants λ > 0, p > 1, q > 1, and u0 > 0.

The problem (1.1) is a generalization of some other nonlinear diffusion
problems. One example is the question of global existence of positive
solutions to the heat equation ut = ∆u, (x, t) ∈ Ω × R+, Ω a
bounded domain in RN , subject to the nonlinear boundary condition
∂u/∂ν = f(u) on ∂Ω (ν being the exterior unit normal to ∂Ω) and with
a nonnegative initial condition u(x, 0) = u0(x). The main feature of
this problem is the general tendency of positive solutions to blow up in
finite time provided that f = f(u) is a superlinear function. This blow-
up property was first proved for this problem in [4] for f(u) a power
uq, q > 1, and certain large enough initial data u0 (see also [7] for early
related but complementary global existence results). In [5] the blow-up
property was proved for all nonnegative initial data u0 provided that
f(u) = uq and either q > 1, N = 1, 2, or 1 < q < N/(N − 2) for N > 2
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and it can thence be shown that blow-up in fact occurs for q > 1 and
arbitrary N . On the other hand, blow-up was proved and found to be
located on the boundary in [2] for every nonnegative nonzero u0, both
for all two-dimensional simply-connected domains and for balls in RN ,
provided 1/f is integrable at infinity. Thus, the general picture is that
an explosion of u(x, t) is caused by the nonlinear flux law ∂u/∂ν = f(u)
[4]. It is natural then to study what happens when some “sink” effect is
introduced in the problem, and this is the role played by the term −λup

in (1.1a). Indeed, our problem may be thought of as a model for the
competition between, say, a nonlinear endothermic chemical reaction
taking place in the bulk of some material 0 < x < 1 and a nonlinear
exothermic reaction taking place at the boundary x = 1. Observe that
we are only dealing with symmetric (u(x, t) = u(−x, t)) solutions to
the one-dimensional problem. Our asymptotic methods can in fact be
applied to more general problems, both with asymmetry and in higher
dimensions, but we address the one-dimensional symmetric case here
for simplicity; a crucial first step is the study of the stationary solutions
to (1.1) and their stability properties.

The stationary solutions to (1.1a), (1.1b) and their stability have
been recently studied in [1, 3] and [6] by using phase space, variational
techniques and comparison methods for weak solutions. We shall now
complement those results here by providing a framework in which to
describe the evolution of u = u(x, t) from arbitrary initial data in the
parameter regime of p and q are near unity. This enables us to exploit
the solution of the linear problem, p = 1, q = 1, for which it is easy to
show the following results:

Let µ∗ be the unique positive root of µ∗ tanhµ∗ = 1. Then the only
steady solution of (1.1a), (1.1b) is u = 0 unless λ = λ∗ ≡ (µ∗)2, in
which case there exists a one-parameter family of eigensolutions

(1.2) u = A cosh µ∗x, A = constant.

Moreover, the zero solution is globally stable for λ > λ∗ and unstable
for λ < λ∗. We have the bifurcation diagram shown in Figure 1; note
that λ∗ > µ∗ > 1.

In particular, for the linear case, u = u(x, t) solves ut = uxx − λu
with ux = 0 on x = 0, ux = u on x = 1, u = u0 at t = 0 and can be
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FIGURE 1. Response diagram for the steady states of the linear problem
(1.1a), (1.1b) with p = q = 1; s and u denote stable and unstable branches.

found explicitly as a Fourier series:

(1.2a)

u(x, t) = A0e
(λ∗−λ)t cosh µ∗x

+
∞∑
1

Ane−(λ+µ2
n)t cos µnx

where µn is the nth positive root of µn tan µn + 1 = 0, (n − 1/2)π <
µn < nπ. The Fourier coefficients A0, A1, A2, . . . are determined from
the initial condition u0. In particular,

A0 = 2
∫ 1

0

u0(x) coshµ∗x dx/(1 + sinh2 µ∗) > 0.

Hence as t → ∞, u(x, t) ∼ A0e
(λ∗−λ)t cosh µ∗x. For λ = λ∗, u = u(x, t)

evolves to a steady state of the form given by (1.2) with A = A0.
Also, u grows or decays exponentially in time for λ < λ∗ or λ > λ∗,
respectively.

We now proceed formally with a perturbation analysis taking p =
1 + εα and q = 1 + εβ where ε is a small positive quantity, and we will
seek the dependence of the solution on the positive parameters α, β
assumed of O(1) as ε → 0.
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With ε so small so that nonlinear terms can be neglected, u is
proportional to an exponential of time for large, but not too large t.
Indeed, for λ < λ∗ or λ > λ∗, u becomes exponentially large or small
in 1/ε; thus, the linear approximation fails when uαε and uβε, which
were previously neglected, become O(1), i.e., for t = O(1/ε). We must
then study what happens over time scales of O(1/ε).

2. Preliminary asymptotic analysis. We write τ = εt to obtain:

(2.1)
εuτ = uxx − λu1+αε, 0 < x < 1, τ > 0;

ux(0, τ ) = 0, ux(1, τ ) = u1+βε(1, τ ).

The solution of (2.1) must match with the t = O(1) solution:

(2.2) u ∼ A0e
(λ∗−λ)τ/ε cosh µ∗x as τ → 0 + .

The form of the boundary value problem (2.1) and the matching
condition (2.2) both suggest the use of a WKB expansion of the form

(2.3) u(x, τ) = w(x, τ ; ε)ev(τ)/ε,

where w ∼ w0(x, τ) + w1(x, τ)ε + . . . as ε → 0.

On substituting (2.3) into (2.1), the two leading order terms give:

(2.4)
w0xx

− (v′ + λeαv)w0 = 0
w0x

= 0 on x = 0, w0x
= eβvw0 on x = 1;

and
(2.5)

w1xx
− (v′ + λeαv)w1 = w0τ + αλeαvw0 ln w0

w1x
= 0 on x = 0, w1x

= eβvw1 + βeβvw0 ln w0 on x = 1.

Setting µ2 = v′ + λeαv, with µ > 0, we readily see that (2.4) admits
positive solutions provided that µ is the unique positive root of the
equation

(2.6) µ tanhµ = eβv.
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Thus the dominant behavior of the solution to (2.1), (2.2), i.e. the
order of magnitude of u, is now given by the solution to

(2.7) (v′ + λeαv)1/2 tanh(v′ + λeαv)1/2 = eβv

subject to the initial condition

(2.8) v(0) = 0,

obtained by matching with (1.2a) as τ → 0. To find u to leading order
we must still determine w0. To do this, we notice that the solution to
(2.4) has the form

w0 = A(τ ) cosh(µ(τ )x)

where A(τ ) > 0 satisfies a differential equation, given by the solvability
condition that (2.5) has a solution w1 satisfying an initial condition
provided by matching with (1.2a) as τ → 0. Thus, multiplying (2.5)
by the eigenfunction coshµx and integrating, we obtain the solvability
condition

∫ 1

0

(w0τ + αλeαvw0 ln w0) coshµx dx = βeβv(w0 ln w0)|x=1 cosh µ

(this is, of course, the Fredholm alternative) which is to say

A′
∫ 1

0

cosh2 µx dx + Aµ′
∫ 1

0

x cosh µx sinh µx dx

+ αλAeαv

∫ 1

0

cosh2 µx ln cosh µx dx

+ αλ(A lnA)eαv

∫ 1

0

cosh2 µx dx

= Aβeβv cosh2 µ ln cosh µ + (A lnA)βeβv cosh2 µ.

The equation for A is thus of the form

(2.9) A′I1 + (I2µ
′ + I3)A + I4A ln A = 0

where the integrals I1 − I4 can be regarded as functions of either
v or µ, all being elementary functions except that the evaluation of
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∫ 1

0
cosh2 µx ln(coshµx) dx, which appears in I3, involves the diloga-

rithm. The derivative µ′ can be obtained from the relation (2.6) be-
tween µ and v and the differential equation (2.7):

(2.10) µ′ = βeβv µ2 − λeαv

tanh µ + µsech 2µ
.

Our task is now to investigate the solution of (2.9) subject to the
initial condition, given by matching

(2.11) A(0) = A0,

as well as, more importantly, to find the solution v of (2.7) and (2.8).

As a starting point, we need to investigate the existence and stability
of steady states. We observe that any stationary solution is given by
v′ = 0 so v = V (λ) = (1/α) ln[s(λ)2/λ] where s = s(λ) is a positive
solution of

s tanh s = (s2/λ)β/α,

i.e.,

(2.12) s2−α/β/(tanh s)α/β = λ.

Equivalently, from (2.6) and (2.10), µ = s(λ) is a steady state of

(1.15) µ′ = βµ tanh µ
µ2 − λ(µ tanhµ)α/β

tanh µ + µsech 2µ
.

The stability of µ, and hence of V , is thus determined by the sign of
(∂/∂µ)[µ2 − λ(µ tanhµ)α/β]|µ=s. Noting that s2 − λ(s tanh s)α/β = 0,
we find that

ds

dλ

∂

∂s

∣∣∣∣
λ

[s2 − λ(s tanh s)α/β] − (s tanh s)α/β = 0

and hence that µ = s(λ) and V = (1/α) ln[s(λ)2/λ] are asymptotically
stable if s(λ) is decreasing; µ = s(λ) and V = (1/α) ln[s(λ)2/λ] are
unstable if s(λ) is increasing.

It is clear from this that the steady state of (2.1) is unstable if s(λ)
is increasing. Before we can assert stability in the case when s(λ) is
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decreasing, we also need to check on the local behavior of A. Fixing
µ = s(λ) as a constant, the reduced version of equation (2.9),

I1A
′ + (I3 + I4 ln A)A = 0,

should have the stable steady state a(λ) ≡ e−I3/I4 . Now for µ at its
equilibrium value s(λ),

I4 = αλeαv

∫ 1

0

cosh2 sx dx − βeβv cosh2 s

=
1
2
αλeαv

(
sinh 2s

2s
+ 1

)
− βeβv cosh2 s

= −βeβv cosh2 s

2s

[
2s − λα

β
e(α−β)v(tanh s + s sech 2s)

]
,

= −βeβv cosh2 s

2s

[
2s − λα

β
(s tanh s)α/β−1(tanh s + s sech 2s)

]

= − β

2s
eβv cosh2 s

∂

∂s

∣∣∣∣
λ

[s2 − (s tanh s)α/βλ],

where we have replaced v by its equilibrium value given by eβv =
s tanh s.

Noting that I1 =
∫ 1

0
cosh2 µx dx > 0 we see that the steady state

a(λ) is asymptotically stable for (∂/∂s)|λ[s2 − (s tanh s)α/βλ] < 0 and
unstable where (∂/∂s)|λ[s2 − (s tanh s)α/βλ] > 0. Thus, in general, the
steady state in which A = a(λ) is stable if and only if s(λ), the corre-
sponding steady solution for µ, is also stable. This should be expected
as the alternative expansion, u ∼ exp[v0(τ )/ε + v1(τ ) + εv2(x, τ) +
· · · ] cosh(µ(τ )x), gives, to leading order, u ∼ e(v0/ε+v1) cosh µx, with
v1 = ln A, and the steady state will be stable if and only if v(λ)/ε +
ln a(λ) is stable as a steady state of ṽ = v0/ε + v1.

All the above arguments implicitly assume that s(λ) is a smooth
function, but we will shortly encounter the possibility of turning points
where dλ/ds vanishes; then I4 becomes zero and our expansions become
invalid. The stability near such a turning point can only be considered
by using a revised asymptotic expansion for a(λ), but that is beyond
the scope of the present paper.
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It should also be remarked that inspection of (2.9) shows that the
only way A can either become unbounded or reach zero in a finite time
is if v → ±∞ as t approaches that time.

We can make no further general remarks about the solution u to
(2.1) (or the solution of (1.1)) until we have studied the properties of
equation (2.7) for v; this is done in the following section.

3. Steady states and possible asymptotic behavior of v. We
summarize the results concerning the differential equation for v in the
following theorem. We shall denote the value corresponding to the
trivial steady state, u ≡ 0, by V∞ = −∞. It is clear that u = 0 will be
asymptotically stable or unstable according to whether v′ < 0 or v′ > 0
for large negative values of v.

Theorem. The equation (2.7) has the following properties according
to the values of the positive parameters α, β and λ

(a) If 0 < α < β (2.7) has a unique steady state V (λ) =
(1/α) ln[s(λ)2/λ] for every λ > 0. Here s(λ) is a smooth, posi-
tive, increasing function such that s(λ) ∼ λβ/2(β−α) as λ → 0 and
s(λ) ∼ λβ/(2β−α) as λ → ∞. The steady solution V (λ) is unstable
whereas V∞ is asymptotically stable. If v > V (λ), then v blows up at a
finite time. If v < V (λ) then v → −∞ as t → ∞.

(b) If α = β > 0 (2.7) has a unique steady state V (λ) =
(1/λ) ln[s(λ)2/λ] if and only if λ > 1. Here s(λ) is a smooth, posi-
tive, increasing function such that s(1) = 0 and s(λ) ∼ λ as λ → ∞.
The stationary solution V (λ) is unstable. For 0 < λ ≤ 1, V∞ is un-
stable but for λ > 1 V∞ is asymptotically stable. For 0 < λ ≤ 1 all
solutions of (2.7) blow up. For λ > 1 only those starting greater than
V (λ) blow up while if v < V (λ) then v → −∞ as t → ∞.

(c) If 0 < β < α < 2β (2.7) has stationary solutions if and only
if λ ≥ λc where λc(α, β) satisfies 1 < λc ≤ λ∗. For λ > λc there
are two steady states given by Vj(λ) = (1/α) ln[sj(λ)2/λ], j = 1, 2
where s1(λ) < s2(λ) are smooth, positive functions for λ > λc; s1(λ)
is decreasing while s2(λ) is increasing with s1(λ) ∼ λ−β/2(α−β) and
s2(λ) ∼ λ−β/(2β−α) as λ → ∞. For λ = λc there is a unique steady
state Vc = (1/α) ln[s2

c/λ] and sj(λ) → sc as λ → λc+ . The steady states
V∞, Vc, and V2 (where they exist) are all unstable but (for λ > λc) V1
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is stable. Indeed, for λ < λc all solutions v to (2.7) blow up; for λ = λc,
v blows up if initially v > Vc, otherwise v → Vc− as t → ∞; for λ > λc

if v(0) > V2, then again v blows up whereas v(0) < V2 gives v → V1 as
t → ∞.

(d) If 0 < α = 2β (2.7) has a steady state if and only if λ > 1.
This unique solution V (λ) = (1/α) ln[s(λ)2/λ] where s(λ) is a smooth,
decreasing, positive function with s(λ) → ∞ as λ → 1+ and s(λ) ∼
λ−1/2 as λ → ∞. The stationary solution V (λ) is stable for all λ > 1
whereas V∞ is always unstable. For λ < 1 all solutions to (2.7) blow
up, and for λ > 1, ν → V (λ) as t → ∞.

(e) If α > 2β > 0 (2.7) has a unique stationary solution V (λ) =
(1/α) ln[s(λ)2/λ] for all λ > 0. Here s(λ) is a smooth, positive,
decreasing function such that s(λ) ∼ λ−β/(α−2β) as λ → 0 and s(λ) ∼
λ−β/2(α−β) as λ → ∞. The steady state V (λ) is stable while V∞ is
unstable. All solutions of (2.7) exist for all time t and satisfy v → V (λ)
as t → ∞.

We can make some further remarks about the behavior of s(λ) when
it becomes large. We note that if σ = β/(2β − α), then s′′(λ) �
σ(σ−1)λσ−2 as λ → ∞+ in the case (a), λ → +∞ and s = s2(λ) in the
case (c), λ → 0+ in the case (e). In the case (b) s′′(λ) � −8(λ−1)e−2λ

as λ → +∞. Finally, s′′(λ) � (3λ− 1)/[λ3/2(λ− 1)2] as λ → 1+ in the
case (d). Thus, s(λ) is concave near infinity in the cases (a) and (b),
and it is convex in the cases (c) with s = s2(λ), (d) and (e). Similarly,
when s(λ) converges to zero we note that if θ = β/(2(β − α)), then
s′′(λ) � θ(θ − 1)λθ−2 when λ → +∞ in the cases (c) with s = s1(λ),
(d) and (e). Since θ < 0, s(λ) is convex near zero in these cases. In the
case (b), where β = α, s′′(λ) � −1/s(λ) as λ → 1+, so s(λ) is concave.
In the case (a), s′′(λ) � θ(θ − 1)λθ−2 as λ → 0+ except when θ = 1
where s′′(λ) � −λ as λ → 0+. Thus, in the case (a), s(λ) is convex
near zero if α < β < 2α and concave in the remaining cases.

The possible types of qualitative behavior of s(λ), which is given
by (2.12), are shown in Figure 2, which we shall now explain. It
is clear that response diagrams showing ||u||∞, as computed from
the approximation u ∼ a(λ)eV (λ)/ε cosh(s(λ)x), will be very similar
to those of s, since s tanh s = eβV (V increases with s), i.e., u =
O((s tanh s)1/εβ). In particular, V∞ = −∞ corresponds to s = 0 and
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FIGURE 2. Plots of s(λ) for the cases (a) α < β, (b) α = β, (c) β < α < 2β,
(d) α = 2β, and (e) α > 2β.

to u = 0.

The stability properties of V (λ) = (1/α) ln[s(λ)2/λ] follow immedi-
ately from the sign of ds/dλ (which coincides with that of dV/dλ), as
discussed above. The stability of the trivial steady state is given by the
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sign of v′, as in (2.7), for v large and negative; since

v′ = µ2 − λeαv with µ tanh µ = eβv

∼ eβv − λeαv for − v 	 1.

Thus, for 0 < α < β or λ > 1 with α = β > 0 we have v′ < 0 when
−v 	 1 and the trivial steady state is asymptotically stable. However,
for α > β > 0 or λ < 1 with α = β > 0 we obtain v′ > 0 when
−v 	 1 and the trivial steady state is unstable. The critical case
of λ = 1, α = β has to be looked at more carefully: as v → −∞,
µ tanhµ ∼ µ2(1 − µ2/3 + · · · ) ∼ eβv so µ2 ∼ eβv(1 + (1/3)eβv + · · · ).
Then v′ ∼ (1/3)e2βv so the trivial steady state is again unstable.

To check on which values of λ admit real values of s(λ), and hence
V (λ), and find the response curves, we need only study (2.12), which
is more conveniently written as

(3.1) λ =
s2

(s tanh s)α/β
or Λ ≡ λ−β/a = s1−2β/α tanh s.

Now

s2β/α dΛ
ds

=
(

1 − 2β

α

)
tanh s + s sech 2s

=
[
s +

(
1 − 2β

α

)
sinh s cosh s

]
sech 2s.

It is immediately apparent that for 1 − 2β/α ≥ 0, i.e., α ≥ 2β,
dΛ/ds > 0 so s(λ) is decreasing and V (λ) is asymptotically stable
wherever they are defined. Moreover, using sinh s > s and cosh s > 1
for s > 0, for −2β/α + 1 ≤ −1, i.e., α ≤ β, dΛ/ds < 0 so s(λ) is
increasing and V (λ) is unstable wherever they are defined. It is also
clear that:

(i) As s → ∞, Λ ∼ s1−2β/α and λ ∼ s2−α/β , i.e., s ∼ λβ/2(β−α) →
∞ as λ → ∞ for α < 2β (s = s2 for β < α < 2β), s ∼ λ−β/(α−2β) → ∞
as λ → 0 for α > 2β and s → ∞ as λ → 1+ for α = 2β.

(ii) As s → 0, Λ ∼ s2−2β/α and λ ∼ s2(1−α/β), i.e., s ∼ λβ/2(β−α) →
0 as λ → 0 for α < β, s ∼ λ−β/2(α−β) → 0 as λ → ∞ for α > β (s = s1

for β < α < 2β) and s → 0 as λ → 1+ for α = β.

To complete the results on the qualitative behavior of s(λ), and the
attendant stability, it remains to show that s can take precisely two
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real values, s1 < s2, for λ > λc in the case of β < α < 2β; since λ → ∞
both as s → 0 and as s → ∞, it is clear that a minimum positive
value λc of λ exists above which s(λ) is real. Now ds/dλ has the
opposite sign to s + (1− 2β/α) sinh s cosh s which has negative second
derivative. This indicates that ds/dλ changes sign at most twice. Since,
in the interval β < α < 2β, s + (1 − 2β/α) sinh s cosh s is positive if s
is small and negative if s is large, ds/dλ changes sign precisely once:
dλ/ds < 0 for s < sc (s = s1(λ) is decreasing), dλ/ds > 0 for s > sc

(s = s2(λ) is increasing). Regarding the size of λc we note that V = 0
for s = µ∗ > 1 (µ∗ tanhµ∗ = 1), that is, λ = λ∗ = (µ∗)2 > 1, and,
whatever positive values α and β take, real values of s(λ∗) and V (λ∗)
can be defined. Thus, for β < α < 2β, λc ≤ λ∗. Moreover, using
(3.1) and writing S = s tanh s, λ = s2/Sα/β so for S < 1, i.e., s < µ∗,
λ > s2/S = s/ tanh s > 1 taking α > β, while for S > 1, i.e., s > µ∗,
λ > s2/S2 = 1/(tanh s)2 > 1 taking α < 2β. Hence, λc > 1.

We should also note that at s = µ∗, λ = λ∗ and (V = 0), dλ/ds
has sign opposite to that of s + (1− 2β/α) sinh s cosh s, which gives at
s = µ∗

µ∗
[
1 +

(
1 − 2β

α

)
sinh2 µ∗

]
= µ∗[cosh2 µ∗ − (2β/α) sinh2 µ∗]

= µ∗((µ∗)2 − 2β/α) sinh2 µ∗,

and

dλ/ds <0 at s=s∗ so sc >µ∗ and λc <λ∗ for α>2β/λ∗,
dλ/ds =0 at s=s∗ so sc =µ∗ and λc =λ∗ for α=2β/λ∗,
dλ/ds >0 at s=s∗ so sc <µ∗ and λc <λ∗ for α<2β/λ∗.

Of course, λ∗ > 1 so 2β/λ∗ < 2β. Moreover, λ∗ = 1+1/ sinh2 µ∗ where
µ∗ > 1 so sinh µ∗ > sinh 1 > 1, i.e., λ∗ < 2 and 2β/λ∗ > β. Hence,
there is a critical value of α/β, namely,

(3.2)
α

β
=

2
λ∗ ,

such that sc crosses µ∗ from below as α/β increases through this value.
At the turning point V = Vc < 0 for α/β < 2λ∗, Vc = 0 for α/β = 2/λ∗,
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FIGURE 3. Graphs of v′ = µ2 − λeαv against v for the five cases (a) α < β,
(b) α = β, (c) β < α < 2β, (d) α = 2β, and (e) α > 2β.

and Vc > 0 for α/β > 2/λ∗ since V = 0 at s = µ∗ and V is an increasing
function of s.

The behavior of the solution to an initial value problem for v follows
immediately from consideration of v′ = µ2 − λeαν as a function of v
with v and µ related by (2.6) (for fixed α, β and λ). Using knowledge
of the zeros V (λ) of v′, the behavior for large negative v, and

v′ ∼ e2βv − λeαv for v 	 1 as (λ, α) 
= (1, 2β),
v′ ∼ 4 exp(−eβv + 2βv) for v 	 1 as (λ, α) = (1, 2β),

then the five cases give graphs as shown in Figure 3.
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The asymptotic behavior of the solutions v to (2.7) then follows,
except that in place of v blowing up or tending to infinity as t → ∞,
we only know that v is unbounded above. However, v′ ∼ e2βv as v → ∞
for α < 2β and v′ ∼ (1 − λ)e2βv as v → ∞ for λ < 1, α = 2β. Hence,
for these two cases any solution that becomes large must blow up. In
the remaining case that can admit large solutions, λ = 1, α = 2β,
v′ ∼ 4 exp(−eβv + 2βv) for v 	 1 so v → ∞ as t → ∞, but with
comparatively slow growth.

4. Comparison with the linear case. We wish to see how the
structure of the bifurcation diagram for the approximate solution to
the steady problem,

Uε,λ = a(λ)eV (λ)/ε cosh(s(λ)x),

approaches that for the linear problem as ε → 0. Let us consider five
cases in turn.

(a) α < β. For all λ there is an unstable, nontrivial, steady state
given by v = V (λ), with V (λ) > 0 for λ > λ∗, V (λ) < 0 for λ < λ∗

(V (λ∗) ≡ 0, V ′ > 0 in this case). As ε → 0, U → 0 for λ < λ∗, i.e.,
the nontrivial solution approaches the trivial, stable, steady state and
u = 0 becomes unstable in the limit, while for λ > λ∗, U → ∞, and
the basin of attraction of the trivial, steady state becomes unbounded.

(b) α = β. This is like (a) except that the nontrivial solution that
tends to zero only exists for 1 < λ < λ∗. For 1 < λ < λ∗, u = 0
becomes unstable through the approach of U . For λ ≤ 1, u = 0 is
unstable even for ε > 0.

(c) β < α < 2β. This has to be subdivided into (i) β < α < 2β/λ∗,
(ii) α = 2β/λ∗, and (iii) 2β/λ∗ < α < 2β.

(i) β < α < 2β/λ∗. The turning value Vc < 0 is achieved at
λ = λc < λ∗. As ε → 0, the whole of the lower, stable branch,
corresponding to v = V1 ≤ Vc, tends to zero. Simultaneously that part
of the upper, unstable branch lying in λc ≤ λ < λ∗ also approaches
zero whereas for λ > λ∗ then the branch goes off to infinity. For
λ < λc, u = 0 is automatically unstable, for λc ≤ λ < λ∗ we have that
u = 0 remains unstable due to the approach of the unstable steady state
(constraining the stable one beneath it), and for λ > λ∗ we obtain that
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u = 0 becomes stable, with unbounded basin of attraction as the stable
solution approaches zero while the unstable one goes off to infinity.

(ii) α = 2β/λ∗. Here Vc = 0 (λc = λ∗) and the whole of the lower,
stable branch has V1 < 0 and so approaches u = 0 as ε → 0 while all
the upper, unstable branch has V2 > 0 and consequently is unbounded
as ε → 0.

(iii) 2β/λ∗ < α < 2β. Now Vc > 0 is achieved at λc < λ∗. As ε → 0
the larger, unstable solution, corresponding to V2 ≥ Vc > 0, and that
part of the smaller, stable solution corresponding to V1 with λ < λ∗,
so V1 > 0, are unbounded. The smaller steady state with λ > λ∗,
v = V1 < 0, goes to zero.

(d) α = 2β. The nontrivial steady state is stable and has V > 0, so
U → ∞, for 1 < λ < λ∗; for λ > λ∗ V < 0 so U → 0 as ε → 0.

(e) α > 2β. This is like (d) except that the solution going off to
infinity applies for all λ < λ∗.

Representative response diagrams for some small value of ε are shown
in Figure 4.

In crude terms, we can contrast our results with the linear response
as follows:

(i) When λ < λ∗, the nonlinearity permits the existence of stable
steady states, but they are either large or just below unstable steady
states;

(ii) When λ > λ∗, the nonlinearity permits the existence of unstable
steady states, but they are either large or zero and just below stable
states.

Thus, the limit problem coincides with the linear, ε = 0, problem,
shown in Figure 1.

5. The initial value problem. In order to compute the details
of Figure 3, we briefly discuss the implications of the properties of the
steady states for the behavior of the initial value problem for v. This
follows according to the properties of the differential equation (2.7)
subject to the initial condition (2.8). We will only consider the more
interesting case in which λ < λ∗.

In cases (a) and (b), α ≤ β, for λ < λ∗ we have that V (λ) < 0 and
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FIGURE 4. Response diagrams for the steady states with 0 < ε � 1, and so
“close” to the linear case of Figure 1, for the seven cases and subcases (a) α < β,
(b) α = β, (c)(i) β < α < 2β/λ∗, (c)(ii) α = 2β/λ∗, (c)(iii) 2β/λ∗ < α < 2β,
(d) α = 2β and (e) α > 2β. Subscripts s and u denote stable and unstable
branches of solutions, respectively.

so v(0) = 0 is larger than any steady state. Consequently v blows up.

For (c), (i) and (ii), β < α ≤ 2β/λ∗, any steady state V (λ) is again
negative so v blows up.

However, taking 2β/λ∗ < α < 2β, (c)(iii), the values λ < λc and
λ ≥ λc must be distinguished. If λ < λc there is no steady state and
once again v blows up. Now taking λc ≤ λ < λ∗ there is a steady state
greater than v(0), indeed V (λ) > 0 for these parameter values, and
v(τ ) exists for all time, is increasing and bounded above: v(τ ) → V1(λ)
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as τ → ∞ (V1 = Vc for λ = λc).

For (d) α = 2β, there is a stable, positive, steady state for 1 < λ < λ∗

so in this interval, v(τ ) → V (λ) as τ → ∞. With λ = 1, v = v(τ ) exists
for all time while still being unbounded: v → ∞ as τ → ∞. For λ < 1
again there is blow up.

Finally, in case (e), α > 2β, the stable, positive, steady state V (λ)
exists for all λ < λ∗ and then v → V (λ) as τ → ∞.

We thus conjecture that solutions in which v is large exhibit the
following behavior:

For α ≤ 2β/λ∗, λ < λ∗, then u becomes larger than O(ek/ε) for any
k as t → τ∗/ε for some τ∗ < ∞.

For α > 2β/λ∗, λ < λc where 1 < λc < λ∗ if α < 2β, λc = 1 if
α = 2β, and λc = 0 if α > 2β, u becomes larger than O(ek/ε) for any k
as t → τ∗/ε for some τ∗ < ∞. However, for λc ≤ λ < λ∗ with α < 2β
or λc < λ < λ∗ with α = 2β, u approaches a steady state, exponentially
large in 1/ε, as t → ∞ over a time scale of O(1/ε). There is a special
case α = 2β, λ = λc = 1, for which u becomes much greater than ek/ε

for any k over a time t 	 1/ε.

6. Conclusions. We have presented a formal asymptotic description
of the steady states of (1.1a,b) and their stability when p and q only
just exceed unity. This analysis has highlighted the role played by
(p − 1)/(q − 1), especially when this parameter is near one or a half.
We expect that our response diagrams will give a reliable guide to
the sizes of stationary solutions for larger values of ε. We have also
indicated how the steady states can be used to give information on the
solution of the unsteady problem.
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